The Conformal Dimension and Minimality of Stochastic Objects

Wen－Bo Li

BICMR，Peking Unviersity

> Fields Institute Seminar
joint with Ilia Binder and Hrant Hakobyan

北京国际数学研究中心
BEIJING INTERNATIONAL CENTER FOR
MATHEMATICAL RESEARCH

Quasisymmetric mappings and conformal dimension

A homeomorphism $f: X \rightarrow Y$ is η-quasisymmetric, where $\eta:[0, \infty) \rightarrow[0, \infty)$ is a homeomorphism, if

$$
\frac{d_{Y}(f(x), f(y))}{d_{Y}(f(x), f(z))} \leq \eta\left(\frac{d_{X}(x, y)}{d_{X}(x, z)}\right)
$$

for all $x, y, z \in X$ with $x \neq z$. The map f is called quasisymmetric if it is η-quasisymmetric for some distortion function η.

Quasisymmetric mappings and conformal dimension

A homeomorphism $f: X \rightarrow Y$ is η-quasisymmetric, where $\eta:[0, \infty) \rightarrow[0, \infty)$ is a homeomorphism, if

$$
\frac{d_{Y}(f(x), f(y))}{d_{Y}(f(x), f(z))} \leq \eta\left(\frac{d_{X}(x, y)}{d_{X}(x, z)}\right)
$$

for all $x, y, z \in X$ with $x \neq z$. The map f is called quasisymmetric if it is η-quasisymmetric for some distortion function η.

The conformal dimension of X is defined by:

$$
\operatorname{dim}_{C}=\inf \{\operatorname{dim}(f(X)): f: X \rightarrow Y \text { - quasisymmetric }\}
$$

Quasisymmetric mappings and conformal dimension

A homeomorphism $f: X \rightarrow Y$ is η-quasisymmetric, where $\eta:[0, \infty) \rightarrow[0, \infty)$ is a homeomorphism, if

$$
\frac{d_{Y}(f(x), f(y))}{d_{Y}(f(x), f(z))} \leq \eta\left(\frac{d_{X}(x, y)}{d_{X}(x, z)}\right)
$$

for all $x, y, z \in X$ with $x \neq z$. The map f is called quasisymmetric if it is η-quasisymmetric for some distortion function η.

The conformal dimension of X is defined by:

$$
\operatorname{dim}_{C}=\inf \{\operatorname{dim}(f(X)): f: X \rightarrow Y \text { - quasisymmetric }\}
$$

X is minimal if $\operatorname{dim}_{C}(X)=\operatorname{dim}(X)$.

Conformal dimension

Why study conformal dimension in metric geometry?

Conformal dimension

Why study conformal dimension in metric geometry?

- It is a quasisymmetric invariant (like many other important properties: bounded turning, doubling, uniformly perfect, LLC).

Conformal dimension

Why study conformal dimension in metric geometry?

- It is a quasisymmetric invariant (like many other important properties: bounded turning, doubling, uniformly perfect, LLC).
- a tool for the quasi-isometric classification of the classical rank one symmetric spaces and lattices in such spaces(introduced by P. Pansu).

Conformal dimension

Why study conformal dimension in metric geometry?

- It is a quasisymmetric invariant (like many other important properties: bounded turning, doubling, uniformly perfect, LLC).
- a tool for the quasi-isometric classification of the classical rank one symmetric spaces and lattices in such spaces(introduced by P. Pansu).
- Extensive applications in first-order analysis in metric spaces, dynamics of rational maps, Gromov hyperbolic geometry, and self-affine fractal geometry.

Conformal dimension

Why study conformal dimension in metric geometry?

- It is a quasisymmetric invariant (like many other important properties: bounded turning, doubling, uniformly perfect, LLC).
- a tool for the quasi-isometric classification of the classical rank one symmetric spaces and lattices in such spaces(introduced by P. Pansu).
- Extensive applications in first-order analysis in metric spaces, dynamics of rational maps, Gromov hyperbolic geometry, and self-affine fractal geometry.

