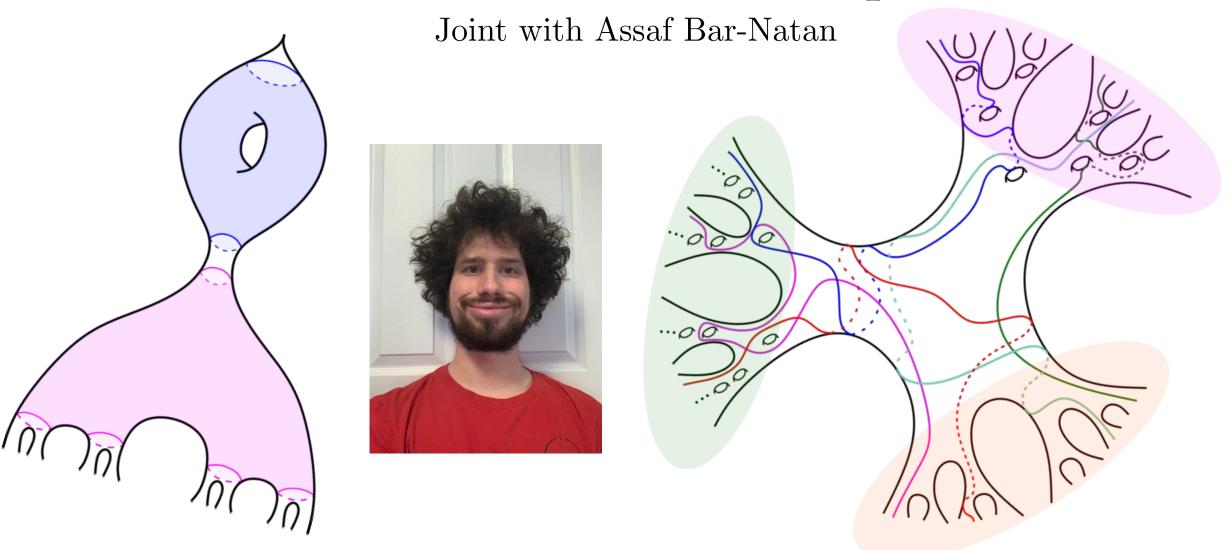
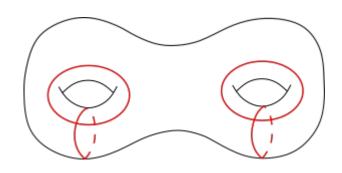
The Grand Arc Graph



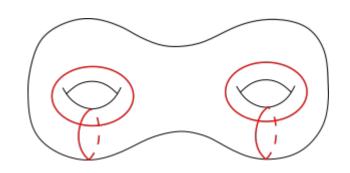
Yvon Verberne - University of Western Ontario

S is finite-type if the fundamental group is finitely generated

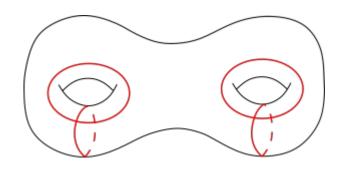


S is finite-type if the fundamental group is finitely generated

 Σ is infinite-type if the fundamental group is infinitely generated



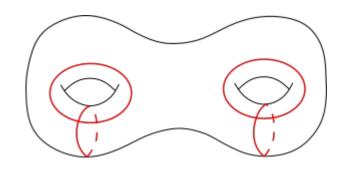
S is finite-type if the fundamental group is finitely generated



 Σ is infinite-type if the fundamental group is infinitely generated

 $MCG(\Sigma) = Homeo^+(\Sigma)/isotopy$

S is finite-type if the fundamental group is finitely generated



 Σ is infinite-type if the fundamental group is infinitely generated

$$MCG(\Sigma) = Homeo^+(\Sigma)/isotopy$$

Mapping class groups of infinite type surfaces are called big mapping class groups

• Connections to complex dynamics

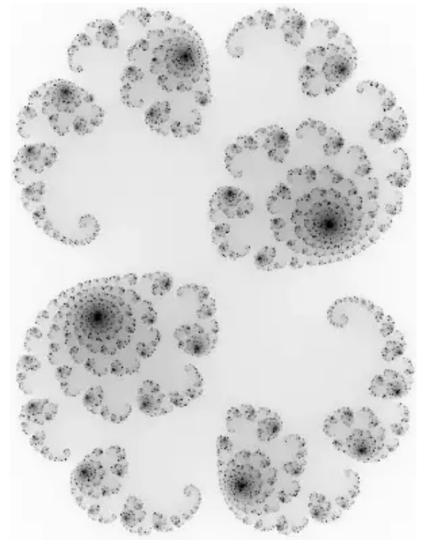
• Connections to complex dynamics

The family of polynomials is
$$F = \{f_c(z) = z^2 + c\}_{c \in \mathbb{C}}$$

• Connections to complex dynamics

The family of polynomials is $F = \{f_c(z) = z^2 + c\}_{c \in \mathbb{C}}$

Consider the Julia set



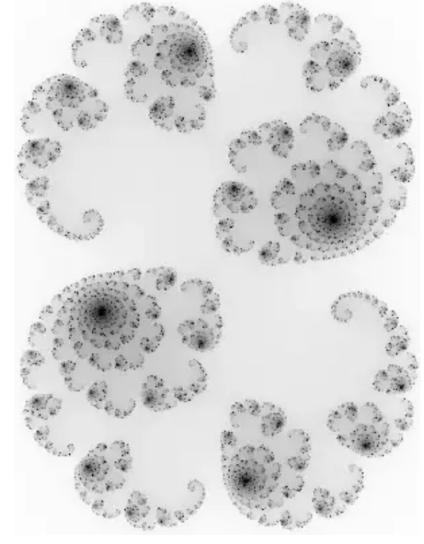
Julia set when c = 0.285 + 0.01i

• Connections to complex dynamics

The family of polynomials is $F = \{f_c(z) = z^2 + c\}_{c \in \mathbb{C}}$

Consider the Julia set

Vary the parameter $c \in \mathbb{C}$

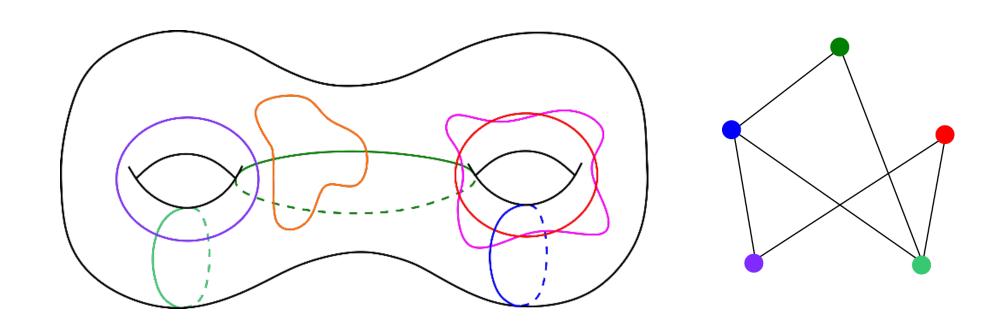


Julia set when c = 0.285 + 0.01i

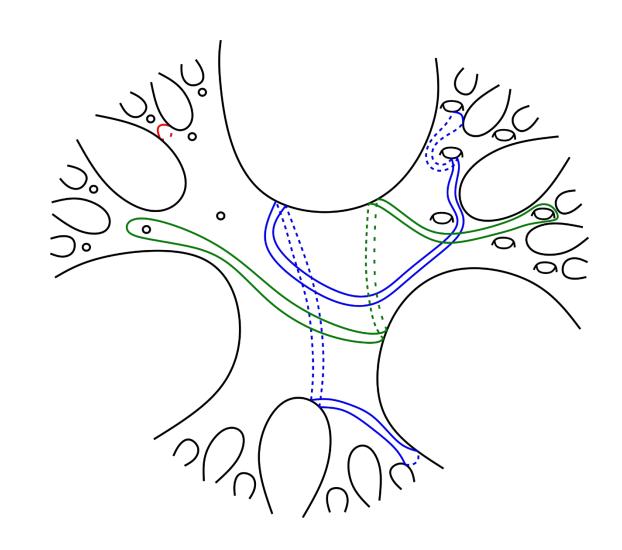
Curve Graph (Harvey)

Vertices: Homotopy classes of essential simple closed curves

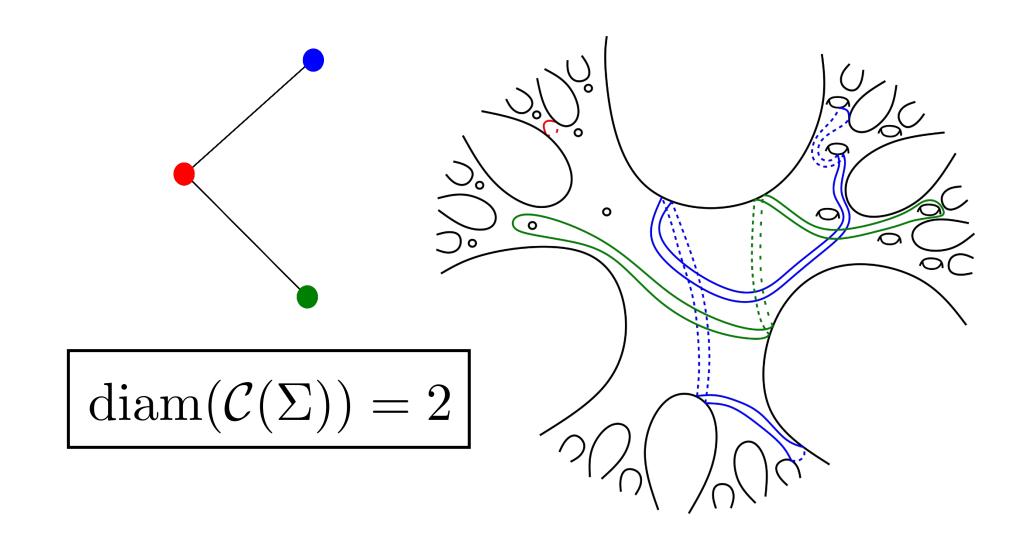
Edges: Disjointness



What about infinite type surfaces?



