**Speaker Abstracts**

**Sergey Arkhipov (University of Toronto)**

*Modules over the quantum group and coherent sheaves. The
singular block case.*

We consider a singular block in the category of modules over the
Lusztig quantum group at a root of unity. The old result of Bezrukavnikov
and Ginzburg identifies this category with the derived category
of equivariant coherent sheaves on the Springer variety for the
Langlands dual group. We outline a proof of the corresponding statement
for a singular block, in terms of coherent sheaves on the cotangent
bundle to a generalized flag variety for the Langlands dual group.
Then we explain the relation of the statement with a possible formulation
of an algebraic analog of the Freed-Hopkins-Teleman theorem.

**----------------------------------------------**

Chris Brav (University of Toronto)

*Smaller non-commutative resolutions of rank varieties*

A rank variety is the locus of matrices of some kind having rank
less than or equal to some fixed non-negative integer. Typically,

rank varieties are singular and have standard resolutions given
by total spaces of vector bundles over Grassmannians. When such
resolutions are small, the cohomology of the resolution is isomorphic
to the intersection cohomology of the rank variety.

In the case of a skew-symmetric rank variety, the standard resolution
fails to be small and we show how to replace it with a smaller non-commutative
resolution whose Grothendieck group is isomorphic to the intersection
cohomology of the rank variety.

**----------------------------------------------**

Allen Knutson (Cornell University)

*Frobenius splitting and juggling patterns*

Given a reducible hypersurface f=0 in affine n-space, we can construct
many other subschemes: decompose the hypersurface, intersect the
pieces, decompose the intersections, repeat.

Theorem: if f is degree n, and the number of Z/p solutions

is not a multiple of p, then all these subschemes are reduced. (The
same follows in characteristic 0, if it holds for infinitely many
p.) This is true if f's leading term is the product of all the variables.

I'll prove this, and describe a remarkable f on the space of matrices
(or really, the Grassmannian), whose associated strata are indexed
by juggling patterns. This part is joint with Thomas Lam and David
Speyer.

**----------------------------------------------**

Mikhail Mazin (University of Toronto)

Geometric Theory of Parshin's Residues

In the early 70-ties Parshin introduced his notion of the multidimensional
residue, which is a generalization of the classical one-dimensional
residue. The main difference between the Parshin's definition and
the one-dimensional case is that in higher dimensions one computes
the residue not at a point but at a complete flag of subvarieties
X = Xn ¾ ¢ ¢ ¢ ¾ X0; dimXk = k: Parshin
also proved a Reciprocity Law for residues: if one fixes all elements
of the flag, except Xk; where 0 < k < n; and consider all
possible choices of Xk; then only finitely many of these choices
give non-zero residues, and the sum of these residues is zero.

Parshin's constructions are completely algebraic. In fact, they
work in very general settings, not only over complex numbers. However,
in the complex case one would expect a more geometric variant of
the theory. In this talk I will present my current work under Prof.
Khovanskii supervision on the geometric theory of Parshin's residues.
There are two parts of the work: in the first part we use the geometry
of Stratied Spaces to construct smooth cycles, such that the residues
are the integrals over them, and to prove the Parshin's Reciprocity
Law for residues. In the second part we use the Resolution of Singularities
technics to study the geometry of a singular variety near a complete
flag of subvarieties.

**----------------------------------------------**

Nicholas Proudfoot (University of Oregon)

*Goresky-MacPherson duality and deformations of Koszul algebras*

Goresky and MacPherson made the following cute observation: consider
a Type A Springer variety along with its natural torus action, and
look at Spec of its equivariant cohomology ring, which consists
of a union of linear subspaces of a vector space. Now consider the
collection of subspaces of the dual vector space obtained by taking
the perps of all of these guys. It turns out that this is itself
the spectrum of the equivariant cohomology ring of a certain partial
flag variety!

I will explain some of the beautiful structures that are lurking
behind this picture, and in so doing generate many more analogous
examples, both known and conjectural.

This is joint work with the Symplectic Duality Crew (Tom Braden,
Tony Licata, and Ben Webster) and Chris Phan.

**----------------------------------------------**

Michael Roth (Queens University)

*Cup product of line bundles on complete flag varieties*

Given a semisimple algebraic group G (like SL_{n+1}) the complete
flag variety X=G/B is an algebraic variety which is a geometric
incarnation of the Lie theory of G. In particular, the cohomology
of line bundles on X produce all the irreducible representations
of G (in more than one way). This talk will give answers to the
following two natural questions, which mix representation theory
and geometry:

Q1: Given line bundles L_1 and L_2 on X, with nonzero cohomology
in degrees d_1 and d_2, when is the cup product map

H^{d_1}(X,L_1) \otimes H^{d_2}(X, L_2) -----> H^{d}(X, L)

surjective (where d=d_1+d_2 and L=L_1\otimes L_2)?

Q2: Fixing two irreducible representations V_1 and V_2 of G, what
irreducible subrepresentations of the tensor product V_1\otimes
V_2 can be realized via the cup product map above?

**----------------------------------------------**

Alistair Savage (University of Ottawa)

*Equivariant map algebras*

Suppose a finite group acts on a scheme (or algebraic variety)
X and a finite-dimensional Lie algebra g. Then the space of
equivariant algebraic maps from X to g is a Lie algebra under pointwise
multiplication. Examples of such equivariant map algebras
include (multi)current algebras, (multi)loop algebras, three point
Lie algebras, and the (generalized) Onsager algebra. In this
talk we will present a classification of the irreducible finite-dimensional
representations of an arbitrary equivariant map algebra. It
turns out that (almost) all irreducible finite-dimensional representations
are evaluation representations. As a corollary, we recover
known results on the representation theory of particular equivariant
map algebras (for instance, the loop algebras and the Onsager algebra)
as well as previously unknown classifications of other equivariant
map algebras (for example, the generalized Onsager algebra).
All such classifications are specializations of the general theorem.
This is joint work with Erhard Neher and Prasad Senesi.

**----------------------------------------------**

Michael Wong (McGill University)

*Wonderful Compactifications and Moduli of Principal Bundles*

Starting with a fixed vector bundle W over a Riemann surface, it
is possible to construct families of vector bundles that occur as
full rank subsheaves of W that give open sets of the moduli space
of stable vector bundles. Essentially, the family is obtained by
twisting the transition function for W in punctured neighbourhoods
of a finite set of points on the Riemann surface. We may ask whether
such a construction can be mimicked for an arbitrary principal bundle.
In the case that the structure group is a semisimple algebraic group
of adjoint type, we may use the wonderful (De Concini-Procesi) compactification
to produce analogous "twists," or Hecke modifications,
supported at points. In some cases, these modifications can indeed
be put together to give parametrizations of the moduli space of
principal bundles. If time permits, we will also look at the Hitchin-type
space of pairs of bundles and connections as seen from the perspective
of this parametrization.