Why it is interesting in probability?
\square

Conformal dimension

Why study conformal dimension in metric geometry?

- It is a quasisymmetric invariant (like many other important properties: bounded turning, doubling, uniformly perfect, LLC).
- a tool for the quasi-isometric classification of the classical rank one symmetric spaces and lattices in such spaces(introduced by P. Pansu).
- Extensive applications in first-order analysis in metric spaces, dynamics of rational maps, Gromov hyperbolic geometry, and self-affine fractal geometry.

Why it is interesting in probability?

- It may be applied to Universality theory. Given a discrete model that converges to a random objects as the scaling limit, people may wonder whether the same convergence can be obtained when we "distorted" the discrete model.

Conformal dimension

Why study conformal dimension in metric geometry?

- It is a quasisymmetric invariant (like many other important properties: bounded turning, doubling, uniformly perfect, LLC).
- a tool for the quasi-isometric classification of the classical rank one symmetric spaces and lattices in such spaces(introduced by P. Pansu).
- Extensive applications in first-order analysis in metric spaces, dynamics of rational maps, Gromov hyperbolic geometry, and self-affine fractal geometry.

Why it is interesting in probability?

- It may be applied to Universality theory. Given a discrete model that converges to a random objects as the scaling limit, people may wonder whether the same convergence can be obtained when we "distorted" the discrete model.
- Sullivan dictionary in probability. There are similarities between metric spaces that raised in geometric group theory, complex dynamics and probability. The community are searching the third line(probability) of Sullivan dictionary.

Examples and results

- $\mathbb{R}^{n}, \operatorname{dim}\left(\mathbb{R}^{n}\right)=\operatorname{dim}_{C}\left(\mathbb{R}^{n}\right)=n$.

Examples and results

- $\mathbb{R}^{n}, \operatorname{dim}\left(\mathbb{R}^{n}\right)=\operatorname{dim}_{C}\left(\mathbb{R}^{n}\right)=n$.
- $M^{n}, \operatorname{dim}\left(M^{n}\right)=\operatorname{dim}_{C}\left(M^{n}\right)=n$.

Examples and results

- $\mathbb{R}^{n}, \operatorname{dim}\left(\mathbb{R}^{n}\right)=\operatorname{dim}_{C}\left(\mathbb{R}^{n}\right)=n$.
- $M^{n}, \operatorname{dim}\left(M^{n}\right)=\operatorname{dim}_{C}\left(M^{n}\right)=n$.
- $S G, \operatorname{dim}(S G)=\frac{\log 3}{\log 2}, \operatorname{dim}_{C}(S G)=1$. (Tyson, Wu)

Figure: A Sierpiński Gasket

Examples and results

- $S_{3}, \operatorname{dim}\left(S_{3}\right)=\frac{\log 8}{\log 3}, 1+\frac{\log 2}{\log 3} \leq \operatorname{dim}_{C}\left(S_{3}\right)<\frac{\log 8}{\log 3}$. Open

Figure: A Standard Sierpiński Carpet

Examples and results

- $S_{3}, \operatorname{dim}\left(S_{3}\right)=\frac{\log 8}{\log 3}, 1+\frac{\log 2}{\log 3} \leq \operatorname{dim}_{C}\left(S_{3}\right)<\frac{\log 8}{\log 3}$. Open

Figure: A Standard Sierpiński Carpet
Question: Should S_{p} and S_{q} be quasisymmetrically equivalent?