What about infinite type surfaces?



Question (AIM Workshop Problem 2.1): What combinatorial objects are "good" analogues of the curve graph, either uniformly for all infinite-type surfaces or for some class of infinite-type surfaces?

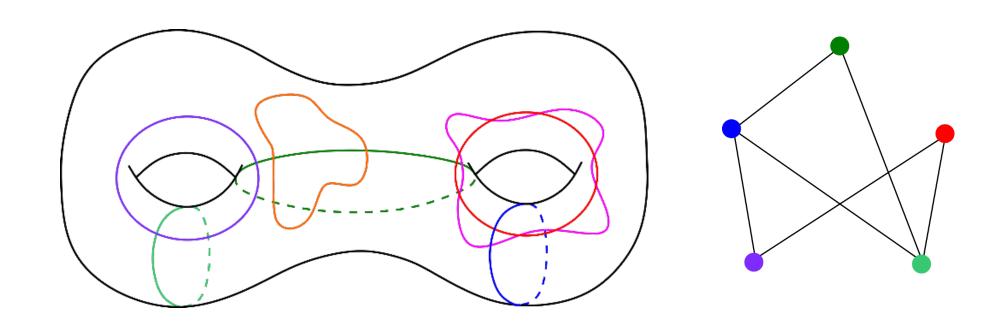
Theorem (Bar-Natan – V.): For a large class of surfaces, the grand arc graph is connected, hyperbolic, has infinite diameter, and $MCG(\Sigma)$ acts continuously on visible boundary.

Background Finite-Type Surfaces

Curve Graph (Harvey)

Vertices: Homotopy classes of essential simple closed curves

Edges: Disjointness



$$MCG(S) \cong AutMCG(S) \cong Aut(C(S))$$

$$\mathrm{MCG}(S) \cong \mathrm{AutMCG}(S) \cong \mathrm{Aut}(\mathcal{C}(S))$$

 $\mathrm{MCG}(S) \cong \mathrm{Aut}\mathrm{MCG}(S) \cong \mathrm{Aut}(\mathcal{C}(S))$

Natural map: $MCG(S) \to Aut(\mathcal{C}(S))$

 $f \in MCG(S)$ maps disjoint curves to disjoint curves.

$$\mathrm{MCG}(S) \cong \mathrm{Aut}\mathrm{MCG}(S) \cong \mathrm{Aut}(\mathcal{C}(S))$$

Natural map: $MCG(S) \to Aut(\mathcal{C}(S))$

 $f \in MCG(S)$ maps disjoint curves to disjoint curves.

Ivanov(1997): For $g \geq 3$, the natural map $MCG(S_g) \to Aut(C(S_g))$ is an isomorphism.

$$\mathrm{MCG}(S) \cong \mathrm{AutMCG}(S) \cong \mathrm{Aut}(\mathcal{C}(S))$$

$$\operatorname{MCG}(S) \cong \operatorname{AutMCG}(S) \cong \operatorname{Aut}(\mathcal{C}(S))$$

$$\operatorname{MCG}(S) \to \operatorname{Aut}(\operatorname{MCG}(S))$$

$$f \mapsto \operatorname{conjugation by } f$$

$$\operatorname{MCG}(S) \cong \operatorname{AutMCG}(S) \cong \operatorname{Aut}(\mathcal{C}(S))$$

$$\operatorname{MCG}(S) \to \operatorname{Aut}(\operatorname{MCG}(S))$$

$$f \mapsto \operatorname{conjugation by } f$$

Automorphisms of MCG(S) preserve powers of Dehn twists.

$$\operatorname{MCG}(S) \cong \operatorname{AutMCG}(S) \cong \operatorname{Aut}(\mathcal{C}(S))$$

$$\operatorname{MCG}(S) \to \operatorname{Aut}(\operatorname{MCG}(S))$$

$$f \mapsto \operatorname{conjugation by } f$$

Automorphisms of MCG(S) preserve powers of Dehn twists.

Reduce to problem using curve graph.

$$\operatorname{MCG}(S) \cong \operatorname{AutMCG}(S) \cong \operatorname{Aut}(\mathcal{C}(S))$$

$$\operatorname{MCG}(S) \to \operatorname{Aut}(\operatorname{MCG}(S))$$

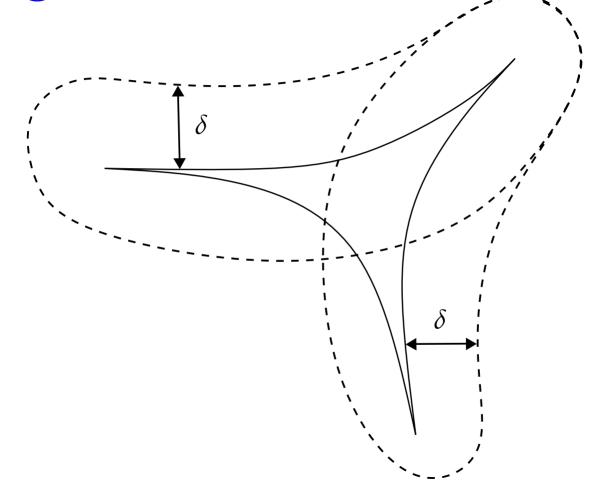
$$f \mapsto \operatorname{conjugation by} f$$

Automorphisms of MCG(S) preserve powers of Dehn twists.

Reduce to problem using curve graph.

 $\leadsto \mathcal{C}(S)$ a combinatorial tool to study $\mathrm{MCG}(S)$

Thin Triangles Condition:

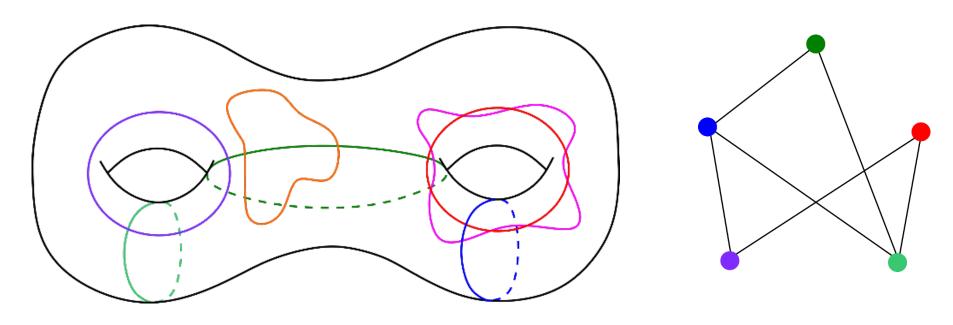


A geodesic metric space is Gromov hyperbolic if it satisfies the thin triangle condition.

Curve Graph (Harvey)

Vertices: Homotopy classes of essential simple closed curves

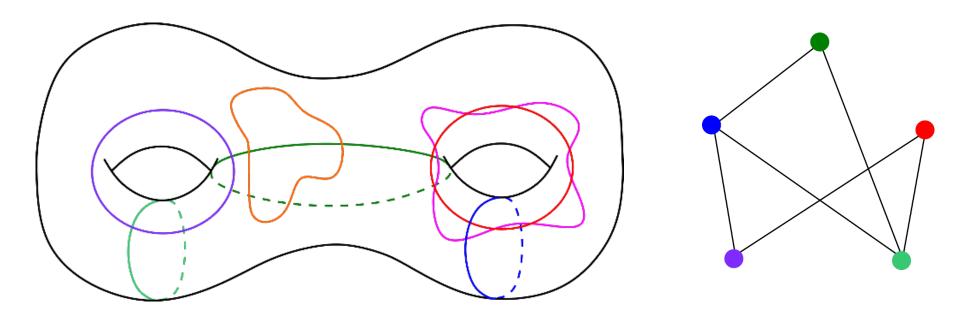
Edges: Disjointness



Curve Graph (Harvey)

Vertices: Homotopy classes of essential simple closed curves

Edges: Disjointness



Masur–Minsky: The curve graph is Gromov hyperbolic.

