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Quasisymmetric mappings and conformal dimension

A homeomorphism f ∶ X ! Y is η-quasisymmetric, where η ∶ [0,∞)! [0,∞) is a
homeomorphism, if

dY(f(x), f(y))
dY(f(x), f(z))

≤ η (
dX(x, y)
dX(x, z)

)

for all x, y, z ∈ X with x ≠ z. The map f is called quasisymmetric if it is η-quasisymmetric for
some distortion function η.

The conformal dimension of X is defined by:

dimC = inf {dim(f(X)) ∶ f ∶ X ! Y − quasisymmetric}

X is minimal if dimC(X) = dim(X).
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Conformal dimension

Why study conformal dimension in metric geometry?

It is a quasisymmetric invariant (like many other important properties: bounded turning,
doubling, uniformly perfect, LLC).

a tool for the quasi-isometric classification of the classical rank one symmetric spaces and
lattices in such spaces(introduced by P. Pansu).

Extensive applications in first-order analysis in metric spaces, dynamics of rational maps,
Gromov hyperbolic geometry, and self-affine fractal geometry.

Why it is interesting in probability?
It may be applied to Universality theory. Given a discrete model that converges to a
random objects as the scaling limit, people may wonder whether the same convergence
can be obtained when we “distorted” the discrete model.
Sullivan dictionary in probability. There are similarities between metric spaces that
raised in geometric group theory, complex dynamics and probability. The community are
searching the third line(probability) of Sullivan dictionary.
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Examples and results

Rn,dim(Rn) = dimC(Rn) = n.

Mn,dim(Mn) = dimC(Mn) = n.

SG,dim(SG) = log 3
log 2 ,dimC(SG) = 1.(Tyson, Wu)

Figure: A Sierpiński Gasket
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Examples and results

S3,dim(S3) = log 8
log 3 ,1 +

log 2
log 3 ≤ dimC(S3) < log 8

log 3 . Open

Figure: A Standard Sierpiński Carpet

Question: Should Sp and Sq be quasisymmetrically equivalent?

Sp is quasisymmetric to Sq iff p = q. (Bonk, Merenkov)
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Examples and results

If dim(X) < 1, then dimC(X) = 0.(Kovalev)

∃X ⊂ [0,1] s.t. dim(X) = 1 and dimC(X) = 0.(Tukia)

∃X ⊂ [0,1] s.t. dim(X) = dimC(X) = 1 and H1(X) = 0.(Hakobyan)

For any α ≥ 1, there exists a X such that dim(X) = dimC(X) = α.(Bishop, Tyson)

Construction of minimal spaces:
Let X be an Q-Ahlfors regular space, say, a cantor set(Q < 1) or a snowflake(Q ≥ 1), then
X × [0,1] is minimal.
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Evaluation of conformal dimension

How to evaluate the conformal dimension of a metric space X?

The upper bound: dim(X).

The lower bound: Much harder.

The main obstacle of computing the conformal dimension is to estimate a lower bound.
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Modulus estimation

One criterion for conformal dimension lower bounds starts from the idea of “sufficiently rich
curve family”, i.e., the existence of a family of curves with some positive modulus.

Theorem 1 (Bishop,Tyson)

Let (X,d, µ) be a compact, doubling metric measure space satisfying:
µ(B(x, r)) ≤ C ⋅ rq for all balls B(x, r) ⊂ X and some C > 0.
Modp(Γ) > 0 for some 1 < p ≤ q and some curve family Γ ⊂ X.

Then dimC(X) ≥ q.
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Fuglede modulus

Sometimes, it is possible to obtain non-trivial lower bounds on the conformal dimension of X
even if there are no curve families of positive modulus in X. This can be done using the
notion of modulus of families of measures due to Fuglede.

Let (X,d, µ) be a metric measure space and p ≥ 1. The p-modulus of a family of measures E
on X is defined as

Modp(E) = inf ∫X
ρpdµ

where the infimum is taken over all Borel functions ρ ∶ X ! [0,∞) such that
∫ ρ dλ ≥ 1, ∀ λ ∈ E.

Fuglede modulus is an outer measure of measures on X.
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Fuglede modulus estimation

For this to work one has to assume that X contains a family E = {Ei}i∈I of subsets and a
family of measures E = {λi}i∈I so that λi is supported on Ei which are essentially
1-dimensional, and such that the modulus of E is positive.

Theorem 2 (Hakobyan)

Let (X, µ) be a compact, doubling metric measure space satisfying
µ(B(x, r)) ≤ C ⋅ rq for every ball B(x, r) ⊂ X for some constant C > 0.
dimC E ≥ 1, ∀ E ∈ E for some collection subsets E of X.
there exists a collection of measures E = {λE}E∈E supported on E such that for ∀ E ∈ E,
x ∈ E and some C > 0

λE(B(x, r) ∩E) ≥ C ⋅ r.

Modp(E) > 0 for some 1 ≤ p ≤ q
Then dimC(X) ≥ q.
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Cantor set conformal dimension

Theorem 3 (Binder, Hakobyan and L.)