Examples and results

- $S_{3}, \operatorname{dim}\left(S_{3}\right)=\frac{\log 8}{\log 3}, 1+\frac{\log 2}{\log 3} \leq \operatorname{dim}_{C}\left(S_{3}\right)<\frac{\log 8}{\log 3}$. Open

Figure: A Standard Sierpiński Carpet

Question: Should S_{p} and S_{q} be quasisymmetrically equivalent?
S_{p} is quasisymmetric to S_{q} iff $p=q$. (Bonk, Merenkov)

Examples and results

- If $\operatorname{dim}(X)<1$, then $\operatorname{dim}_{C}(X)=0$.(Kovalev)

Examples and results

- If $\operatorname{dim}(X)<1$, then $\operatorname{dim}_{C}(X)=0$.(Kovalev)
- $\exists X \subset[0,1]$ s.t. $\operatorname{dim}(X)=1$ and $\operatorname{dim}_{C}(X)=0$.(Tukia)

Examples and results

- If $\operatorname{dim}(X)<1$, then $\operatorname{dim}_{C}(X)=0$.(Kovalev)
- $\exists X \subset[0,1]$ s.t. $\operatorname{dim}(X)=1$ and $\operatorname{dim}_{C}(X)=0$.(Tukia)
- $\exists X \subset[0,1]$ s.t. $\operatorname{dim}(X)=\operatorname{dim}_{C}(X)=1$ and $\mathcal{H}^{1}(X)=0$.(Hakobyan)

Examples and results

- If $\operatorname{dim}(X)<1$, then $\operatorname{dim}_{C}(X)=0$.(Kovalev)
- $\exists X \subset[0,1]$ s.t. $\operatorname{dim}(X)=1$ and $\operatorname{dim}_{C}(X)=0$.(Tukia)
- $\exists X \subset[0,1]$ s.t. $\operatorname{dim}(X)=\operatorname{dim}_{C}(X)=1$ and $\mathcal{H}^{1}(X)=0$.(Hakobyan)
- For any $\alpha \geq 1$, there exists a X such that $\operatorname{dim}(X)=\operatorname{dim}_{C}(X)=\alpha$.(Bishop, Tyson)

Construction of minimal spaces:

Let X be an Q-Ahlfors regular space, say, a cantor $\operatorname{set}(Q<1)$ or a snowflake $(Q \geq 1)$, then $X \times[0,1]$ is minimal.

Evaluation of conformal dimension

How to evaluate the conformal dimension of a metric space X ?

Evaluation of conformal dimension

How to evaluate the conformal dimension of a metric space X ?

- The upper bound: $\operatorname{dim}(X)$.

Evaluation of conformal dimension

How to evaluate the conformal dimension of a metric space X ?

- The upper bound: $\operatorname{dim}(X)$.
- The lower bound: Much harder.

Evaluation of conformal dimension

How to evaluate the conformal dimension of a metric space X ?

- The upper bound: $\operatorname{dim}(X)$.
- The lower bound: Much harder.

The main obstacle of computing the conformal dimension is to estimate a lower bound.

Modulus estimation

One criterion for conformal dimension lower bounds starts from the idea of "sufficiently rich curve family", i.e., the existence of a family of curves with some positive modulus.

Modulus estimation

One criterion for conformal dimension lower bounds starts from the idea of "sufficiently rich curve family", i.e., the existence of a family of curves with some positive modulus.

Theorem 1 (Bishop,Tyson)

Let (X, d, μ) be a compact, doubling metric measure space satisfying:

- $\mu(B(x, r)) \leq C \cdot r^{q}$ for all balls $B(x, r) \subset X$ and some $C>0$.
- $\operatorname{Mod}_{p}(\Gamma)>0$ for some $1<p \leq q$ and some curve family $\Gamma \subset X$.

Then $\operatorname{dim}_{C}(X) \geq q$.

Fuglede modulus

Sometimes, it is possible to obtain non-trivial lower bounds on the conformal dimension of X even if there are no curve families of positive modulus in X. This can be done using the notion of modulus of families of measures due to Fuglede.

Fuglede modulus

Sometimes, it is possible to obtain non-trivial lower bounds on the conformal dimension of X even if there are no curve families of positive modulus in X. This can be done using the notion of modulus of families of measures due to Fuglede.