 $MCG(S) \curvearrowright C(S)$

Masur-Minsky(1999): $f \in MCG(S)$ acts on C(S):

 $MCG(S) \curvearrowright C(S)$

Masur-Minsky(1999): $f \in MCG(S)$ acts on C(S):

• elliptic if every orbit of f is bounded i.e. periodic and reducible

 $MCG(S) \curvearrowright C(S)$

Masur-Minsky(1999): $f \in MCG(S)$ acts on C(S):

- elliptic if every orbit of f is bounded i.e. periodic and reducible
- hyperbolic if f translates along an axis. i.e. pseudo-Anosov

 $MCG(S) \curvearrowright \mathcal{C}(S)$

Masur-Minsky(1999): $f \in MCG(S)$ acts on C(S):

- elliptic if every orbit of f is bounded i.e. periodic and reducible
- hyperbolic if f translates along an axis.

i.e. pseudo-Anosov

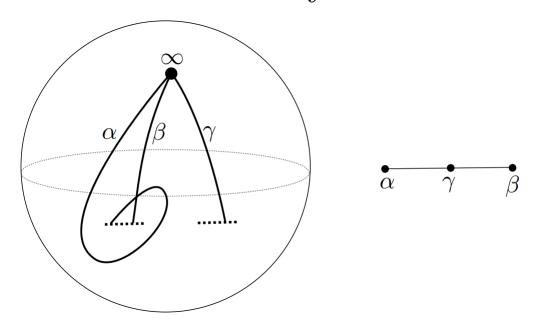
Consequence: The curve graph is infinite diameter.

Background Infinite-Type Surfaces

Ray Graph (Calegari)

Vertices: Isotopy classes of proper rays, with interior in the complement of K, from a point in K to infinity

Edges: Disjointness

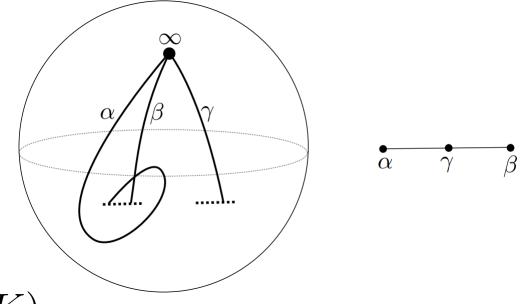


Ray Graph (Calegari)

Vertices: Isotopy classes of proper rays, with interior in the complement of K, from a point in K to infinity

Edges: Disjointness

Theorem (Bavard): The ray graph has infinite diameter, is Gromov hyperbolic, and there exists an element of $MCG(\mathbb{R}^2 \setminus K)$



which acts by translation on a geodesic axis of the ray graph.

 $\mathcal{A}(\Sigma, P)$ (Aramayona–Fossas–Parlier)

P - set of isolated punctures

Vertices: Isotopy classes of arcs with both endpoints in P

Edges: Disjointness

 $\mathcal{A}(\Sigma, P)$ (Aramayona–Fossas–Parlier)

P - set of isolated punctures

Vertices: Isotopy classes of arcs with both endpoints in P

Edges: Disjointness

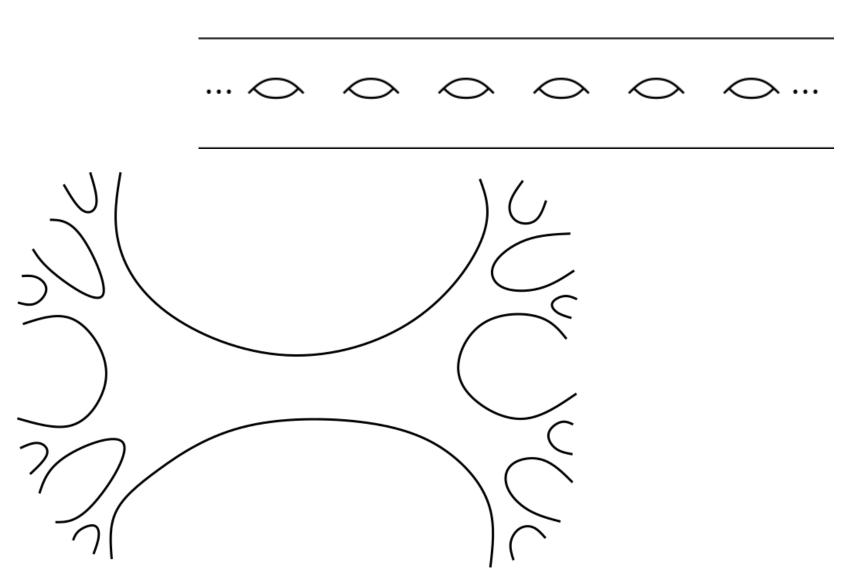
Theorem (Aramayona–Fossas–Parlier): For P finite, $\mathcal{A}(\Sigma, P)$ is connected, has infinite diameter, and is 7-hyperbolic

Ends

An end is a way of exiting every compact set of the surface.

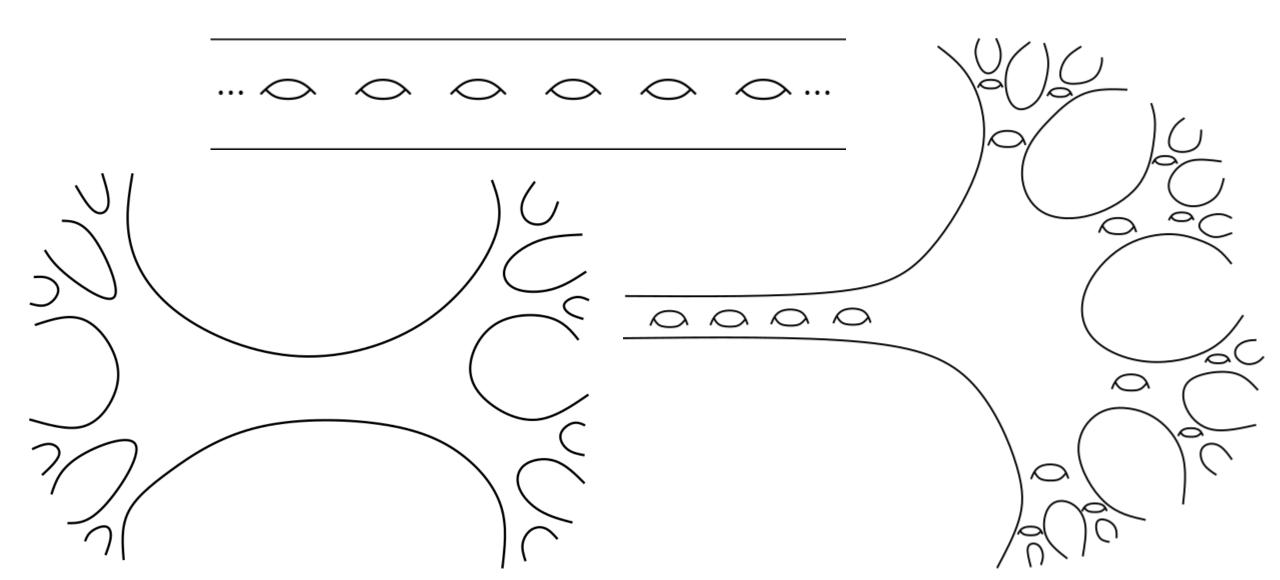
Ends

An end is a way of exiting every compact set of the surface.



Ends

An end is a way of exiting every compact set of the surface.



$Sep_2(\Sigma, \mathcal{P})$ (Durham-Fanoni-Vlamis)

 \mathcal{P} : Finite collection of pairwise closed subsets of $\operatorname{Ends}(S)$

Vertices: Separating curves such that:

- 1. Set of ends of each component of $S \setminus c$ contains two elements of \mathcal{P}
- 2. Every element of \mathcal{P} is contained in the set of ends of a component of $S \setminus c$.

Edges: Disjointness

$Sep_2(\Sigma, \mathcal{P})$ (Durham-Fanoni-Vlamis)

 \mathcal{P} : Finite collection of pairwise closed subsets of $\operatorname{Ends}(S)$

Vertices: Separating curves such that:

- 1. Set of ends of each component of $S \setminus c$ contains two elements of \mathcal{P}
- 2. Every element of \mathcal{P} is contained in the set of ends of a component of $S \setminus c$.

Edges: Disjointness

Theorem (Durham–Fanoni–Vlamis): Sep₂(Σ , \mathcal{P}) is connected and infinite diameter. If each element of \mathcal{P} is a singleton, Sep₂(Σ , \mathcal{P}) is δ -hyperbolic.

One-cut subsurface: complementary component of a separating loop.

One-cut subsurface: complementary component of a separating loop.

One-cut homeomorphic subsurface: A one-cut subsurface which is homeomorphic to the full surface

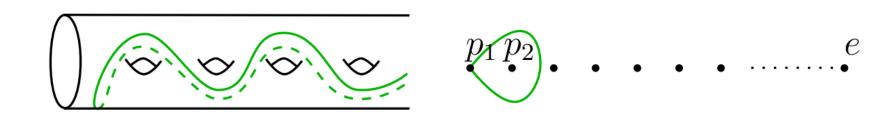


Image by Fanoni–Ghaswala–McLeay

One-cut subsurface: complementary component of a separating loop.

One-cut homeomorphic subsurface: A one-cut subsurface which is homeomorphic to the full surface

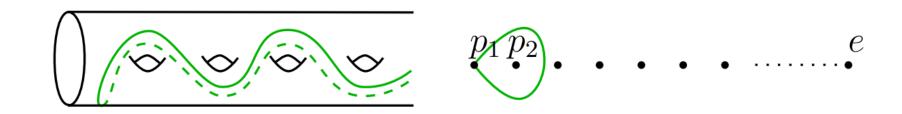


Image by Fanoni–Ghaswala–McLeay

An arc joining distinct ends is omnipresent if it intersects every one-cut homeomorphic subsurface.

