The Semi-Simple Theory of Acylindricity in Higher Rank

Joint work with:

Sahana Balasubramanya of Lafayette College

A semi-simple object is one that can be decomposed into a sum of simple objects."

Semi-simplicity Wikipedia

in....

Outline:

I. Gramar product, 8-hyp.

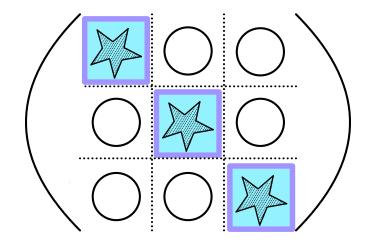
I. Ad(X), X=ボXi

III. Acylindricity & examples

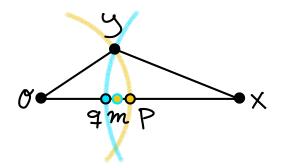
IV. Tits' Alternative

V. Product decompositions

VI. Out (7) (partial resolution to Sela's Conjecture 2023)



A geometric construction in geodesic space:



d(0,y) < d(y,x) < d(x,0)

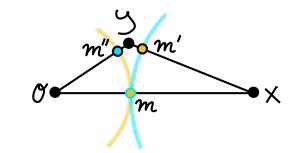
i) Find
$$p \in [\sigma, X]$$
 st.
 $d(\sigma, p) = d(\sigma, y)$

2) Find
$$q \in [0, X]$$
 st. $d(X,q) = d(X,y)$

3) Find m midpoint of the segment [p,q].

Def: Gromor product: $\langle x,y\rangle_{\sigma} = \pm [d(x,\sigma) + d(\sigma,y) - d(x,y)]$ ≥ 0

*Measure of how far O is from being on [xy]



* In this example,

$$\langle x, y \rangle_{o} = d(O, m)$$

$$\langle y, \sigma \rangle_{X} = d(x, m)$$

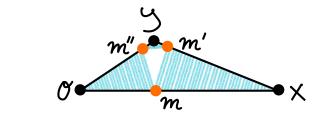
$$\langle 0, \times \rangle_{y} = d(y, m')$$

= $d(y, m'')$

Def: X geodesic metric space Def: X geodesic metric space is S-hyperbolic if

is CAT (0) if $\forall \sigma, x, y \in X$ nonpositively $\forall \sigma, x, y \in X$

 $\forall [0,\times],[\times,y],[y,o]$ geodesics



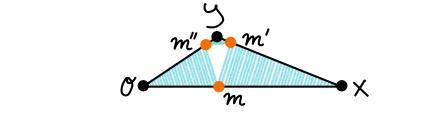
all distances A < 8.

Example: Trees; 8=0

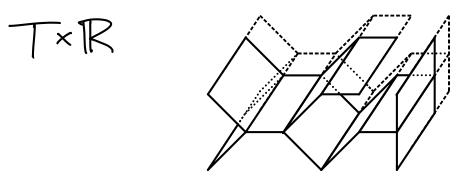
T: ___

* Class not closed under direct products

 $\forall [0, \times], [\times, y], [y, o]$ geodesics



all distances A = Euclidean Example: Products of trees



* Class is closed under direct products

Def: T group is 8-hyp/CAT(0)

if T admits a geometric

action on X is 8-hyp/CAT(0)

i.e ∃ \rightarrow I som X s.t.

Proper: $\forall x \in X \ \forall r > 0$ $\# \{ \forall x \in T : \ d(\forall x, x) \leq r \} < \infty$

Co-compact: TX compact.

A proper co-compact makes
T a uniform lattice

* These spaces and graps are

nonpositively curved Objective: Expand universe
of nonpositively curved spaces
& nonpositively groups:

X,..., XD are 8-hyperbolic

X:= TT X;

Aut X := SymxD X Tom X;

(permutes isometric factors)

≅ Isom (X, l'-product) Provided X; ~ TR.

TTH: (Bowlitch, Eskin-Fart, Kapovich-Kleiner-Leeb)

If $\gamma: X \to X$ is a quasi-isom.

then ∃ σ ∈ SymX, P: ∈ QI(Xi)
P is uniformly close to σ ∘ (P,...,Po).

Def: $\Gamma \to Aut(X)$ is

- Uniformly poper if
 ∀e>0 ∃N>0 ∀x ∈ X st
 #{8: d(8x,x)≤ ∈} < N</p>
- Proper if $\forall \epsilon \neq 0 \exists N \neq 0 \forall x \in X \text{ st}$ $\# \{x: J(xx,x) \leq \epsilon\} \leq X \infty$
- nonuniformly proper if proper & not uniformly proper.