Let (X, d, μ) be a metric measure space and $p \geq 1$. The p-modulus of a family of measures \mathbf{E} on X is defined as

$$
\operatorname{Mod}_{p}(\mathbf{E})=\inf \int_{X} \rho^{p} d \mu
$$

where the infimum is taken over all Borel functions $\rho: X \rightarrow[0, \infty)$ such that $\int \rho d \lambda \geq 1, \forall \lambda \in \mathbf{E}$.

Fuglede modulus

Sometimes, it is possible to obtain non-trivial lower bounds on the conformal dimension of X even if there are no curve families of positive modulus in X. This can be done using the notion of modulus of families of measures due to Fuglede.

Let (X, d, μ) be a metric measure space and $p \geq 1$. The p-modulus of a family of measures \mathbf{E} on X is defined as

$$
\operatorname{Mod}_{p}(\mathbf{E})=\inf \int_{X} \rho^{p} d \mu
$$

where the infimum is taken over all Borel functions $\rho: X \rightarrow[0, \infty)$ such that $\int \rho d \lambda \geq 1, \forall \lambda \in \mathbf{E}$.

Fuglede modulus is an outer measure of measures on X.

Fuglede modulus estimation

For this to work one has to assume that X contains a family $\mathcal{E}=\left\{E_{i}\right\}_{i \in I}$ of subsets and a family of measures $\mathbf{E}=\left\{\lambda_{i}\right\}_{i \in I}$ so that λ_{i} is supported on E_{i} which are essentially 1-dimensional, and such that the modulus of \mathbf{E} is positive.

Fuglede modulus estimation

For this to work one has to assume that X contains a family $\mathcal{E}=\left\{E_{i}\right\}_{i \in I}$ of subsets and a family of measures $\mathbf{E}=\left\{\lambda_{i}\right\}_{i \in I}$ so that λ_{i} is supported on E_{i} which are essentially 1-dimensional, and such that the modulus of \mathbf{E} is positive.

Theorem 2 (Hakobyan)

Let (X, μ) be a compact, doubling metric measure space satisfying

- $\mu(B(x, r)) \leq C \cdot r^{q}$ for every ball $B(x, r) \subset X$ for some constant $C>0$.
- $\operatorname{dim}_{C} E \geq 1, \forall E \in \mathcal{E}$ for some collection subsets \mathcal{E} of X.
- there exists a collection of measures $\mathbf{E}=\left\{\lambda_{E}\right\}_{E \in \mathcal{E}}$ supported on E such that for $\forall E \in \mathcal{E}$, $x \in E$ and some $C>0$

$$
\lambda_{E}(B(x, r) \cap E) \geq C \cdot r .
$$

- $\operatorname{Mod}_{p}(\mathbf{E})>0$ for some $1 \leq p \leq q$

Then $\operatorname{dim}_{C}(X) \geq q$.

Cantor set conformal dimension

Theorem 3 (Binder, Hakobyan and L.)

Let $E=\bigcap_{i=1}^{\infty} \cup_{j=1}^{2^{i}} E_{i, j}$ be a metric cantor space. If
(1) there exists a constant $L \geq 1$ such that for any $E_{i, j}, E_{i, j}^{\prime}$ we have

$$
\frac{1}{L} \leq \frac{\operatorname{diam}\left(E_{i, j}\right)}{\operatorname{diam}\left(E_{i, j}^{\prime}\right)} \leq L
$$

(2) $\lim _{i \rightarrow \infty} \Delta\left(E_{i, j}, E_{i, j}^{\prime}\right) \rightarrow 0$,
then $\operatorname{dim}_{C}(E) \geq 1$.