Arc Graph, $\mathcal{A}(\Sigma)$ Vertices: isotopy classes of essential arcs Edges: Disjointess

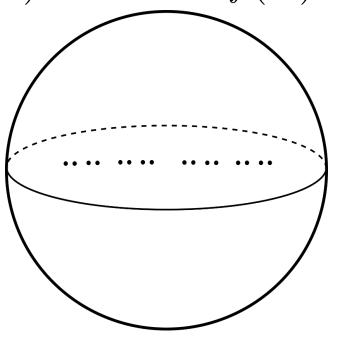
Omnipresent arc graph: subgraph of $\mathcal{A}(\Sigma)$ spanned by all omnipresent arcs

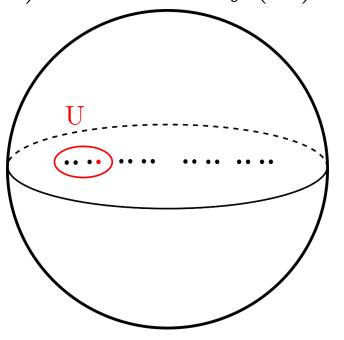
Arc Graph, $\mathcal{A}(\Sigma)$ Vertices: isotopy classes of essential arcs Edges: Disjointess

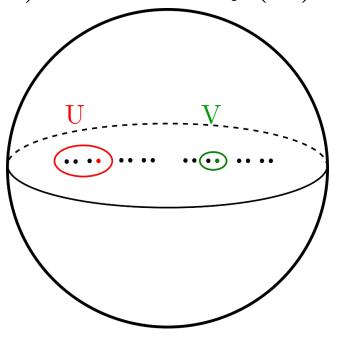
Omnipresent arc graph: subgraph of $\mathcal{A}(\Sigma)$ spanned by all omnipresent arcs

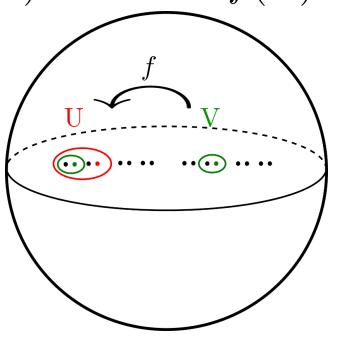
Theorem (Fanoni–Ghaswala–McLeay): For any stable surface Σ with at least three finite-orbit ends, the omnipresent arc graph is a connected δ -hyperbolic graph on which $MCG(\Sigma)$ acts with unbounded orbits

The Grand Arc Graph



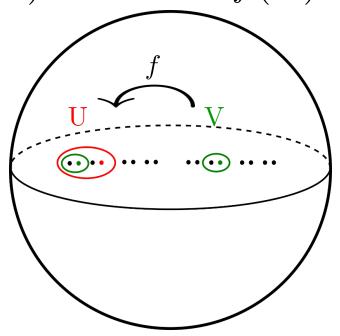






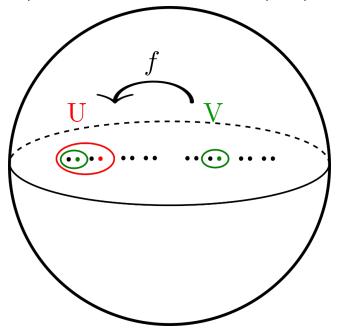
Partial order: $x \leq y$ if for any neighborhood U of y, there exists a neighborhood V of x and $f \in \mathrm{MCG}(\Sigma)$ such that $f(V) \subset U$

 $x \sim y \text{ if } x \leq y \text{ and } y \leq x$



$$x \sim y \text{ if } x \leq y \text{ and } y \leq x$$

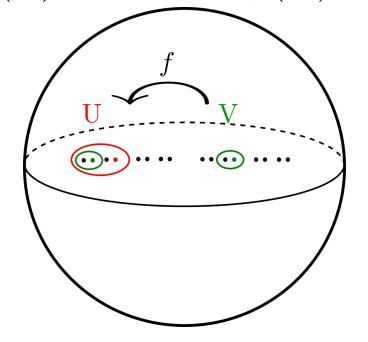
$$E(x) = \{y | y \sim x\}$$



Partial order: $x \leq y$ if for any neighborhood U of y, there exists a neighborhood V of x and $f \in \mathrm{MCG}(\Sigma)$ such that $f(V) \subset U$

$$x \sim y \text{ if } x \leq y \text{ and } y \leq x$$

$$E(x) = \{y|y \sim x\}$$



Theorem (Mann–Rafi): The partial order has maximal elements. Furthermore, for every maximal element x, E(x) is either finite or a Cantor set.

An arc α converges to an end e if for any neighborhood U of e, α eventually never leaves this neighborhood.

An arc α converges to an end e if for any neighborhood U of e, α eventually never leaves this neighborhood.

An arc α converges to an end e if for any neighborhood U of e, α eventually never leaves this neighborhood.

An arc with endpoints e_1 , e_2 is grand if:

1. e_1 and e_2 are both maximal

An arc α converges to an end e if for any neighborhood U of e, α eventually never leaves this neighborhood.

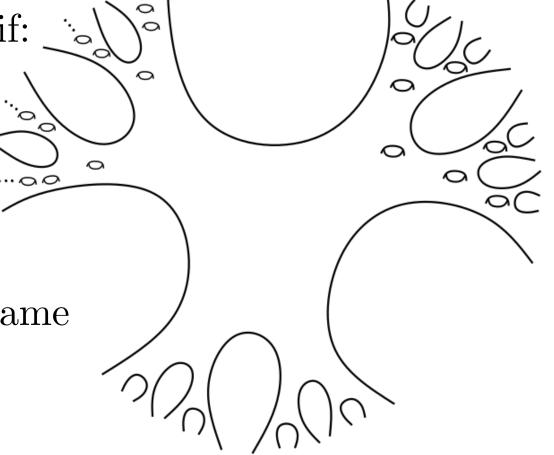
- 1. e_1 and e_2 are both maximal
- 2. $e_1 \neq e_2$

An arc α converges to an end e if for any neighborhood U of e, α eventually never leaves this neighborhood.

- 1. e_1 and e_2 are both maximal
- 2. $e_1 \neq e_2$
- 3. e_1 and e_2 either lie in distinct equivalence classes, or lie in the same finite equivalence class.

An arc α converges to an end e if for any neighborhood U of e, α eventually never leaves this neighborhood.

- 1. e_1 and e_2 are both maximal
- 2. $e_1 \neq e_2$
- 3. e_1 and e_2 either lie in distinct equivalence classes, or lie in the same finite equivalence class.

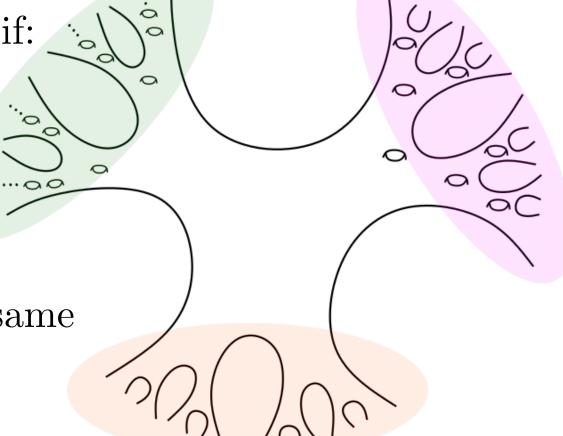


An arc α converges to an end e if for any neighborhood U of e, α eventually never leaves this neighborhood.

An arc with endpoints e_1 , e_2 is grand if:

- 1. e_1 and e_2 are both maximal
- 2. $e_1 \neq e_2$

3. e_1 and e_2 either lie in distinct equivalence classes, or lie in the same finite equivalence class.

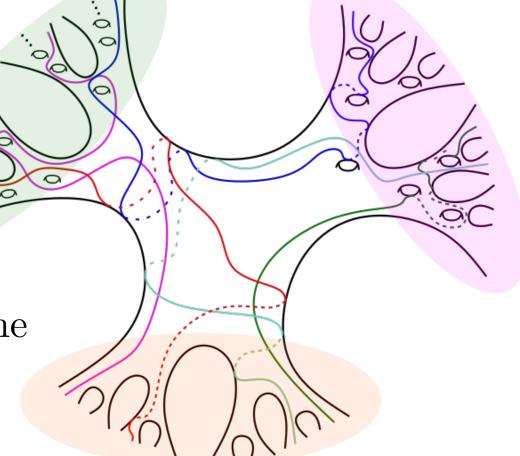


An arc α converges to an end e if for any neighborhood U of e, α eventually never leaves this neighborhood.