Def: $\Gamma \to Aut(X)$ is

- acylindrical if $\forall \in >0 \exists R, N > 0 \text{ st.}$ $d(x,y) \geqslant R \Rightarrow \#\{y: d(x_x,x), d(x_y,x) \leq \epsilon\} < N$
- AU-(Ambiguas Unitermity) • Scylindrical if $\forall \in >0$ $\exists R, \forall <0$ st. $d(x,y) \ge R \Rightarrow \#\{y: d(x_x,x), d(x_y,x) \le \epsilon\} \le \#\{y: d$
- nonuniformly acylindrical if
 AU-acylindrical & not acylindrical.

Philosophy:

AU-acylindricity generalizes notion of a lattice, or proper finite covolume actions proper co-covol. action on proper action on non locally covol. LCSC space compact metric space

Examples of graps admit unbounded AU-acyl. action on non-positively curved space

T< SLnQ finitely genied n=2 m> action on X

Corollary to Dorbe: finitely generated. (action on X)

D=1: Acylindrically hyperbolic

- Mapping Class Groups
- · Relatively hyperbolic groups G*Z, Gaygroup.

Petyt-Spriano:

Ta Higherarchically Hyperbolic Group (HHG)

- · Many (all?) Cubulated graps
- Many Acyl. hyp. groups
- Margolis: Groups QI to X

Bestvina Brady Kernels: K Som F2 X F2 (not finitely presented)

Groups with prop (QT)

No "best" representation

Ex: P=MCG(D) D=1/

& J T -> TI Ison Ti -> Quesi-trees

s.t. orbits are QIemb => AU acy!

Class is closed under:

Finite extensions

direct products

Subgraps

class of $\Gamma < F_2$ is countable

class of $\Gamma < F_2 \times F_2$ is uncountable

Which groups do not admit AU- auglindrical action on X?

· Grigorchuk groups

· Burnside graps Groups

· Tarski Monsters | hereditary

Thompson Groups

· Groups with "hereditary NL" only parabolic & elliptic actions even up to finite index

(NL)

Questian: What can be said about such a large class of groups?

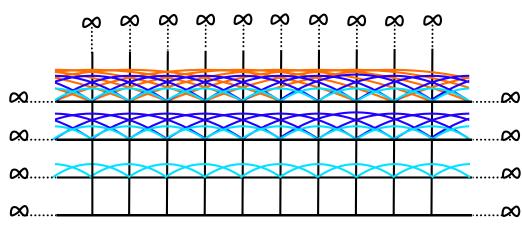
Answer: Not much without some restrictions on action:

The trivial action T - Isom [*] is acylindrical.

Everyagrap admits a proper parabolic action via the following horoball construction. (& proper => AU-acyl.)

T countable ⇒ Igraph Yo on which Tacts properly.

Inductively, let Yn be the graph obtained by connecting points at distance 2".

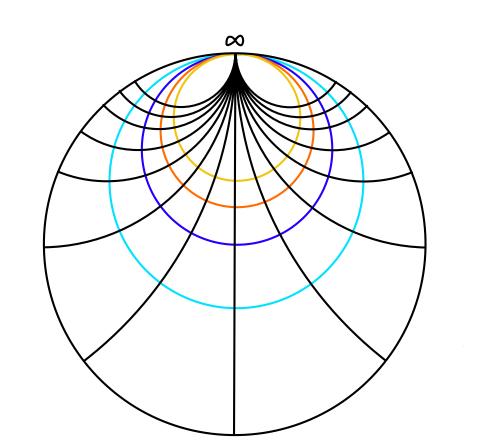


"upper half plane model"

Rescaling:
length(•••) =
$$\frac{1}{2}$$

length(•••) = $\frac{1}{2^2}$
length(•••) = $\frac{1}{2^3}$

obtain "disk/ball model"



If $\Gamma < SL_n C$ then either $\Gamma > F_2$ or $\exists \Gamma_0 \leqslant_n \Gamma$ s.t. upto conjugation Γ_0 is upper triangular:

$$(n=4)$$
 $(n=4)$ $(n=4$

- Tits' alternative (& its proof) is a power ful tool in the study of linear groups.
- There are many versions for different classes of groups.
- Open problem:
 Tits'Alternative for subgraps
 of CAT(0) graps.

TH: (Tits'Alternative)

P -> Aut(X) acylindrical

& not elliptic. Then either

P>F2 or P virt. ZK, OSK SD.

Proof scheme:

Step 1: Apply classification of actions on S-hyp. Spaces to factors & show that elliptic & parabolic actions don't "contribute" to acyl.

quasi-parabolic factor in step 2 becames lineal.

Step 2: If $\Gamma \not= F_2$ then the factor actions lineal & may assume $X_i \cong \mathbb{R}$ for i=1,...,D.