Let E = ⋂∞i=1⋃
2i
j=1 Ei,j be a metric cantor space. If

1 there exists a constant L ≥ 1 such that for any Ei,j,E′i,j we have

1
L
≤

diam(Ei,j)
diam(E′i,j)

≤ L,

2 limi!∞∆(Ei,j,E′i,j)! 0,
then dimC(E) ≥ 1.
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A minimal space

Let I0 = [0,1] × [0,1] be the unit square in R2. We denote by

Qn ∶= {[
i

4n ,
i + 1
4n ] × [

j
2n ,

j + 1
2n ]}i,j

and call any element in Qn a n-block.

Figure: A minimal graph with 3 generations.
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A minimal space

We choose two 1-blocks from the upper half and two 1-blocks from the lower half of I0,
and call their union I1.
Suppose that In is already constructed and In = ⋃i Qi where Qi ∈ Qn. Similarly, we
choose two (n + 1)-blocks from the upper half and two (n + 1)-blocks from the lower half
of each Qi.
Then In+1 is the union of all the chosen (n + 1)-blocks.
Finally, we define I ∶= ⋂∞n=0 In.

Figure: A minimal graph with 3 generations.

Remark: It is possible to construct I as a graph by specifically choosing In in each step.
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A minimal space

Some Facts: dim(Ia) = 1
2 for every a ∈ [0,1], and dim(I) = 3

2 .

Figure: A minimal graph with 3 generations.

Lemma 4 (Mass distribution principle)

µ(U) ≤ C ⋅ (diam(U))α, µ(X) > 0Ô⇒ dim(X) ≥ α.

It is clear that the Minkowski dimension of them are 1
2 and 3

2 , respectively. Letting µ and µx be
probability measures on I and Ix that distributed uniformly, then, by Mass distribution principle,
we finish the proof.
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A minimal space

Recall that Marstrand Slicing Theorem asserts that for any A ⊂ R2 with dim(A) ≥ 1 and any
Ax = {x ∶ (x, y) ∈ A} , we have dim(Ax) ≤ dim(A) − 1 for almost every x. This implies some
product-like structure in the random fractal I. The rigidity illustrates the following theorem.

Theorem 5 (Binder, Hakobyan and L.)

I is minimal and dimC(I) = 3
2 .

Figure: A minimal graph with 3 generations.
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Brownian motion and local time

Let B be a 1-dimensional Brownian motion. We will illustrate a similar structure on its graph.

dim(ΓB) = 3
2 a.s..

dimT(x) = 1
2 for every x a.s. for T(x) = {t ∶ B(t) = x}.
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Brownian motion and local time

A few results of 1-dimensional Brownian motion.

we define La(t) to be the local time of the standard Brownian motion B(t) at level a, i.e.,

La(t) = lim
n!∞

2−n+1Dn(a, t)

where Dn(a, t) is the number of downcrossings before time t of the nth-dyadic interval
containing a. Notice that La(t) is a random field.

For any fixed a, there exists a constant C > 0 independent of a such that a.s. for all t > 0,
the local time

La(t) =Hφ (T(0) ∩ [0, t])

for the gauge function φ(r) = C
√

r log(log(1/r)).
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Brownian motion and local time

The graph of 1-dimension Brownian motion “looks like” the example in Theorem 5. We
explore the graph from this point of view to construct the product-like structure provided by
the local time. This observation is in the heart of the proof of the following theorem.

Theorem 6 (Binder, Hakobyan and L.)

Let B(t) be a 1-dimension Brownian motion, then the graph of B is minimal a.s., i.e., the
conformal dimension of ΓB is 3

2 a.s..

Wen-Bo Li (BICMR, Peking Unviersity) 1
Fields Institute Seminar joint with Ilia Binder and Hrant Hakobyan
18 / 28



18/28

Brownian motion and local time

The graph of 1-dimension Brownian motion “looks like” the example in Theorem 5. We
explore the graph from this point of view to construct the product-like structure provided by
the local time. This observation is in the heart of the proof of the following theorem.

Theorem 6 (Binder, Hakobyan and L.)

Let B(t) be a 1-dimension Brownian motion, then the graph of B is minimal a.s., i.e., the
conformal dimension of ΓB is 3

2 a.s..

Wen-Bo Li (BICMR, Peking Unviersity) 1
Fields Institute Seminar joint with Ilia Binder and Hrant Hakobyan
18 / 28



19/28

Structures on the graph of B(t)

We define
µ (A) ∶= ∫

∞

−∞
la(A ∩ Za)da.

There exists C > 0 such that

µ (B(x, r) ∩ Γ(B)) ≤ C ⋅ r
3
2−ϵ.

for any ϵ > 0.

Wen-Bo Li (BICMR, Peking Unviersity) 1
Fields Institute Seminar joint with Ilia Binder and Hrant Hakobyan
19 / 28



20/28

Structures on the graph of B(t)

We construct a Cantor set E in the following way:
Pick subset of Γ(B) that lies between two adjacent hitting times of Z0,Z1/2 and another
subset that lies between two adjacent hitting times of Z1/2,Z1.
These two elements are the first generation of E.
Suppose a nth-generation element is given, then we pick two subsets that lies between
two adjacent hitting times of two adjacent dyadic levels, receptively.
All these 2n+1 elements forms the (n + 1)th-generation of E.
Finally, E = ⋂∞n=1⋃

2n
m=1 En,m.