An arc with endpoints e_1 , e_2 is grand if:

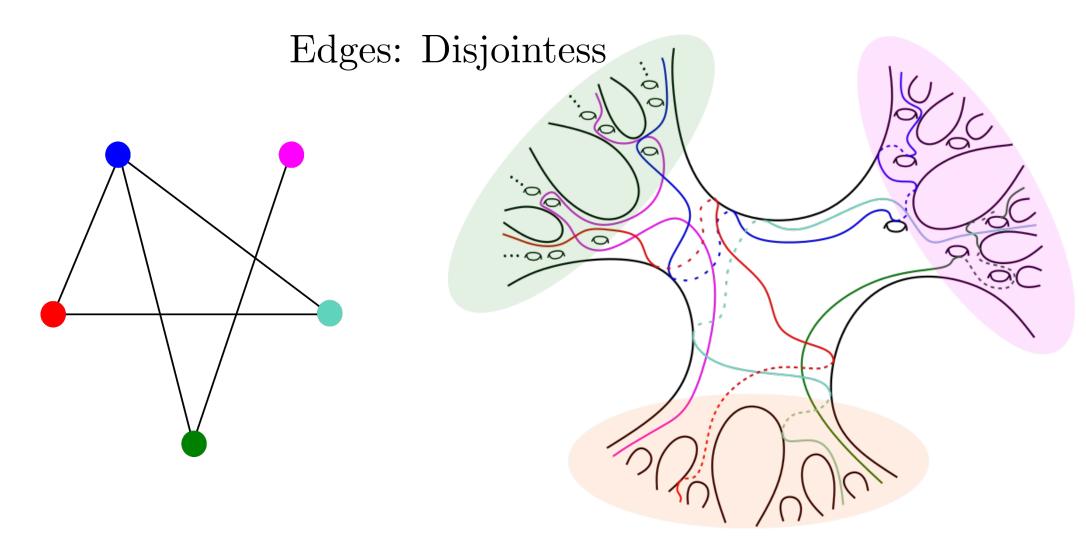
- 1. e_1 and e_2 are both maximal
- 2. $e_1 \neq e_2$

3. e_1 and e_2 either lie in distinct equivalence classes, or lie in the same finite equivalence class.



Grand Arc Graph

Grand Arc Graph, $\mathcal{G}(\Sigma)$ Vertices: isotopy classes of grand arcs



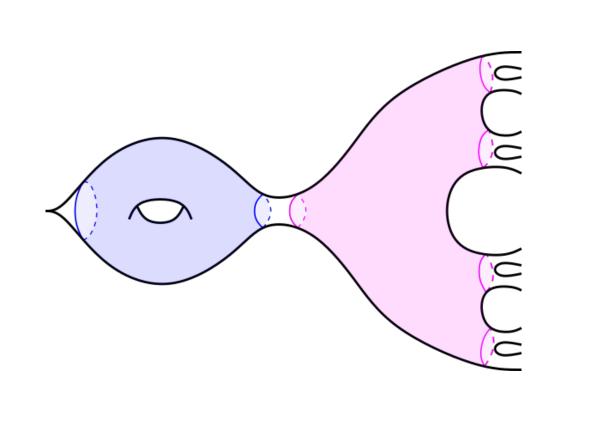
Main Theorem

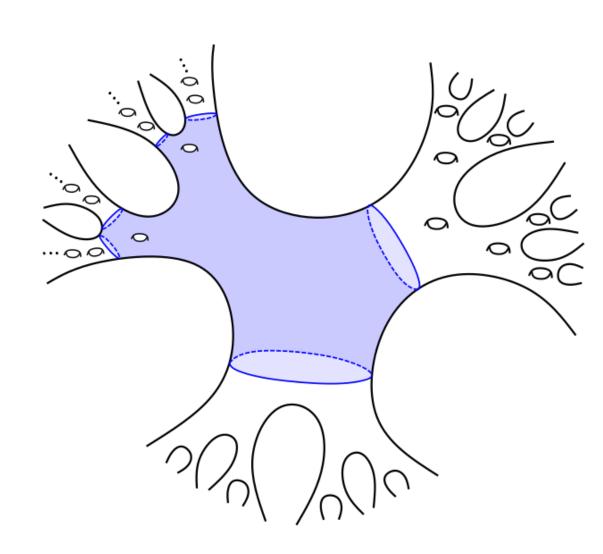
Theorem (Bar-Natan – V.): For a large class of surfaces, the grand arc graph is connected, hyperbolic, has infinite diameter, and $MCG(\Sigma)$ acts continuously on visible boundary.

Proof Sketch

Witnesses

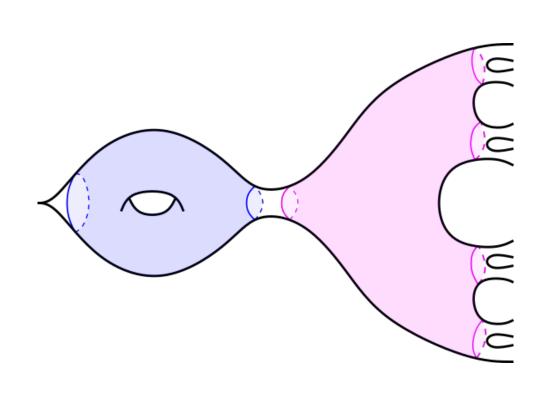
A witness, $W \subseteq \Sigma$ is a subsurface which intersects every grand arc.

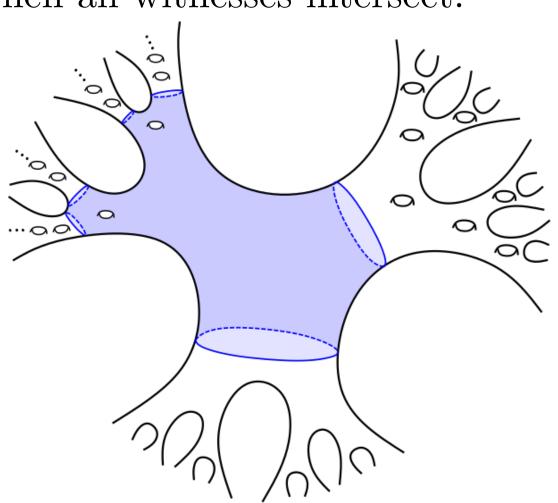




Witnesses

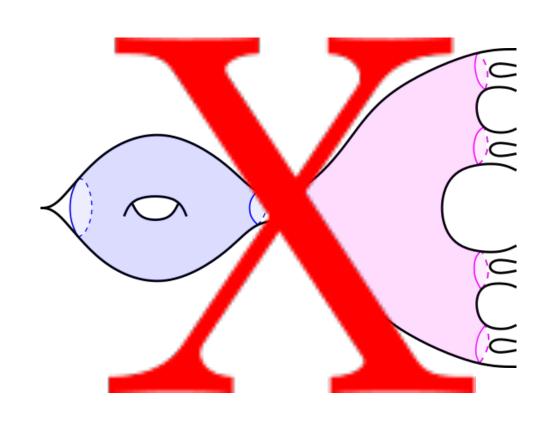
Theorem (Bar-Natan – V.) If a surface has greater than 2 self-similar equivalences classes of maximal ends, then all witnesses intersect.

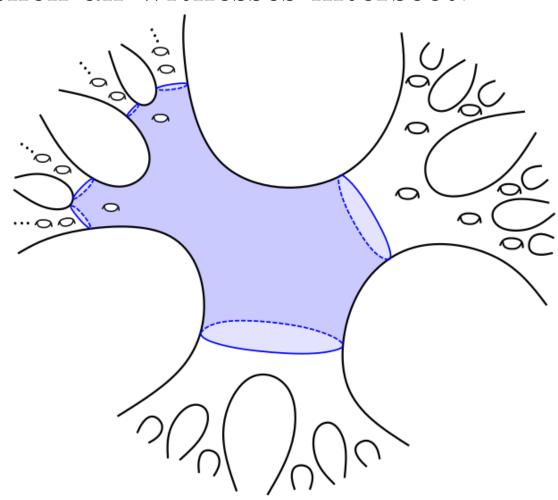




Witnesses

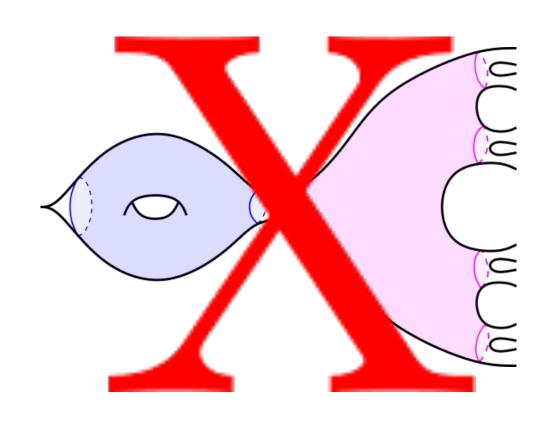
Theorem (Bar-Natan – V.) If a surface has greater than 2 self-similar equivalences classes of maximal ends, then all witnesses intersect.

