Intermediation and complexity in over-the-counter (OTC) trading

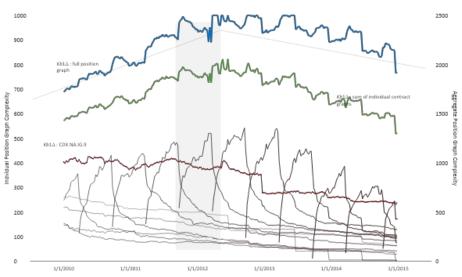
Mark D. Flood, University of Maryland

Jonathan Simon, University of Iowa

Mathew Timm, Bradley University

Complex Networks in Banking and Finance (CoNBaF)

Fields Institute, University of Toronto Toronto ON, 26 June 2024


Outline of the presentation

1. Complexity as relationships among relationships

- 2. Topological measures for OTC trading in corporate bonds
 - Academic TRACE data, 2003-2018
- 3. Empirical application to market liquidity
 - Granger causality

Related work – CDSs and BHCs

Risk exposure cycles in the market for credit default swaps (CDS) in the "London Whale" episode

The Complexity of Financial
Networks Through a Topological
Lens
Society for Industrial and Applied Mathematics

Ownership hierarchies and resolution complexity in bank holding companies

The Complexity of Bank Holding Companies: A Topological Approach Mark D. Flood^a, Dror Y. Kenett^{b,c}, Robin L. Lumsdaine d.e.f.g.h.i.*, Jonathan K. Simon^j

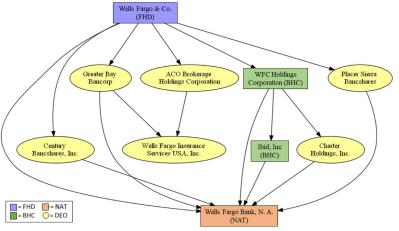
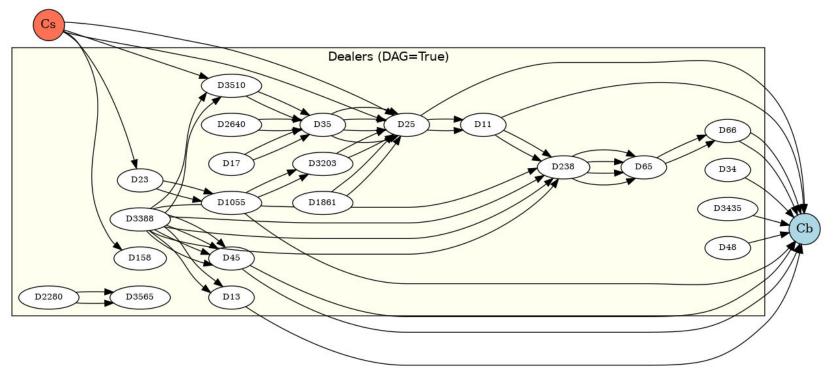
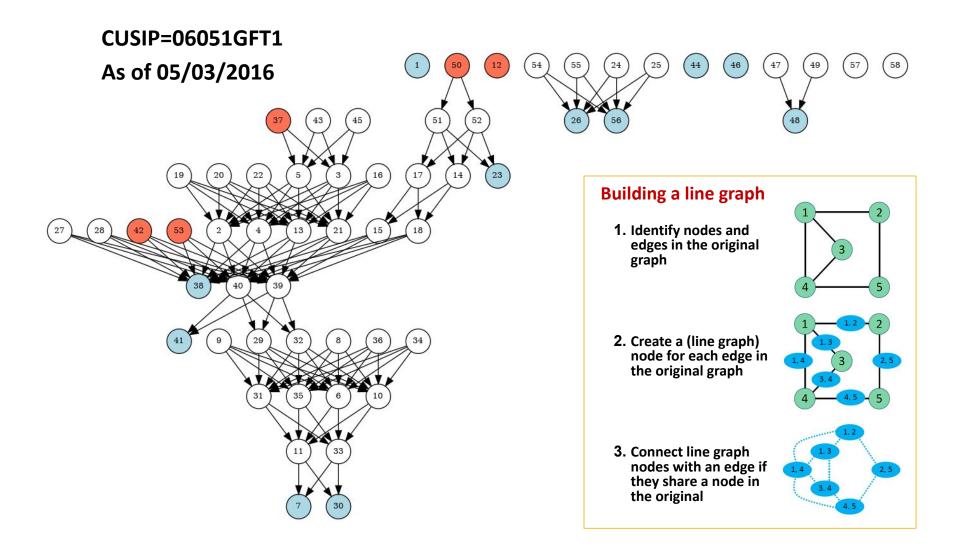
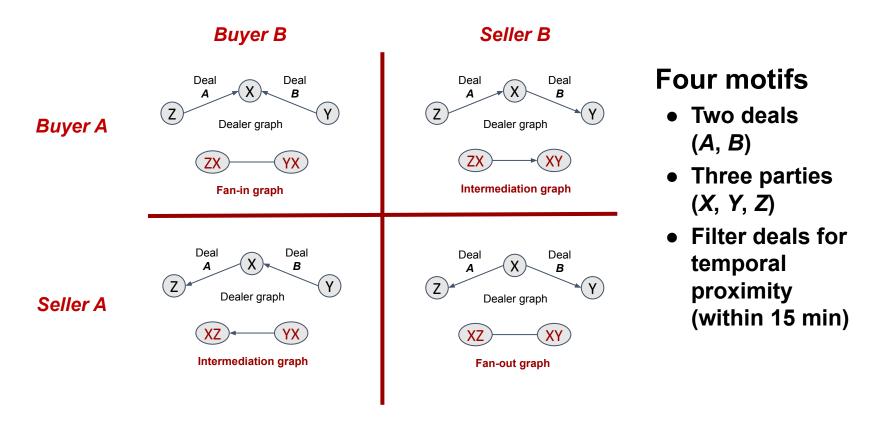



