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Mapping class groups

S is finite-type if the fundamental group is
finitely generated

Y. is infinite-type if the fundamental group is
infinitely generated

MCG(XZ) = Homeo ' (X) /isotopy

Mapping class groups of infinite type surfaces are called big mapping class
groups
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Why study infinite type surtaces?

e Connections to complex dynamics

The family of polynomials
is F' = {f.(2) = 2% + c}eec

Consider the Julia set

Vary the parameter ¢ € C
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Julia set when ¢ = 0.285 + 0.012



Curve Graph (Harvey)

Vertices: Homotopy classes of essential simple closed curves

Edges: Disjointness
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Question (AIM Workshop Problem 2.1):

What combinatorial objects are “good” analogues
of the curve graph, either uniformly for all
infinite-type surfaces or for some class of
infinite-type surfaces?




Theorem (Bar-Natan — V.): For a large class of
surfaces, the grand arc graph is connected,

hyperbolic, has infinite diameter, and MCG(X)
acts continuously on visible boundary.



Background
Finite-Type Surfaces
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MCG(S) =2 AutMCG(S) = Aut(C(9))

Natural map: MCG(S) — Aut(C(S))

f € MCG(S) maps disjoint curves
to disjoint curves.

[vanov(1997): For g > 3, the natural map
MCG(S,) — Aut(C(S5,))

1S an 1somorphism.
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Ivanov:
MCG(S) =2 AutMCG(S) = Aut(C(5))
MCG(S) — Aut(MCG(S))
f — conjugation by f

Automorphisms of MCG(SS) preserve powers
of Dehn twists.

Reduce to problem using curve graph.
~+ C(S) a combinatorial tool to study MCG(S)



A geodesic metric space is Gromov hyperbolic if it
satisfies the thin triangle condition.



Curve Graph (Harvey)

Vertices: Homotopy classes of essential simple closed curves

Edges: Disjointness




Curve Graph (Harvey)

Vertices: Homotopy classes of essential simple closed curves

Edges: Disjointness

Masur—Minsky: The curve graph is Gromov
hyperbolic.
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MCG(S) ~ C(S)

Masur—Minsky(1999): f € MCG(S) acts on C(S5):

o clliptic if every orbit of f is bounded
i.e. periodic and reducible
e hyperbolic if f translates along an axis.

i.e. pseudo-Anosov

Consequence: The curve graph is infinite diameter.
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Ray Graph (Calegari)

Vertices: Isotopy classes of proper rays, with interior in
the complement of K, from a point in K to infinity

Edges: Disjointness

Theorem (Bavard): The ray
ocraph has infinite diameter,
is Gromov hyperbolic, and there
exists an element of MCG(R? \ K)

which acts by translation on a geodesic axis of the ray graph.

Image by J. Bavard
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A(X, P) (Aramayona—Fossas—Parlier)

P - set of isolated punctures
Vertices: Isotopy classes of arcs with both endpoints in P
Edges: Disjointness

Theorem (Aramayona—Fossas—Parlier): For P finite,
A(3, P) is connected, has infinite diameter, and
i1s 7-hyperbolic
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Sep, (2, P) (Durham—Fanoni—Vlamis)

P: Finite collection of pairwise closed subsets of Ends(.5)

Vertices: Separating curves such that:

1. Set of ends of each component of S\ ¢ contains two
elements of P

2. Every element of P is contained in the set of ends
of a component of S\ c.

Edges: Disjointness



Sep, (2, P) (Durham—Fanoni—Vlamis)

P: Finite collection of pairwise closed subsets of Ends(.5)

Vertices: Separating curves such that:

1. Set of ends of each component of S\ ¢ contains two
elements of P

2. Every element of P is contained in the set of ends
of a component of S\ c.

Edges: Disjointness

Theorem (Durham—Fanoni—Vlamis): Sep, (X, P) is connected
and infinite diameter. If each element of P is a singleton,

Sep, (2, P) is d-hyperbolic.
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Omnipresent Arc Graph (Fanoni—-Ghaswala—McLeay)

One-cut subsurtface: complementary component of a separating loop.