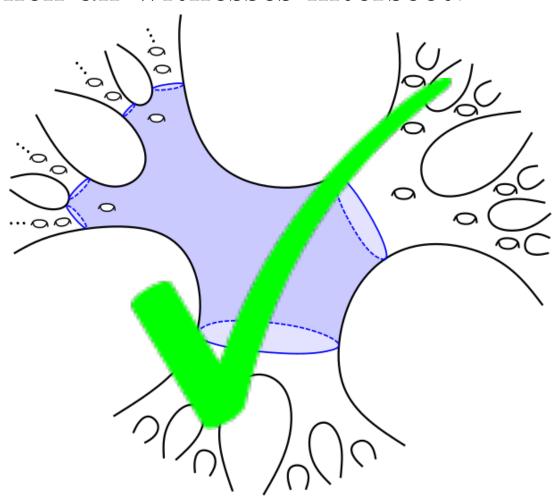




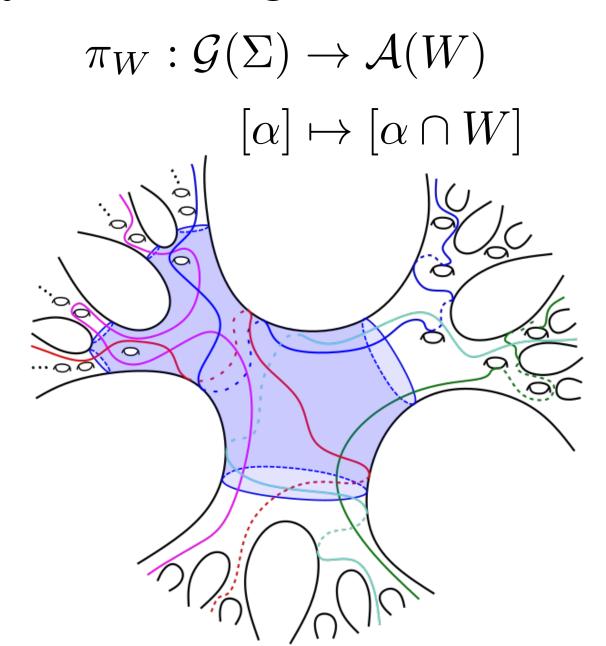
Witnesses

Theorem (Bar-Natan – V.) If a surface has greater than 2 self-similar equivalences classes of maximal ends, then all witnesses intersect.





Witness Projection Program



Witness Projection Program

$$\pi_W: \mathcal{G}(\Sigma) \to \mathcal{A}(W)$$
$$[\alpha] \mapsto [\alpha \cap W]$$

Theorem (Bar-Natan – V.): Let $\alpha, \beta \in \mathcal{G}(\Sigma)$ be in minimal position with respect to ∂W . Then:

$$d_{\mathcal{A}(W)}(\pi_W(\alpha), \pi_W(\beta)) \leq d_{\mathcal{G}(\Sigma)}(\alpha, \beta).$$

Witness Projection Program

$$\pi_W : \mathcal{G}(\Sigma) \to \mathcal{A}(W)$$

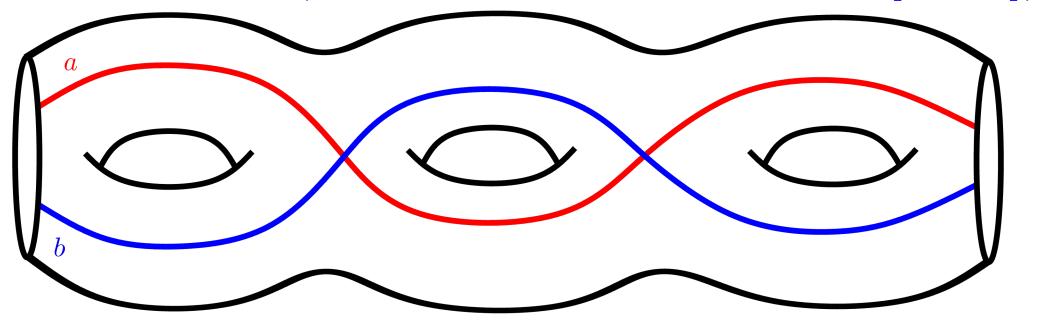
$$[\alpha] \mapsto [\alpha \cap W]$$

Theorem (Bar-Natan – V.): Let $\alpha, \beta \in \mathcal{G}(\Sigma)$ be in minimal position with respect to ∂W . Then:

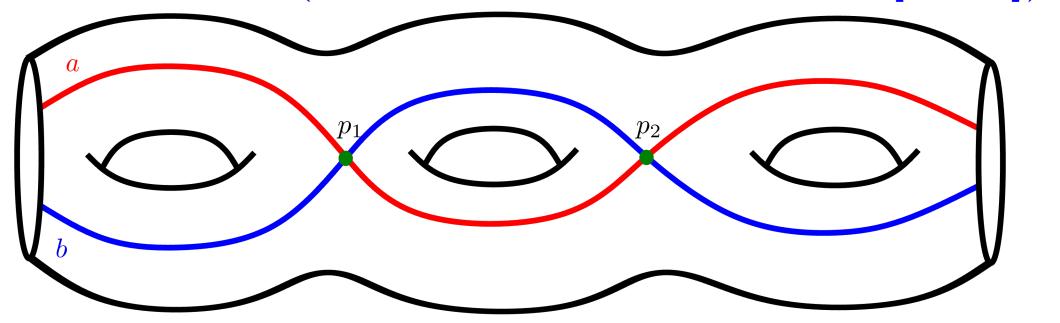
$$d_{\mathcal{A}(W)}(\pi_W(\alpha), \pi_W(\beta)) \leq d_{\mathcal{G}(\Sigma)}(\alpha, \beta).$$

 \implies infinite diameter

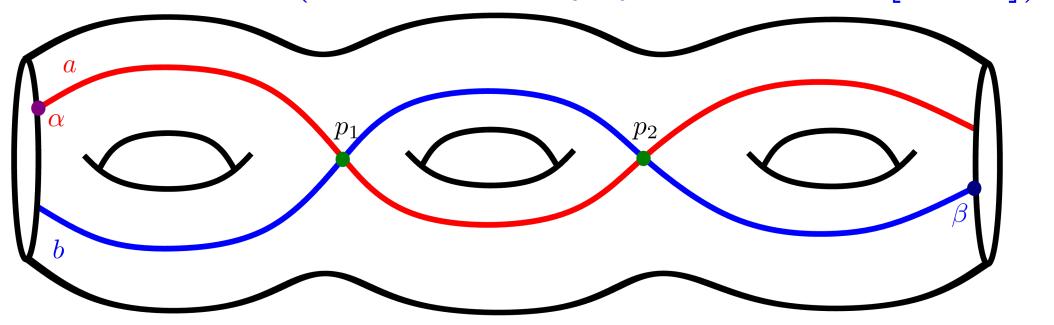
Proof Sketch Unicorn paths (Hensel-Przytycki-Webb [2013]):



Proof Sketch Unicorn paths (Hensel-Przytycki-Webb [2013]):

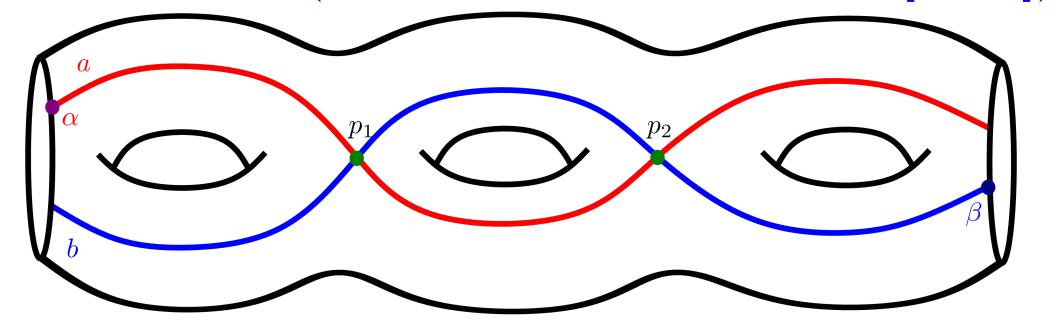


Proof Sketch Unicorn paths (Hensel-Przytycki-Webb [2013]):

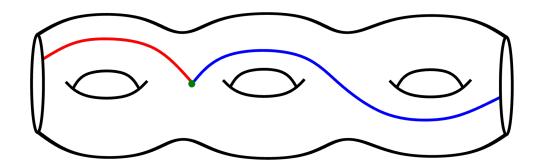


Proof Sketch

Unicorn paths (Hensel-Przytycki-Webb [2013]):

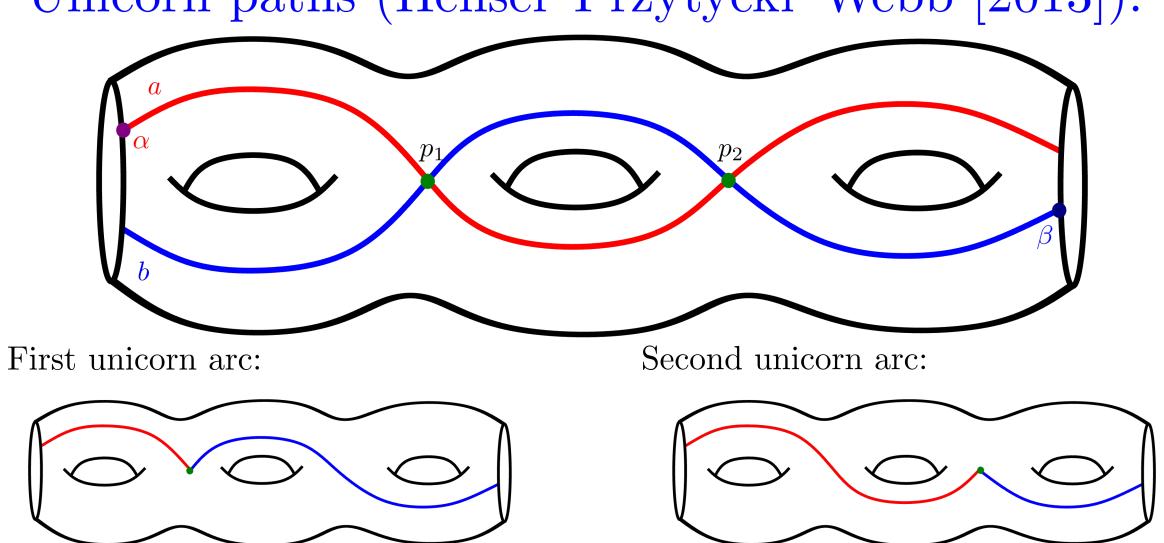


First unicorn arc:



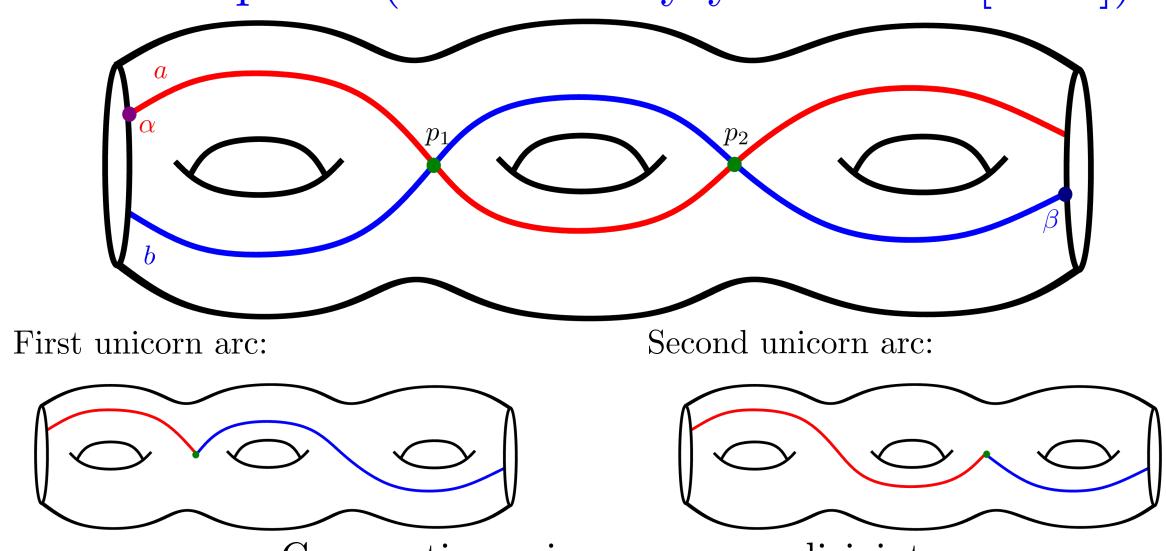
Proof Sketch

Unicorn paths (Hensel-Przytycki-Webb [2013]):



Proof Sketch

Unicorn paths (Hensel-Przytycki-Webb [2013]):



Consecutive unicorn arcs are disjoint.

Fanoni-Ghaswala-McLeay: Generalized unicorn paths for infinite-type surfaces.

Fanoni-Ghaswala-McLeay: Generalized unicorn paths for infinite-type surfaces.

Unicorn paths allow us to show $\mathcal{G}(\Sigma)$ is:

Fanoni-Ghaswala-McLeay: Generalized unicorn paths for infinite-type surfaces.

Unicorn paths allow us to show $\mathcal{G}(\Sigma)$ is:

Connected

Fanoni-Ghaswala-McLeay: Generalized unicorn paths for infinite-type surfaces.

Unicorn paths allow us to show $\mathcal{G}(\Sigma)$ is:

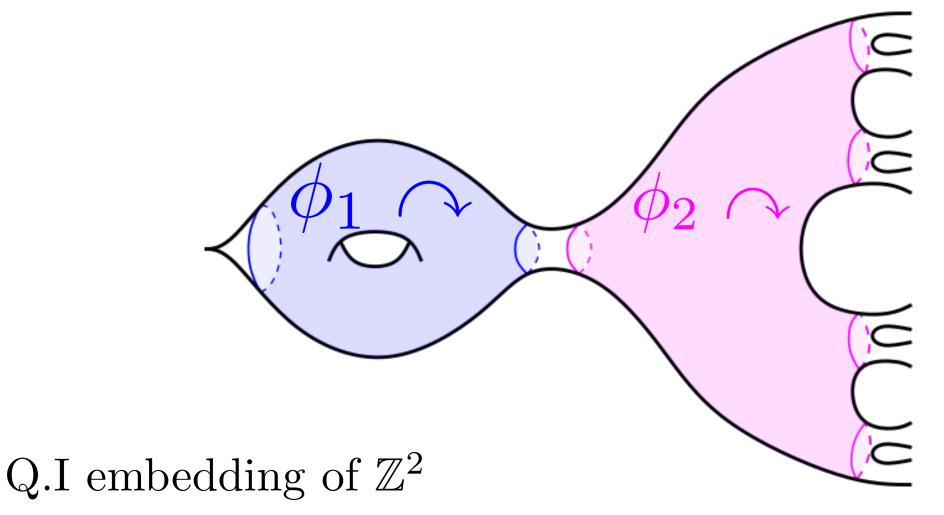
- Connected
- Hyperbolic

Notice!

Two disjoint witnesses \implies not δ -hyperbolic!

Notice!

Two disjoint witnesses \implies not δ -hyperbolic!



 $\mathrm{MCG}(\Sigma) \curvearrowright \mathcal{G}(\Sigma)$ by isometries.

 $\mathrm{MCG}(\Sigma) \curvearrowright \mathcal{G}(\Sigma)$ by isometries.

The action is **not** continuous.

 $\mathrm{MCG}(\Sigma) \curvearrowright \mathcal{G}(\Sigma)$ by isometries.

The action is **not** continuous.

G acts on X N-quasi-continuously if for any $x \in X \exists$ an open neighbourhood $id \in U_x \subset G$ such that $d_X(U_x \circ \{x\}, \{x\}) \leq N$.

 $\mathrm{MCG}(\Sigma) \curvearrowright \mathcal{G}(\Sigma)$ by isometries.

The action is **not** continuous.

G acts on X N-quasi-continuously if for any $x \in X \exists$ an open neighbourhood $id \in U_x \subset G$ such that $d_X(U_x \circ \{x\}, \{x\}) \leq N$.

Theorem (Bar-Natan – V.): For $\mathcal{G}(\Sigma)$ hyperbolic, $\mathrm{MCG}(\Sigma) \curvearrowright \mathcal{G}(\Sigma)$ quasi-continuously.

 $MCG(\Sigma) \curvearrowright \mathcal{G}(\Sigma)$ by isometries.

The action is **not** continuous.

G acts on X N-quasi-continuously if for any $x \in X \exists$ an open neighbourhood $id \in U_x \subset G$ such that $d_X(U_x \circ \{x\}, \{x\}) \leq N$.

Theorem (Bar-Natan – V.): For $\mathcal{G}(\Sigma)$ hyperbolic, $\mathrm{MCG}(\Sigma) \curvearrowright \mathcal{G}(\Sigma)$ quasi-continuously.

 \implies continuous action on $\partial \mathcal{G}(\Sigma)$

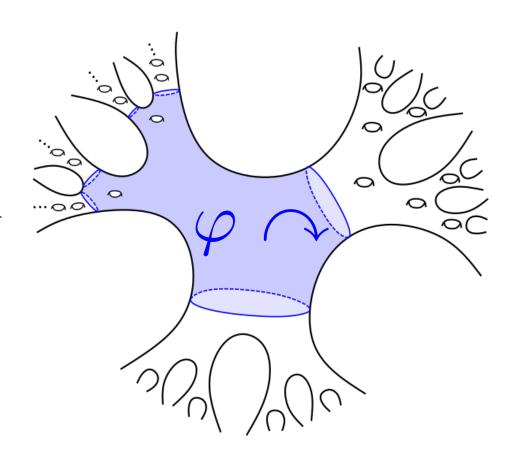
Loxodromic Actions

 $g \in G$ acts loxodromically if for any $x \in X$, d(x, gx) is uniformly bounded from below.

Loxodromic Actions

 $g \in G$ acts loxodromically if for any $x \in X$, d(x, gx) is uniformly bounded from below.

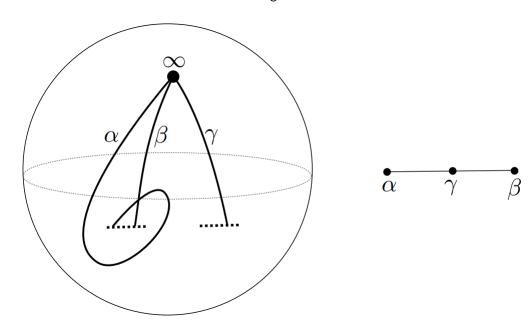
Theorem (Bar-Natan – V.): Let φ be a pseudo-Anosov mapping class that fixes the boundary of W. Let $\bar{\varphi} \in \mathrm{MCG}(\Sigma)$ be the homeomorphism fixing W^c and acting as φ on W. Then $\bar{\varphi}$ acts loxodromically on $\mathcal{G}(\Sigma)$.