Fig. B.3. Ownership cycles in Wells Fargo BHC hierarchy, 2010, before quotienting. Source: Federal Financial Institutions Examination Council; authors' analysis.

TRACE dealer graph

Trade Reporting and Compliance Engine (TRACE)

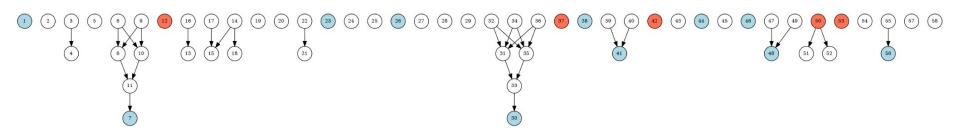

- Corporate bond trades (or "deals"), reported to FINRA within 15 min of transaction
- All market-participant (or "dealer") trades, including trades with customers (or "clients")
- Typical day has ca. 70K trades, involving ca. 7K distinct CUSIPs
- Approximately 1.6M bond-day networks (or "shards"), 2003-2018


BANK AMER CORP 2.625%, 10/19/2020 maturity, non-callable (CUSIP=06051GFT1)

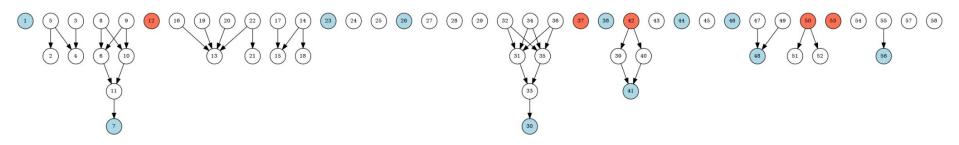
As of 05/03/2016, 58 transactions among 22 dealers (+ client buyers & sellers)

Line graph – highlighting relationships of relationships

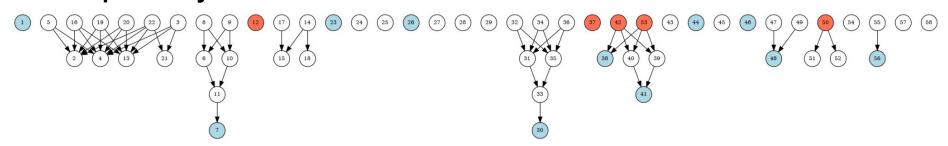
Dealer triads and the line graph



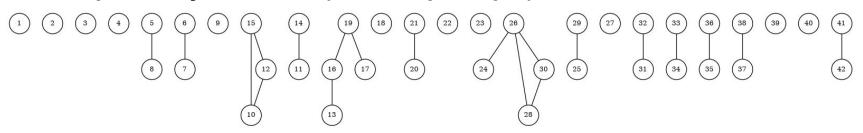
Three derivations – filtered versions of the line graph