A minimal space

Let $I_{0}=[0,1] \times[0,1]$ be the unit square in \mathbb{R}^{2}. We denote by

$$
\mathcal{Q}_{n}:=\left\{\left[\frac{i}{4^{n}}, \frac{i+1}{4^{n}}\right] \times\left[\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right]\right\}_{i, j}
$$

and call any element in \mathcal{Q}_{n} a n-block.

Figure: A minimal graph with 3 generations.

A minimal space

- We choose two 1-blocks from the upper half and two 1-blocks from the lower half of I_{0}, and call their union I_{1}.
- Suppose that I_{n} is already constructed and $I_{n}=\bigcup_{i} Q_{i}$ where $Q_{i} \in \mathcal{Q}_{n}$. Similarly, we choose two ($n+1$)-blocks from the upper half and two ($n+1$)-blocks from the lower half of each Q_{i}.
- Then I_{n+1} is the union of all the chosen $(n+1)$-blocks.
- Finally, we define $I:=\bigcap_{n=0}^{\infty} I_{n}$.

Figure: A minimal graph with 3 generations.

Remark: It is possible to construct I as a graph by specifically choosing I_{n} in each step.

A minimal space

Some Facts: $\operatorname{dim}\left(I_{a}\right)=\frac{1}{2}$ for every $a \in[0,1]$, and $\operatorname{dim}(I)=\frac{3}{2}$.

Figure: A minimal graph with 3 generations.

A minimal space

Some Facts: $\operatorname{dim}\left(I_{a}\right)=\frac{1}{2}$ for every $a \in[0,1]$, and $\operatorname{dim}(I)=\frac{3}{2}$.

Figure: A minimal graph with 3 generations.

Lemma 4 (Mass distribution principle)
$\mu(U) \leq C \cdot(\operatorname{diam}(U))^{\alpha}, \mu(X)>0 \Longrightarrow \operatorname{dim}(X) \geq \alpha$.
It is clear that the Minkowski dimension of them are $\frac{1}{2}$ and $\frac{3}{2}$, respectively. Letting μ and μ_{x} be probability measures on I and I_{x} that distributed uniformly, then, by Mass distribution principle, we finish the proof.

A minimal space

Recall that Marstrand Slicing Theorem asserts that for any $A \subset \mathbb{R}^{2}$ with $\operatorname{dim}(A) \geq 1$ and any $A_{x}=\{x:(x, y) \in A\}$, we have $\operatorname{dim}\left(A_{x}\right) \leq \operatorname{dim}(A)-1$ for almost every x. This implies some product-like structure in the random fractal I. The rigidity illustrates the following theorem.

A minimal space

Recall that Marstrand Slicing Theorem asserts that for any $A \subset \mathbb{R}^{2}$ with $\operatorname{dim}(A) \geq 1$ and any $A_{x}=\{x:(x, y) \in A\}$, we have $\operatorname{dim}\left(A_{x}\right) \leq \operatorname{dim}(A)-1$ for almost every x. This implies some product-like structure in the random fractal I. The rigidity illustrates the following theorem.

Theorem 5 (Binder, Hakobyan and L.)
I is minimal and $\operatorname{dim}_{C}(I)=\frac{3}{2}$.

Figure: A minimal graph with 3 generations.

Brownian motion and local time

Let B be a 1-dimensional Brownian motion. We will illustrate a similar structure on its graph.

Brownian motion and local time

Let B be a 1-dimensional Brownian motion. We will illustrate a similar structure on its graph.

- $\operatorname{dim}\left(\Gamma_{B}\right)=\frac{3}{2}$ a.s..
- $\operatorname{dim} T(x)=\frac{1}{2}$ for every x a.s. for $T(x)=\{t: B(t)=x\}$.

Brownian motion and local time

A few results of 1-dimensional Brownian motion.

- we define $L^{a}(t)$ to be the local time of the standard Brownian motion $B(t)$ at level a, i.e.,

$$
L^{a}(t)=\lim _{n \rightarrow \infty} 2^{-n+1} D^{n}(a, t)
$$

where $D^{n}(a, t)$ is the number of downcrossings before time t of the $n^{\text {th }}$-dyadic interval containing a. Notice that $L^{a}(t)$ is a random field.