We collect all the Cantor sets constructed by the above method and denote them by E.

Figure: A standard linear Brownian motion and the collection of En,m
j for 3 generations.
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Proof of Theorem 6

Proof.

There exists a measure µ s.t. µ(B(x, r) ∩ Γ(B)) ≲ r
3
2−ϵ for any ϵ > 0.

For any E ∈ E,dimC E ≥ 1 by Theorem 3.
Let λE be the project measure from y-axis to E thus it satisfies λE(B(x, r) ∩E) ≥ C ⋅ r for
some C naturally.

It follows from Theorem 2 that the only thing left is to prove that Mod1(E) > 0.

Figure: A standard linear Brownian motion and the collection of En,m
j for 3 generations.
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Proof of Theorem 6

Proof.
We will show that Mod1(E) > 0.
Let ρ be admissible for E. We replace ρ by an alternative admissible ϱ with smaller mass.
Let ϱ1 be a function on E1 such that the integral of ρ1 on every 1th-generation element
that achieves the minimal among all the 1th-generations of the same level.
Similarly, define ϱn iteratively in the same way to cover all the nth-generation.
Finally, we define ϱ ∶= lim infn!∞ ϱn.

Figure: Constructing ϱn.
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Proof of Theorem 6

For any E ∈ E,
∫E

ϱdλE ≥ ∫F
ρλF ≥ 1.

Thus ϱ is admissible for E.
∫X ϱdµ ≤ ∫X ρdµ where X is the space that E covers.
It is sufficient to prove that ∫X ϱdµ > 0.
Recall that µ(B(x, r)) = ∫ 1

0 la(B(x, r) ∩ Za)da.

∫X
ϱdµ ≥ (∫E

ϱdλE) inf
a∈[0,1]

La(ZacapX) ≥ inf
a∈[0,1]

La(Za ∩X) > δ.

for some δ > 0.

Figure: A minimal graph with 3 generations.
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Further developments

What is the conformal dimension for other stochastic objects?

Planar Brownian motion? We guess it is minimal a.s..

Higher dimensional Brownian motion? We guess it is not minimal a.s..
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Further developments

What is the conformal dimension for other stochastic objects?

Another guess is that the SLEκ curve is minimal almost surely for any κ ∈ (0,8).

The studies of the intersection of the SLE trace with R or semi-circles show that the SLE
trace has a product-like structure.

We claim that the SLEκ trace is minimal almost surely for κ > 4, i.e., the conformal
dimension of the SLEκ curve, κ > 4, is 1 + κ

8 almost surely.
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Further developments

Interesting ideas from geometric group theory and complex dynamics?

Cannon Conjecture: Let G be a Gromov hyperbolic group whose boundary at infinity ∂∞G is
homeomorphic to S2. Then ∂∞G is quasisymmetrically equivalent to S2.

Thurston Characterization Theorem: A Thurston map f ∶ S2 ! S2 with hyperbolic orbifold is
topological conjugate to a rational map if and only if it has no Thurston obstruction.

Question: Is the Brownian sphere S quasisymmetric to S2?
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Further developments

Interesting ideas from geometric group theory and complex dynamics?

Kapovich-Kleiner Conjecture: Let G be a Gromov hyperbolic group whose boundary at
infinity ∂∞G is homeomorphic to a Sierpiński carpet. Then ∂∞G is quasisymmetrically
equivalent to a round carpet in Ĉ.

A dynamical Theorem[Bonk,L.,Li]: Suppose f ∶ S2 ! S2 is an expanding Thurston map
without periodic critical points, and C ⊆ S2 is an f-invariant Jordan curve with post(f) ⊆ C.
Let F be a subsystem of f with respect to C and Ω be its tile maximal invariant set. If Ω is
homeomorphic to the standard Sierpiński carpet, then the following conditions are equivalent:

1 There exists a postcritically-finite rational map g ∶ Ĉ ! Ĉ with no periodic critical points
and a g-invariant set Θ ⊂ Ĉ such that f∣Ω is topologically conjugate to g∣Θ.

2 The set Ω is quasisymmetrically equivalent to a round carpet in Ĉ.
3 There is no Thurston obstruction for F.

Question: How is a corresponding Brownian carpet? Is the CLEκ carpet quasisymmetrically
equivalent to a round carpet?

Wen-Bo Li (BICMR, Peking Unviersity) 1
Fields Institute Seminar joint with Ilia Binder and Hrant Hakobyan
27 / 28



27/28

Further developments

Interesting ideas from geometric group theory and complex dynamics?

Kapovich-Kleiner Conjecture: Let G be a Gromov hyperbolic group whose boundary at
infinity ∂∞G is homeomorphic to a Sierpiński carpet. Then ∂∞G is quasisymmetrically
equivalent to a round carpet in Ĉ.
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Thank you!
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