- Intermediation graph: volume passes through dealer X's inventory
- Fan-in graph: dealer X is the common buyer in two deals (no client deals)
- **Fan-out graph**: dealer *X* is the common seller in two deals (no client deals)

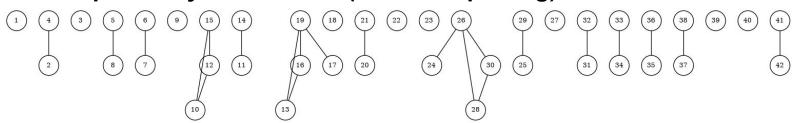
Intermediation graph


Contemporaneity: 1 minute (riskless principal)

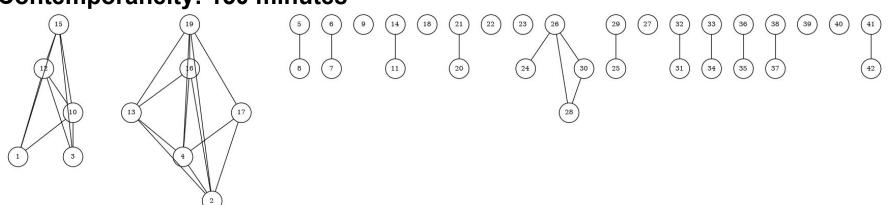
Contemporaneity: 15 minutes (TRACE reporting)



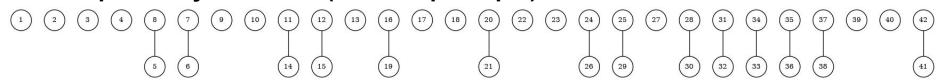
Contemporaneity: 150 minutes



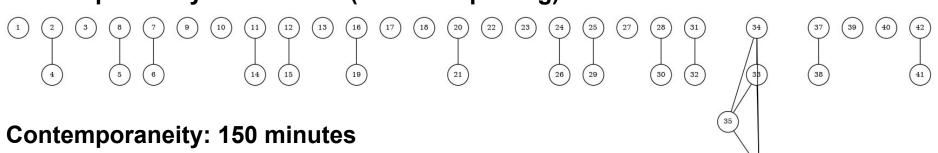
Fan-in graph

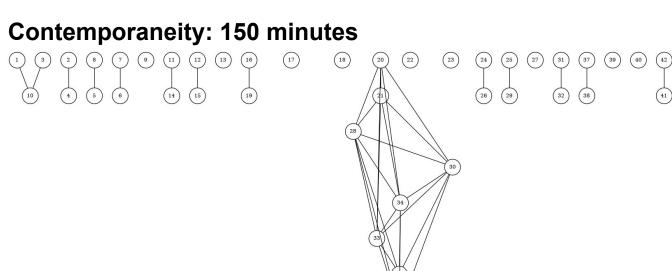

Contemporaneity: 1 minute (riskless principal)

Contemporaneity: 15 minutes (TRACE reporting)



Contemporaneity: 150 minutes




Fan-out graph

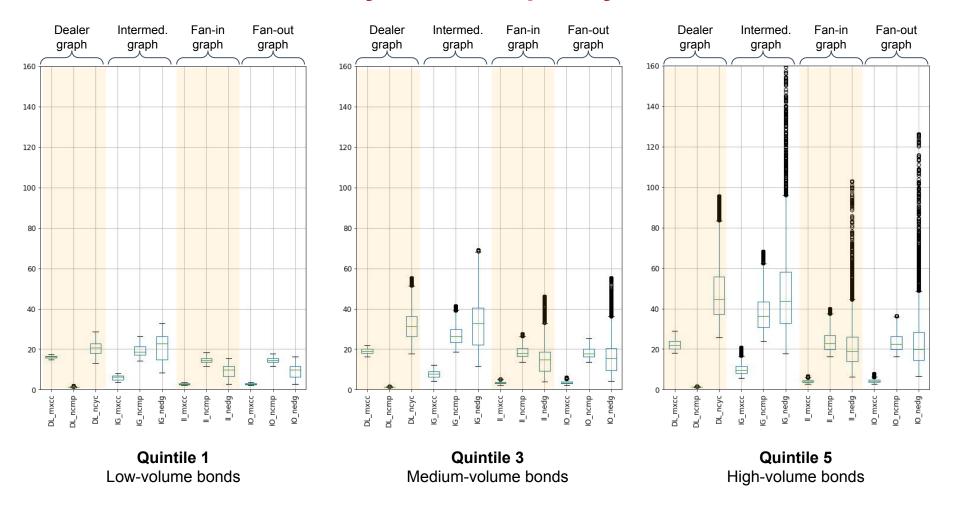
Contemporaneity: 1 minute (riskless principal)