Brownian motion and local time

A few results of 1-dimensional Brownian motion.

- we define $L^{a}(t)$ to be the local time of the standard Brownian motion $B(t)$ at level a, i.e.,

$$
L^{a}(t)=\lim _{n \rightarrow \infty} 2^{-n+1} D^{n}(a, t)
$$

where $D^{n}(a, t)$ is the number of downcrossings before time t of the $n^{\text {th }}$-dyadic interval containing a. Notice that $L^{a}(t)$ is a random field.

- For any fixed a, there exists a constant $C>0$ independent of a such that a.s. for all $t>0$, the local time

$$
L^{a}(t)=\mathcal{H}^{\varphi}(T(0) \cap[0, t])
$$

for the gauge function $\varphi(r)=C \sqrt{r \log (\log (1 / r))}$.

Brownian motion and local time

The graph of 1-dimension Brownian motion "looks like" the example in Theorem 5. We explore the graph from this point of view to construct the product-like structure provided by the local time. This observation is in the heart of the proof of the following theorem.

Brownian motion and local time

The graph of 1-dimension Brownian motion "looks like" the example in Theorem 5. We explore the graph from this point of view to construct the product-like structure provided by the local time. This observation is in the heart of the proof of the following theorem.

Theorem 6 (Binder, Hakobyan and L.)
Let $B(t)$ be a 1-dimension Brownian motion, then the graph of B is minimal a.s., i.e., the conformal dimension of Γ_{B} is $\frac{3}{2}$ a.s..

Structures on the graph of $B(t)$

- We define

$$
\mu(A):=\int_{-\infty}^{\infty} l^{a}\left(A \cap Z_{a}\right) d a
$$

- There exists $C>0$ such that

$$
\mu(B(x, r) \cap \Gamma(B)) \leq C \cdot r^{\frac{3}{2}-\epsilon}
$$

for any $\epsilon>0$.

Structures on the graph of $B(t)$

We construct a Cantor set E in the following way:

- Pick subset of $\Gamma(B)$ that lies between two adjacent hitting times of $Z_{0}, Z_{1 / 2}$ and another subset that lies between two adjacent hitting times of $Z_{1 / 2}, Z_{1}$.
- These two elements are the first generation of E.
- Suppose a $n^{\text {th }}$-generation element is given, then we pick two subsets that lies between two adjacent hitting times of two adjacent dyadic levels, receptively.
- All these 2^{n+1} elements forms the $(n+1)^{\text {th }}$-generation of E.
- Finally, $E=\bigcap_{n=1}^{\infty} \cup_{m=1}^{2^{n}} E^{n, m}$.
- We collect all the Cantor sets constructed by the above method and denote them by \mathcal{E}.

Figure: A standard linear Brownian motion and the collection of $E_{j}^{n, m}$ for 3 generations.

Proof of Theorem 6

Proof.

- There exists a measure μ s.t. $\mu(B(x, r) \cap \Gamma(B)) \lesssim r^{\frac{3}{2}-\epsilon}$ for any $\epsilon>0$.
- For any $E \in \mathcal{E}, \operatorname{dim}_{C} E \geq 1$ by Theorem 3 .
- Let λ_{E} be the project measure from y-axis to E thus it satisfies $\lambda_{E}(B(x, r) \cap E) \geq C \cdot r$ for some C naturally.
It follows from Theorem 2 that the only thing left is to prove that $\operatorname{Mod}_{1}(\mathbf{E})>0$.

Figure: A standard linear Brownian motion and the collection of $E_{j}^{n, m}$ for 3 generations.

Proof of Theorem 6

Proof.