One-cut homeomorphic subsurface: A one-cut subsurface which is
homeomorphic to the full surface

Image by Fanoni—Ghaswala—McLeay

An arc joining distinct ends is omnipresent if it intersects every
one-cut homeomorphic subsurface.
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Omnipresent Arc Graph (Fanoni—-Ghaswala—McLeay)

Arc Graph, A(X) Vertices: isotopy classes of essential arcs

Edges: Disjointess

Omnipresent arc graph: subgraph of A(X) spanned by all
omnipresent arcs

Theorem (Fanoni—-Ghaswala—McLeay): For any stable surface

Y. with at least three finite-orbit ends, the omnipresent arc graph
is a connected J-hyperbolic graph on which MCG(X) acts

with unbounded orbits



The Grand Arc Graph
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Mann—Raf

Partial order: x < y if for any neighborhood U of y, there exists
a neighborhood V of z and f € MCG(X) such that f(V) C U

r~yifrsyandy<xzx

E(x) ={yly ~ =}

Theorem (Mann—Rafi): The partial order has maximal elements.
Furthermore, for every maximal element x, F/(x) is either finite or a
Cantor set.
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Grand Arcs

An arc o converges to an end e if for any neighborhood
U of e, o eventually never leaves this neighborhood.

An arc with endpoints e, ey is grand if:
1. e1 and ey are both maximal

2. €1 #62

3. e1 and es either lie in distinct
equivalence classes, or lie in the same
finite equivalence class.



Grand Arc Graph

Grand Arc Graph, G(X) Vertices: isotopy classes of grand arcs
Edges: Disjointess .




Main Theorem



Theorem (Bar-Natan — V.): For a large class of
surfaces, the grand arc graph is connected,

hyperbolic, has infinite diameter, and MCG(X)
acts continuously on visible boundary.



Proot Sketch



Witnesses

A witness, W C Y is a subsurface which intersects every grand arc.
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Witness Projection Program
ol = [anN W]

Theorem (Bar-Natan — V.): Let a, 8 € G(X) be in
minimal position with respect to OW. Then:

daw)(mw (), mw (B)) < dg =) (e, B).

— infinite diameter
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Proof Sketch
Unicorn paths (Hensel-Przytycki—-Webb [2013]):

First unicorn arc: Second unicorn arc:

F=s E=g

Consecutive unicorn arcs are disjoint.
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Unicorn paths (Hensel-Przytycki—Webb):

Fanoni—Ghaswala—McLeay: (Generalized unicorn
paths for infinite-type surfaces.

Unicorn paths allow us to show G(X) is:

e Connected

e Hyperbolic



Notice!

Two disjoint witnesses — not J-hyperbolic!



Notice!

Two disjoint witnesses — not J-hyperbolic!

Q.I embedding of Z?
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Mapping Class Group Action
MCG(X) ~ G(X) by isometries.
The action is not continuous.

GG acts on X N-quasi-continuously if for any x € X d an open
neighbourhood id € U, C G such that dx (U, o {z},{z}) < N.

Theorem (Bar-Natan — V.): For G(X) hyperbolic, MCG(X) ~ G(3)

quasi-continuously.

— continuous action on 9G (%)
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Loxodromic Actions

g € G acts loxodromically if for any x € X, d(x, gx) is uniformly
bounded from below.

Theorem (Bar-Natan — V.): Let ¢
be a pseudo-Anosov mapping class
that fixes the boundary of 1W. Let
¢ € MCG(X) be the homeomorphism -
fixing W° and acting as ¢ on W.
Then ¢ acts loxodromically

on G(X).
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Relationship to Other Graphs
Ray Graph (Calegari)

Vertices: Isotopy classes of proper rays, with interior in
the complement of K, from a point in K to infinity

Edges: Disjointness

Notice: All ends are maximal, and |  «
the ends comprising of the Cantor |

set are all in the same self-similar
equivalence class of maximal ends.

— ray graph and G(R?\ K) are the same!

o1

e

X e
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A clopen neighbourhood U of e is stable if for every clopen
neighbourhood V' C U there is a clopen neighbourhood U’ C V
such that (U, U NEnds, (X)) = (U’, U’ N Ends,(X)). We say that
an end is stable if it admits a stable neighbourhood, and unstable
otherwise. A surface is stable if all its ends are stable.
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Relationship to Other Graphs

e

I'heorem (Fanoni—Ghaswala—McLeay): If a surface is stable,
then an arc is omnipresent if and only if it joins ends whose

orbit under MCG(X) is finite.

Finite orbit ends are maximal, and the arcs must lie in ends
which lie in different equivalence classes.

If > is a stable surface, and « is an omnipresent arc,
—> « 1s a grand arc.

Fact: Grand arcs aren’t necessarily omnipresent



Overview

Theorem (Bar-Natan — V.): For a large class of

surfaces, the grand arc graph is connected,
hyperbolic, has infinite diameter, and MCG(X)
acts continuously on visible boundary.

+ loxodromic actions

nice connections to previous graphs