Contemporaneity: 15 minutes (TRACE reporting)

Complexity metrics

Dealer graph

- *MXCC* Size (number of dealers) in the giant component
- *NCMP* Number of (undirected) connected components (zeroth betti number)
- NCYC Number of independent cycles (first betti number)
- Euler-Poincaré formula relates these as a linear combination.


Line graph derivations – intermediation, fan-in, and fan-out graphs

- *MXCC* Size (number of dealers) in the giant component
- **NCMP** Number of (undirected) connected components (zeroth betti number)
- **NEDG** Number of edges
- Line graph derivations use a 15 min contemporaneity window

Panel dataset

- Bucket CUSIP shards into daily quintiles by dollar volume
- Average market-activity and price-impact metrics across CUSIPs for each quintile
- 3937 daily observations per quintile

Summary of 12 complexity metrics

Three metrics for each of four graphs (dealer, intermed., fan-in, fan-out)

Magnitude and variability of complexity increases with volume quintile

Liquidity metrics

Market activity

Number of transactions per CUSIP (c) per day

$$T_c = \sum_{r=1}^{T_c} 1$$
 where T_c is the total number of trades involving bond C

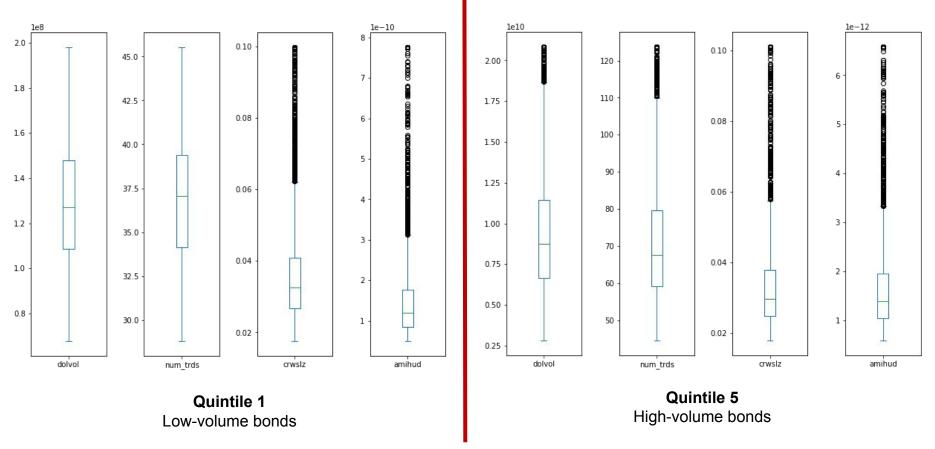
Dollar volume per CUSIP per day

$$V_c = \sum_{\tau=1}^{T_c} P_{\tau} \rho_{\tau}$$
 where P_{τ} is the price per bond, and ρ_{τ} is the par value of bonds in trade τ

Price impact

• Amihud (J. Fin. Mkts., 2002) – absolute return per dollar volume

$$A_c = |R_{_C}| \, / \, V_{_C}$$
 where $R_{_C}$ is the open-to-close percent return for the bond


Corwin-Schultz (J. Fin., 2012) – daily high-low spread

$$C_c = ln(H_C/L_C)$$
 where H_C (or L_C) is the bond's high (or low) price for the day

Panel dataset

- Bucket CUSIP shards into daily quintiles by dollar volume
- Average market-activity and price-impact metrics across CUSIPs for each quintile
- 3937 daily observations per quintile