- We will show that $\operatorname{Mod}_{1}(\mathbf{E})>0$.
- Let ρ be admissible for \mathbf{E}. We replace ρ by an alternative admissible ϱ with smaller mass.
- Let ϱ_{1} be a function on E_{1} such that the integral of ρ_{1} on every $1^{\text {th }}$-generation element that achieves the minimal among all the $1^{\text {th }}$-generations of the same level.
- Similarly, define ϱ_{n} iteratively in the same way to cover all the $n^{\text {th }}$-generation.
- Finally, we define $\varrho:=\liminf _{n \rightarrow \infty} \varrho_{n}$.

Figure: Constructing ϱ_{n}.

Proof of Theorem 6

- For any $E \in \mathcal{E}$,

$$
\int_{E} \varrho d \lambda_{E} \geq \int_{F} \rho \lambda_{F} \geq 1
$$

Thus ϱ is admissible for \mathcal{E}.

- $\int_{X} \varrho d \mu \leq \int_{X} \rho d \mu$ where X is the space that \mathcal{E} covers.
- It is sufficient to prove that $\int_{X} \varrho d \mu>0$.
- Recall that $\mu(B(x, r))=\int_{0}^{1} l_{a}\left(B(x, r) \cap Z_{a}\right) d a$.

$$
\int_{X} \varrho d \mu \geq\left(\int_{E} \varrho d \lambda_{E}\right) \inf _{a \in[0,1]} L^{a}\left(Z_{a} c a p X\right) \geq \inf _{a \in[0,1]} L^{a}\left(Z_{a} \cap X\right)>\delta .
$$

for some $\delta>0$.

Figure: A minimal graph with 3 generations.

Further developments

What is the conformal dimension for other stochastic objects?

Further developments

What is the conformal dimension for other stochastic objects?
Planar Brownian motion? We guess it is minimal a.s..
Higher dimensional Brownian motion? We guess it is not minimal a.s..

Further developments

What is the conformal dimension for other stochastic objects?

Further developments

What is the conformal dimension for other stochastic objects?
Another guess is that the $S L E_{\kappa}$ curve is minimal almost surely for any $\kappa \in(0,8)$.

Further developments

What is the conformal dimension for other stochastic objects?
Another guess is that the $S L E_{\kappa}$ curve is minimal almost surely for any $\kappa \in(0,8)$.
The studies of the intersection of the SLE trace with \mathbb{R} or semi-circles show that the SLE trace has a product-like structure.

Further developments

What is the conformal dimension for other stochastic objects?
Another guess is that the $S L E_{\kappa}$ curve is minimal almost surely for any $\kappa \in(0,8)$.
The studies of the intersection of the SLE trace with \mathbb{R} or semi-circles show that the SLE trace has a product-like structure.

We claim that the $S L E_{\kappa}$ trace is minimal almost surely for $\kappa>4$, ie., the conformal dimension of the $S L E_{\kappa}$ curve, $\kappa>4$, is $1+\frac{\kappa}{8}$ almost surely.

Further developments

Interesting ideas from geometric group theory and complex dynamics?

Further developments

Interesting ideas from geometric group theory and complex dynamics?
Cannon Conjecture: Let G be a Gromov hyperbolic group whose boundary at infinity $\partial_{\infty} G$ is homeomorphic to \mathbb{S}^{2}. Then $\partial_{\infty} G$ is quasisymmetrically equivalent to \mathbb{S}^{2}.

Further developments

Interesting ideas from geometric group theory and complex dynamics?
Cannon Conjecture: Let G be a Gromov hyperbolic group whose boundary at infinity $\partial_{\infty} G$ is homeomorphic to \mathbb{S}^{2}. Then $\partial_{\infty} G$ is quasisymmetrically equivalent to \mathbb{S}^{2}.

Thurston Characterization Theorem: A Thurston map $f: S^{2} \rightarrow S^{2}$ with hyperbolic orbifold is topological conjugate to a rational map if and only if it has no Thurston obstruction.