Step 3: Show T is amenable (every finitely gened subgroup has polynomial growth)

Step 4: Replace Xi with 1R via Busemann pseudocharacter & show acylindricity preserved.

Step 5: \mathbb{R}^D locally compact so any. \Rightarrow proper \Rightarrow $\bigcap_{\text{virt.}} \mathbb{Z}^K$ $0 \le K \le D$

Def: An internal product decomp. $\Gamma = \Gamma_1 \cdots \Gamma_K$

is connonical if whenever $\Gamma = \Lambda, ... \Lambda_L$ then L = K &

Up to permutation $\Lambda_i = \Gamma_i$.

is strongly connonical if

whenever $\Gamma' < \Gamma$ finite index

& $\Gamma' = \Gamma, ... \Gamma_L'$ then L = K& up to perm. $\Gamma_i' = \Gamma_i \cap \Gamma'$.

Non-example: $\mathbb{Z}^2 \cong \mathbb{Z} \times \mathbb{Z}$ factors are cannonical but $\Gamma_1 = \{(n,0) : n \in \mathbb{Z}^2\}, \Gamma_2 = \{(n,n) : n \in \mathbb{Z}^2\}$ $\mathbb{Z}^2 = \Gamma_1 \cdot \Gamma_2$

Def: Aut (Γ) is the grap of isomorphisms $\Gamma \to \Gamma$. $H < \Gamma$ is characteristic if $\Psi(H) = H \ \forall \ \Psi \in Aut(\Gamma)$

TH: Let 1 be fin gen'ed & P -> Aut(X) AU acyl, with general type fectors. I characteristic subgroups AAMAT |A|<00,[P:7]<00 st. 1. /A admits a strongly cannonical product decomp.

TH: Let 1 be fin gen'ed & P -> Aut(X) AU acyl, with general type fectors. I characteristic subgroups A A MA M |A|<00,[7:7]<00 st. Ti /A admits a strongly cannonical product decomp.

Proof Scheme:

Step 1: Must make characteristic, ±: $A = \text{Ker}(\Gamma \rightarrow \text{Aut } X)$ $\Gamma_o = \text{Ker}(\Gamma \rightarrow \text{Sym}_X D)$

Step 2: If $\Gamma_o' = \Gamma_o/R$ not strongly irreducible then virtually isomorphic to $\Gamma_o' = H_1 \cdot H_2$.

AD=# of factors gives bound on complexity

Step 3: Using this bound I characteristic T, & To with strongly connonical product decomp. Def: T is virtually isomorphic to A $\exists A \triangleleft T_o \triangleleft T, B \triangleleft \Lambda_o \triangleleft \Lambda$ $|A|, |B|, [T: T_o], [\Lambda: \Lambda_o] < \infty$ $|A, B| = \Lambda_o B$

Def: The inner automorphism
grap of Γ is the image of $\Gamma \to Aut(\Gamma)$, where $\gamma \mapsto C_{\gamma}$, $C_{\gamma}(x) := \gamma \times \gamma^{-1}$

The outer automorphism grap of Γ is $Out(\Gamma) = Aut(\Gamma) / Inn(\Gamma)$ THE Let Γ be fin. gen'ed & $\Gamma \rightarrow Aut(X)$ AU acyl, with general type fectors; Up to virtual isomorphism Out(Γ) > TOut(Γ) finite index

As a corollary we resolve

Sela's Conjecture (2023):

If T is a nice HHG

then Out (T) has a

similar structure to Out (N),

A is I-ended hyperbolic.

Answer: The if & only if the for irreducible factors & ...

Open problems:

What can you say about (AU-) audindrical actions On non-positively curved Spaces? CAT(0) cube cpx:

Chatterji-Martin 2016) vank Genevois 2019 & work in progress Balasubramanya - Fernos higher vank.

Which groups admit an "interesting" action on a nonpositively curved space but do not admit AU-acyl on a nonpositively curved space?

Are your favorite results true for products & subgraps?

Are there interesting properties extending acyl?

Tf Z, Z are sufficiently 5 complex surfaces then (it seems) $MCG(\mathcal{E}) \times MCG(\mathcal{E}') \in MCG(\mathcal{E} \times \mathcal{E}')$ What can you say about the subgroups:

If I not acyl. hyperbolic & P-Ad (X, x X2) AU- acyl. can Ot(r) be oo!

Assume P→ Aut(X,×X2) is AU-acyl. & Juf Prob(T) st. Furstenberg-Poisson bound. $(\mathcal{B}, \mathcal{V}) \cong (\partial X_1 \times \partial X_2, \mathcal{V}, \otimes \mathcal{V}_2)$ Does 1 satisfy normal subgrap Theorem: Maybe with additional hypotheses?