Ray Graph (Calegari)

Vertices: Isotopy classes of proper rays, with interior in the complement of K, from a point in K to infinity

Edges: Disjointness

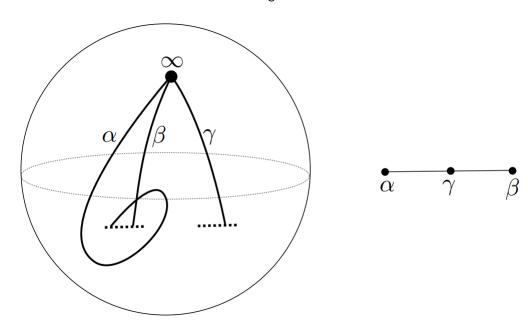


Ray Graph (Calegari)

Vertices: Isotopy classes of proper rays, with interior in the complement of K, from a point in K to infinity

Edges: Disjointness

Notice: All ends are maximal, and the ends comprising of the Cantor set are all in the same self-similar equivalence class of maximal ends.

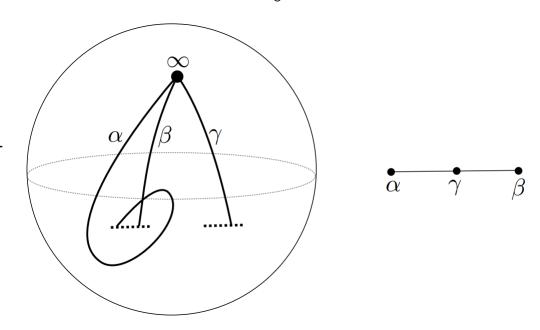


Ray Graph (Calegari)

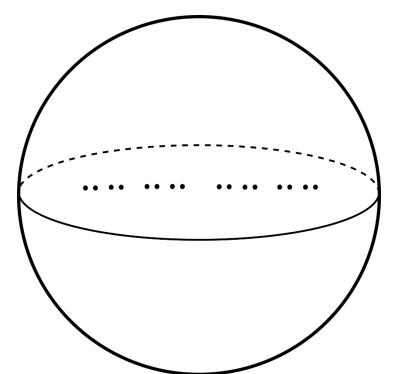
Vertices: Isotopy classes of proper rays, with interior in the complement of K, from a point in K to infinity

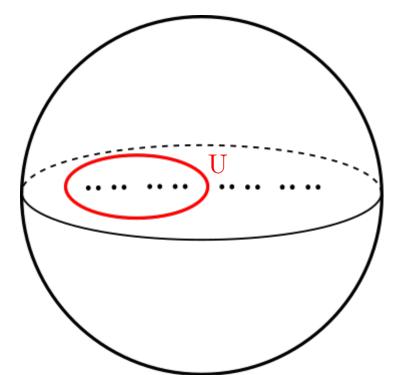
Edges: Disjointness

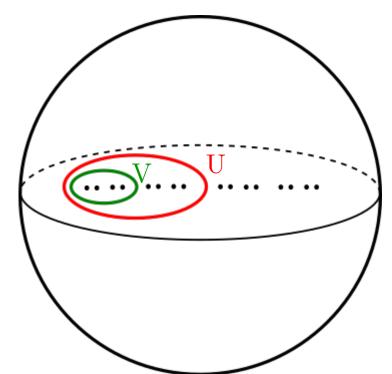
Notice: All ends are maximal, and the ends comprising of the Cantor set are all in the same self-similar equivalence class of maximal ends.

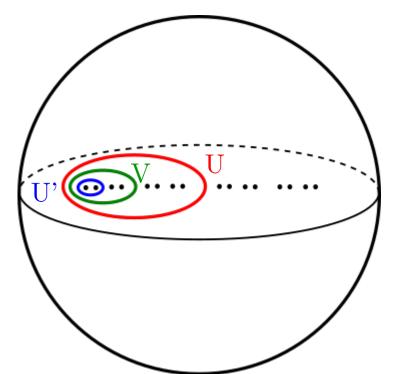


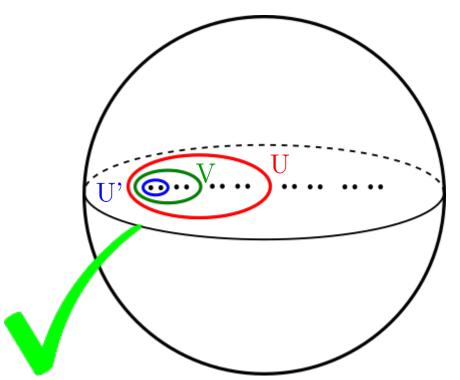
 \implies ray graph and $\mathcal{G}(\mathbb{R}^2 \setminus K)$ are the same!

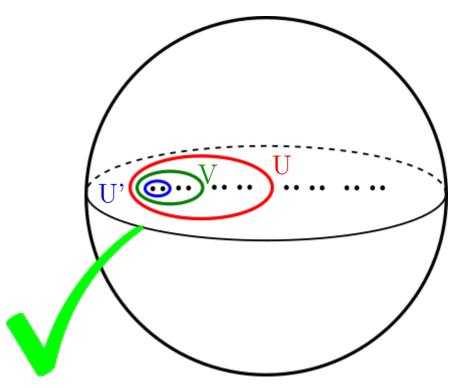












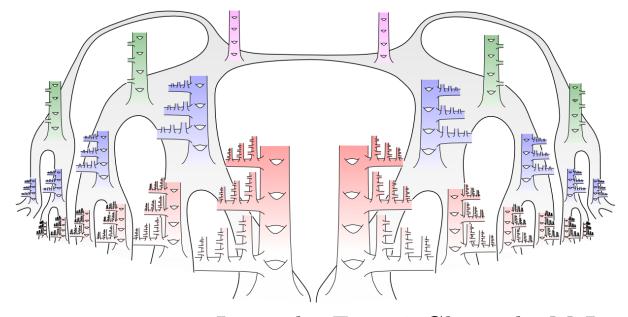
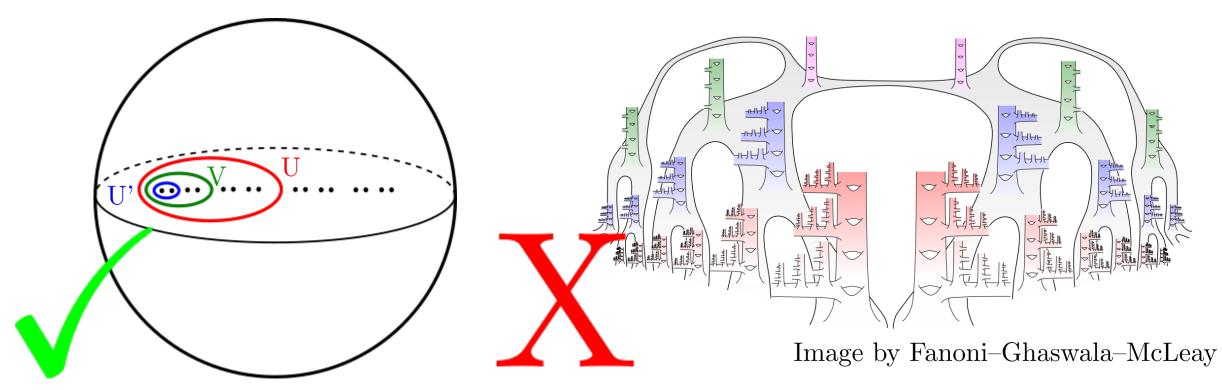


Image by Fanoni–Ghaswala–McLeay



Theorem (Fanoni–Ghaswala–McLeay): If a surface is stable, then an arc is omnipresent if and only if it joins ends whose orbit under $MCG(\Sigma)$ is finite.

Theorem (Fanoni–Ghaswala–McLeay): If a surface is stable, then an arc is omnipresent if and only if it joins ends whose orbit under $MCG(\Sigma)$ is finite.

Finite orbit ends are maximal, and the arcs must lie in ends which lie in different equivalence classes.

Theorem (Fanoni–Ghaswala–McLeay): If a surface is stable, then an arc is omnipresent if and only if it joins ends whose orbit under $MCG(\Sigma)$ is finite.

Finite orbit ends are maximal, and the arcs must lie in ends which lie in different equivalence classes.

If Σ is a stable surface, and α is an omnipresent arc, $\Longrightarrow \alpha$ is a grand arc.

Theorem (Fanoni–Ghaswala–McLeay): If a surface is stable, then an arc is omnipresent if and only if it joins ends whose orbit under $MCG(\Sigma)$ is finite.

Finite orbit ends are maximal, and the arcs must lie in ends which lie in different equivalence classes.

If Σ is a stable surface, and α is an omnipresent arc, $\implies \alpha$ is a grand arc.

Fact: Grand arcs aren't necessarily omnipresent

Overview

Theorem (Bar-Natan – V.): For a large class of surfaces, the grand arc graph is connected, hyperbolic, has infinite diameter, and $MCG(\Sigma)$ acts continuously on visible boundary.

- + loxodromic actions
- + nice connections to previous graphs