Summary of 4 liquidity metrics

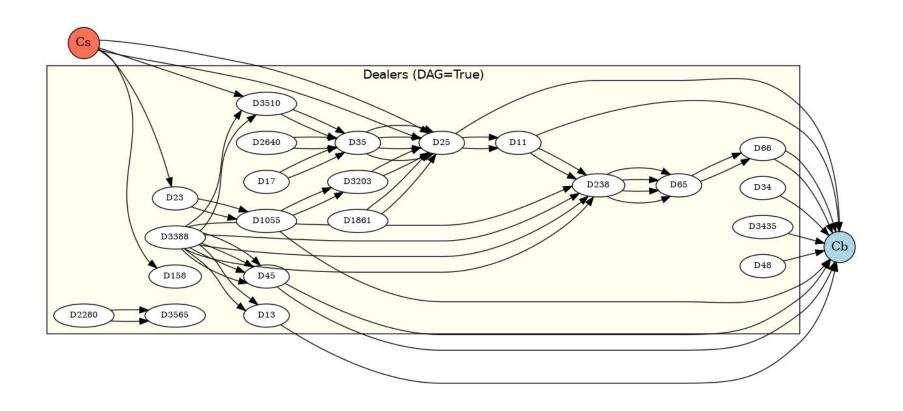
Four metrics for the dealer graph

- Dollar volume increases with volume quintile (by definition)
- Number of trades increases with volume quintile
- Corwin-Schultz high-low roughly similar across volume quintiles
- Amihud normalized return decreases by volume quintile (by construction)

Granger causality – four episodes

	amihud_x	crwslz_x	DL_mxcc_x	DL_ncyc_x	IG_mxcc_x	IG_nedg_x	II_mxcc_x	II_nedg_x	IO_mxcc_x	IO_nedg_x		amihud_x	crwslz_x	DL_mxcc_x	DL_ncyc_x	IG_mxcc_x	IG_nedg_x	II_mxcc_x	II_nedg_x	IO_mxcc_x	IO_nedg_x
amihud_y	1.000000	0.022400	0.183600	0.237200	0.221600	0.341200	0.117400	0.424300	0.354500	0.782900	amihud_y	1.000000	0.387100	0.000100	0.000400	0.000000	0.035100	0.018200	0.008200	0.002600	0.029600
crwslz_y	0.098600	1.000000	0.294800	0.578200	0.040600	0.189400	0.687400	0.368500	0.320100	0.483200	crwslz_y	0.452000	1.000000	0.033800	0.001800	0.029300	0.129000	0.263900	0.100100	0.301900	0.113100
DL_mxcc_y	0.009800	0.087800	1.000000	0.057200	0.487400	0.315700	0.492300	0.532800	0.562000	0.467000	DL_mxcc_y	0.040300	0.754800	1.000000	0.000900	0.011500	0.027700	0.019800	0.047800	0.066500	0.102800
DL_ncyc_y	0.002600	0.003000	0.000100	1.000000	0.236600	0.515100	0.559100	0.330900	0.083600	0.170600	DL_ncyc_y	0.037700	0.171700	0.539300	1.000000	0.078500	0.002000	0.279200	0.000100	0.020400	0.003600
IG_mxcc_y	0.000000	0.006100	0.001500	0.000000	1.000000	0.411300	0.119500	0.398200	0.065500	0.518300	IG_mxcc_y	0.053400	0.000000	0.006500	0.000000	1.000000	0.006500	0.450600	0.000400	0.007700	0.038900
IG_nedg_y	0.000100	0.006400	0.007800	0.124000	0.283700	1.000000	0.468100	0.836700	0.531300	0.298100	IG_nedg_y	0.001300	0.000000	0.002300	0.000000	0.000000	1.000000	0.001100	0.000000	0.001200	0.020600
II_mxcc_y	0.000400	0.005200	0.168500	0.019200	0.150600	0.327100	1.000000	0.324300	0.207600	0.284900	II_mxcc_y	0.000200	0.000000	0.000300	0.000000	0.054100	0.118100	1.000000	0.004500	0.042400	0.161700
II_nedg_y	0.000000	0.006300	0.229000	0.119300	0.552800	0.759000	0.759400	1.000000	0.045500	0.181700	II_nedg_y	0.000800	0.000000	0.001900	0.000000	0.000000	0.000000	0.000300	1.000000	0.005800	0.000000
IO_mxcc_y	0.008800	0.013600	0.210100	0.019700	0.324700	0.023200	0.512900	0.067700	1.000000	0.024800	IO_mxcc_y	0.000000	0.000000	0.015100	0.000000	0.000000	0.000000	0.003600	0.000000	1.000000	0.000000
IO_nedg_y	0.119400	0.083400	0.205900	0.218000	0.874200	0.589600	0.837000	0.582100	0.334400	1.000000	IO_nedg_y	0.000200	0.000000	0.001100	0.000000	0.000000	0.010300	0.000100	0.000000	0.000000	1.000000

