SCIENTIFIC PROGRAMS AND ACTIVITIES

April 24, 2024

FRSC Day - October 19, 2002

Abstracts

Vidyadhar Godambe, University of Waterloo
A Fundamental Paradox of Statistics
A very common instance of statistical inference is studied. Its paradoxical nature in all formal theories of statistical inference is established.

Peter Guthrie, University of Western Ontario
Predicting how fast a chemical reaction will occur
How fast a chemical reaction will occur depends not just upon the overall thermodynamics, but also upon an intrinsic kinetic barrier, which depends on the nature of the transformation. I have developed a new way of thinking about reactions which allows relatively straightforward calculation of the rate of any reaction. The key is that if only one thing happens then energy depends in a very simple way on the progress of the transformation. This allows calculations of the rate when (as in all real reactions) more than one thing must happen for the chemical reaction to occur. The approach also provides a qualitative way of thinking about which of two reactions will be faster, without requiring rate information.

Niky Kamran, Department of Mathematics and Statistics, McGill University.
Wave equations in Kerr Geometry
We will give a motivated introduction to the study of long-time behavior of the solutions of the classical wave equations in the exterior geometry of a rotating black hole in equilibrium. We will notably present some results obtained with Felix Finster, Joel Smoller and Shing-Tung Yau on the Dirac and scalar wave equations.

Neal Madras, Department of Mathematics and Statistics, York University
Self-Avoiding Walks and Related Models
A self-avoiding walk is a path in a lattice that does not visit any point more than once. The self-avoiding walk and several associated models have attracted much interest in the past half-century for several reasons: for chemists, they are simple discrete models of long-chain polymer molecules; for physicists, they exhibit scaling behaviour and phase transitions that make them interesting and accessible models for investigating critical phenomena; and for mathematicians, they are the source of many simply stated problems that seem to defy rigorous solution. This talk will present an overview of the self-avoiding walk and related models, and of some of the important questions associated with them.