On the rigidity of some Hirzebruch genera

(based on arXiv:2402.10049)

Georgii Chernykh

Higher School of Economics Steklov Mathematical Institute

Focus Program on Toric Topology, Geometry and Polyhedral Products
Workshop on Toric Topology

Fields Institute August 23, 2024

Hirzebruch genera

 \varOmega_U^* is the complex cobordism ring = cobordism ring of (closed) stably complex manifolds

stably complex structure on M= complex structure on $TM\oplus \mathbb{R}^N$ (up to $\oplus \mathbb{C}^k$)

stably complex manifolds M and N are cobordant if $M\sqcup \overline{N}=\partial W$

$$\varOmega_U^* = \{ \text{stably complex closed manifolds} \} / \sim$$

$$[M] + [N] = [M \sqcup N] \quad [M] \cdot [N] = [M \times N]$$

Hirzebruch genera

R is a graded commutative \mathbb{Q} -algebra Ω_U^* is the complex cobordism ring complex Hirzebruch genus is a ring homomorphism $\varphi\colon \Omega_U^* \to R$ complex genera $\varphi\colon \Omega_U^* \to R$ are in the bijection with the power series $f\in R[[x]]$ s. t. $f(x)=x+\dots$ (Hirzebruch) $f(x)=g^{-1}(x),\ g(x)=x+\sum_{k\geqslant 1}\frac{\varphi([\mathbb{C}P^k])}{k+1}x^{k+1} \text{ (Mischenko)}$ $\varphi([M])=\langle\prod\frac{x_i}{f(x)}(\mathcal{T}M),[M]_{\mathbb{Z}}\rangle$

3/14

Equivariant extension

 $\Omega^*_{U:T^k}$ is the complex T^k -equivariant cobordism ring

$$\Phi \colon \varOmega^*_{U:T^k} \xrightarrow{P-T} MU^*_{T^k}(pt) \to MU^*(BT^k) = \varOmega^*_U[[u_1, \dots, u_k]]$$

 Φ is the universal (complex) toric genus. It is injective (Comezaña, Hanke, Löffler).

The equivariant extension of a genus $\varphi \colon \Omega_U^* \to R$ is a composition

$$\varphi^{\mathsf{T}} \colon \Omega^*_{\mathcal{U}:\mathcal{T}^k} \xrightarrow{\Phi} \Omega^*_{\mathcal{U}}[[u_1,\ldots,u_k]] \xrightarrow{\varphi \colon \Omega^*_{\mathcal{U}} \to R} R[[x_1,\ldots,x_k]]$$

Rigidity

A genus $\varphi \colon \Omega_U^* \to R$ is rigid on a T^k -manifold M if $\varphi^T([M]) = const \in R[[x_1, \dots, x_k]]$. In fact this constant is $\varphi([M]) \in R$.

Theorem (Buchstaber–Panov–Ray)

A genus $\varphi \colon \Omega_U^* \to R$ is rigid on M if and only if we have $\varphi(E) = \varphi(M)\varphi(B)$ for any fibre bundle $E \to B$ with fibre M.

Theorem (Buchstaber–Panov–Ray localization formula)

If a T^k -manifold M has only isolated fixed points, then

$$\varphi^{T}(M) = \sum_{p \in M^{T}} \sigma(p) \prod_{i=1}^{n} \frac{1}{f(\langle w_{i}(p), \mathbf{x} \rangle)}$$

Examples

- $\chi_{a,b} \colon \Omega_U^* \to \mathbb{Q}[a,b]$, $f(x) = \frac{e^{ax} e^{bx}}{ae^{bx} be^{ax}}$, universal T^k -rigid genus (Musin), universal $\mathbb{C}P^2$ -rigid taking nonzero value on $\mathbb{C}P^2$ (Buchstaber–Bunkova)
- ullet (Oriented) elliptic genus $arphi_{ell}\colon \Omega_U^* o \mathbb{Q}[arepsilon,\delta]$, $f(x)=\mathrm{sn}(x)$

$$(\operatorname{sn}'(x))^2 = 1 - 2\delta(\operatorname{sn}(x))^2 + \varepsilon(\operatorname{sn}(x))^4$$

$$\varepsilon = \delta^2$$
: $\operatorname{sn}(x) = \operatorname{th}(x)$

Examples

- $\chi_{a,b} \colon \Omega_U^* \to \mathbb{Q}[a,b]$, $f(x) = \frac{e^{ax} e^{bx}}{ae^{bx} be^{ax}}$, universal T^k -rigid genus (Musin), universal $\mathbb{C}P^2$ -rigid taking nonzero value on $\mathbb{C}P^2$ (Buchstaber–Bunkova)
- (Oriented) elliptic genus $\varphi_{ell} \colon \Omega_U^* \to \Omega_{SO}^* \to \mathbb{Q}[\varepsilon, \delta]$, $f(x) = \operatorname{sn}(x)$

$$(\operatorname{sn}'(x))^2 = 1 - 2\delta(\operatorname{sn}(x))^2 + \varepsilon(\operatorname{sn}(x))^4$$

$$\varepsilon = \delta^2$$
: $\operatorname{sn}(x) = \operatorname{th}(x)$ the elliptic genus is the universal $\mathbb{H}P^2$ -rigid genus (Kreck–Stolz)