Further developments

Interesting ideas from geometric group theory and complex dynamics?
Cannon Conjecture: Let G be a Gromov hyperbolic group whose boundary at infinity $\partial_{\infty} G$ is homeomorphic to \mathbb{S}^{2}. Then $\partial_{\infty} G$ is quasisymmetrically equivalent to \mathbb{S}^{2}.

Thurston Characterization Theorem: A Thurston map $f: S^{2} \rightarrow S^{2}$ with hyperbolic orbifold is topological conjugate to a rational map if and only if it has no Thurston obstruction.

Question: Is the Brownian sphere S quasisymmetric to \mathbb{S}^{2} ?

Further developments

Interesting ideas from geometric group theory and complex dynamics?

Further developments

Interesting ideas from geometric group theory and complex dynamics?
Kapovich-Kleiner Conjecture: Let G be a Gromov hyperbolic group whose boundary at infinity $\partial_{\infty} G$ is homeomorphic to a Sierpiński carpet. Then $\partial_{\infty} G$ is quasisymmetrically equivalent to a round carpet in $\hat{\mathbb{C}}$.

Further developments

Interesting ideas from geometric group theory and complex dynamics?
Kapovich-Kleiner Conjecture: Let G be a Gromov hyperbolic group whose boundary at infinity $\partial_{\infty} G$ is homeomorphic to a Sierpiński carpet. Then $\partial_{\infty} G$ is quasisymmetrically equivalent to a round carpet in $\widehat{\mathbb{C}}$.

A dynamical Theorem[Bonk,L.,Li]: Suppose $f: S^{2} \rightarrow S^{2}$ is an expanding Thurston map without periodic critical points, and $\mathcal{C} \subseteq S^{2}$ is an f-invariant Jordan curve with $\operatorname{post}(f) \subseteq \mathcal{C}$. Let F be a subsystem of f with respect to C and Ω be its tile maximal invariant set. If Ω is homeomorphic to the standard Sierpiński carpet, then the following conditions are equivalent:
(1) There exists a postcritically-finite rational map $g: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ with no periodic critical points and a g-invariant set $\Theta \subset \widetilde{\mathbb{C}}$ such that f_{Ω} is topologically conjugate to $\left.g\right|_{\Theta}$.
(2) The set Ω is quasisymmetrically equivalent to a round carpet in $\hat{\mathbb{C}}$.
(3) There is no Thurston obstruction for F.

Further developments

Interesting ideas from geometric group theory and complex dynamics?
Kapovich-Kleiner Conjecture: Let G be a Gromov hyperbolic group whose boundary at infinity $\partial_{\infty} G$ is homeomorphic to a Sierpiński carpet. Then $\partial_{\infty} G$ is quasisymmetrically equivalent to a round carpet in $\widehat{\mathbb{C}}$.

A dynamical Theorem[Bonk,L.,Li]: Suppose $f: S^{2} \rightarrow S^{2}$ is an expanding Thurston map without periodic critical points, and $\mathcal{C} \subseteq S^{2}$ is an f-invariant Jordan curve with $\operatorname{post}(f) \subseteq \mathcal{C}$. Let F be a subsystem of f with respect to C and Ω be its tile maximal invariant set. If Ω is homeomorphic to the standard Sierpiński carpet, then the following conditions are equivalent:
(1) There exists a postcritically-finite rational map $g: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ with no periodic critical points and a g-invariant set $\Theta \subset \widetilde{\mathbb{C}}$ such that f_{Ω} is topologically conjugate to $\left.g\right|_{\Theta}$.
(2) The set Ω is quasisymmetrically equivalent to a round carpet in $\hat{\mathbb{C}}$.
(3) There is no Thurston obstruction for F.

Question: How is a corresponding Brownian carpet? Is the $C L E_{\kappa}$ carpet quasisymmetrically equivalent to a round carpet?

Thank you!