2003-2006 2007-2010


	amihud_x	crwslz_x	DL_mxcc_x	DL_ncyc_x	IG_mxcc_x	IG_nedg_x	II_mxcc_x	II_nedg_x	IO_mxcc_x	IO_nedg_x		amihud_x	crwslz_x	DL_mxcc_x	DL_ncyc_x	IG_mxcc_x	IG_nedg_x	II_mxcc_x	II_nedg_x	IO_mxcc_x	IO_nedg_x
amihud_y	1.000000	0.353100	0.038100	0.355600	0.026700	0.017700	0.002300	0.112600	0.020900	0.030000	amihud_y	1.000000	0.225100	0.009600	0.028000	0.068200	0.052500	0.008200	0.115800	0.006300	0.055000
crwslz_y	0.265900	1.000000	0.133900	0.081300	0.425900	0.176200	0.321800	0.275500	0.504300	0.144900	crwslz_y	0.072900	1.000000	0.253700	0.275400	0.277700	0.001600	0.018500	0.000200	0.005800	0.004900
DL_mxcc_y	0.003000	0.076600	1.000000	0.047900	0.384000	0.260600	0.600400	0.363700	0.597300	0.544900	DL_mxcc_y	0.026600	0.008600	1.000000	0.001100	0.068700	0.000100	0.004200	0.005000	0.001700	0.002000
DL_ncyc_y	0.050900	0.019900	0.003500	1.000000	0.003900	0.118000	0.966300	0.706900	0.185200	0.463100	DL_ncyc_y	0.000500	0.147000	0.000200	1.000000	0.000100	0.000400	0.117100	0.056700	0.133200	0.024400
IG_mxcc_y	0.042900	0.365900	0.000900	0.000000	1.000000	0.091900	0.003300	0.149700	0.018300	0.215900	IG_mxcc_y	0.151100	0.309100	0.004500	0.000000	1.000000	0.077900	0.255800	0.108400	0.274900	0.158700
IG_nedg_y	0.042400	0.209500	0.000500	0.000000	0.190200	1.000000	0.224500	0.660400	0.245600	0.516100	IG_nedg_y	0.012000	0.189900	0.000300	0.000100	0.153000	1.000000	0.157300	0.306000	0.222000	0.250100
II_mxcc_y	0.033800	0.079200	0.056300	0.001700	0.111100	0.077900	1.000000	0.148200	0.257300	0.060200	II_mxcc_y	0.000500	0.136200	0.000000	0.003100	0.431300	0.446600	1.000000	0.179200	0.290400	0.073000
II_nedg_y	0.717100	0.005200	0.863500	0.108700	0.402900	0.534000	0.284600	1.000000	0.453200	0.694100	II_nedg_y	0.272400	0.003300	0.009600	0.003400	0.160700	0.125600	0.186200	1.000000	0.265100	0.120700
IO_mxcc_y	0.015000	0.010700	0.499400	0.161200	0.069200	0.538400	0.208400	0.549900	1.000000	0.250700	IO_mxcc_y	0.028400	0.002000	0.000000	0.000200	0.258300	0.064200	0.047100	0.317800	1.000000	0.188300
IO_nedg_y	0.497200	0.002100	0.838000	0.285400	0.417000	0.735600	0.459100	0.806400	0.355900	1.000000	IO_nedg_y	0.387700	0.000300	0.004700	0.000500	0.113300	0.015700	0.211000	0.216700	0.118700	1.000000

2011-2014 2015-2018

Granger causality captures forecast improvement from a second time series

- Green cells indicate significant Granger causality
 - Column variable Granger-causes the row variable
- First two rows/columns are liquidity metrics
- Last eight rows/columnn are complexity metrics

Thanks!