Krichever genus

$$\varphi_{Kr} \colon \Omega_{U}^{*} \to \mathbb{Q}[\alpha, b_{1}, b_{2}, b_{3}]$$

$$f_{Kr}(x) = \frac{e^{\alpha x}}{\Phi(x, z)} \in \mathbb{Q}[\alpha, b_{1}, b_{2}, b_{3}][[x]]$$

$$\wp(x) = \frac{1}{x^{2}} + \frac{1}{20}g_{2}x^{2} + \frac{1}{28}g_{3}x^{4} + \dots$$

$$(\wp'(x))^{2} = 4(\wp(x))^{3} - g_{2}\wp(x) - g_{3}$$

$$\wp(x) = -(\ln \sigma(x))'' \quad \zeta(x) = (\ln \sigma(x))' \quad \sigma(x) \in \mathbb{Q}[g_{2}, g_{3}][[x]]$$

$$\Phi(x, z) = \frac{\sigma(z - x)}{\sigma(z)\sigma(x)}e^{\zeta(z)x}$$

$$\frac{1}{\Phi(x, z)} \in \mathbb{Q}[b_{1}, b_{2}, b_{3}][[x]], \quad b_{1} = \wp(z), b_{2} = \wp'(z), b_{3} = g_{2}$$

Krichever genus

Theorem (Krichever)

The Krichever genus is rigid on any SU-manifold.

If a genus is rigid and vanishes on $\mathbb{C}P^2$, then it is a Krichever genus (Buchstaber–Bunkova).

Theorem (Buchstaber–Panov–Ray)

The Krichever genus vanishes on any quasitoric SU-manifold.

SU-rigidity

$$\Omega_{SU}^* \otimes \mathbb{Z}[1/2] = \mathbb{Z}[1/2][y_2, y_3, \ldots]$$

$$\Omega_{SU}^4 = \mathbb{Z}\langle y_2 \rangle, \ \Omega_{SU}^6 = \mathbb{Z}\langle y_3 \rangle, \ \Omega_{SU}^8 = \mathbb{Z}\langle \frac{1}{4}y_2^2, y_4 \rangle,$$

$$\Omega_{SU}^{10} = \mathbb{Z}\langle \frac{1}{2}y_2y_3, y_5 \rangle \oplus \mathbb{Z}/2$$

$$y_3 = [S^6 = G_2/SU(3)] \quad T^2 \curvearrowright S^6$$

Theorem (Buchstaber–Panov–Ray)

Let φ be a genus which is rigid on S^6 .

- 1) If $\varphi([S^6]) \neq 0$, then φ is a Krichever genus with $b_2 \neq 0$;
- 2) If $\varphi([S^6]) = 0$, then $f(x) = e^{\beta x} f(x)$ for an odd series f(x).

If
$$b_2 = 0$$
, then $f_{Kr} = e^{\alpha x} \operatorname{sn}(x)$.

SU-rigidity

Theorem (Lü–Panov)

Classes y_i with $i \ge 5$ can be represented by quasitoric SU-manifolds.

Integer linear combinations of quasitoric SU-manifolds $\widetilde{L}(2k_1,2k_2+1)$ and $\widetilde{N}(2k_1,2k_2+1)$.

 $\widetilde{L}(2k_1,2k_2+1)$ is over $\Delta^{2k_1} \times \Delta^{2k_2+1}$, projectivisation of a sum of line bundles over $\mathbb{C}P^{2k_1}$ with a "twisted" stably complex structure $\widetilde{N}(2k_1,2k_2+1)$ is over $\Delta^1 \times \Delta^{2k_1} \times \Delta^{2k_2+1}$, projectivisation of a sum of line bundles over $\mathbb{C}P^1 \times \mathbb{C}P^{2k_1}$ with a "twisted" stably complex structure In particular, $y_5 = [\widetilde{L}(2,3)]$.

SU-rigidity

Theorem

Let φ be a genus which is rigid on S^6 and on $\widetilde{L}(2,3)$. If $\varphi([S^6])=0$, then $f(x)=e^{\alpha x}\mathrm{sn}(x)$.

Corollary

The Krichever genus is the universal genus which is rigid on S^6 and $\widetilde{L}(2,3)$. In particular, it is the universal SU-rigid genus.

Witten genus

$$\varphi_W \colon \Omega_{SO}^* \to \mathbb{Q}[\alpha, g_2, g_3]$$

$$f_W(x) = e^{\alpha x^2} \sigma(x)$$

Witten genus is rigid on $\mathbb{O}P^2 = F_4/Spin(9)$ and $\varphi_W([\mathbb{O}P^2]) = 0$.

Theorem

The Witten genus is the universal genus which is rigid and vanishes on $\mathbb{O}P^2$.

The rigidity equation for $\mathbb{O}P^2$ is equivalent to

$$0 = f(y_1 + y_2)f(y_1 - y_2)f(y_3 + y_4)f(y_3 - y_4) +$$

$$+ f(y_2 - y_3)f(y_2 + y_3)f(y_1 - y_4)f(y_1 + y_4) +$$

$$+ f(y_2 - y_4)f(y_2 + y_4)f(y_3 - y_1)f(y_1 + y_3)$$

Thank you for your attention!

This work was supported by the Russian Science Foundation under grant no. 23-11-00143, $https://rscf.ru/en/project/23-11-00143/\ .$