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KPZ and SHE

Kardar–Parisi–Zhang (KPZ)

∂th = 1
2∂xxh + 1

2(∂xh)2 + η

Stochastic Heat Equation (SHE)

∂tZ = 1
2∂xxZ + η Z

Feynman–Kac:
Z(T, x) =

EBM

[
e
∫ T

0 ds η(T−s,X(s))Z(0,X(T))
]

directed
polymer
in a random 
environment

eh(t,x) = Z(t, x)
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Plan for this talk

Z(0, ·) = δ0 for most of the talk

spacetime 
limit shape
of KPZ

n-point, 
upper-tail
LDP for KPZ

n-point 
moments 
of SHE

attractive 
Brownian 
Particles (PBs)
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SHE moments ⇔ LDP of KPZ equation

E
[(

Z(T, 0)e
T
24
)m]

= E
[
em(h(T,0)+ T

24 )
]
≈ e

T
24m

3
, m ∈ Z>0

◦ Proven by [Chen 15] by Feynman–Kac (for flat-like initial
condition).

◦ Proven in [Corwin–Ghosal 20] by formulas.

[Das-T 21]

E
[(

Z(T, 0)e
T
24
)p]

= E
[
e p(h(T,0)+ T

24 )
]
= e

T
24 p3

, p ∈ R>0

which gives the upper tail LDP

P
[
h(T, 0) + T

24 ≈ r
]
≈ e−T 4

√
2

3 r3/2
, r ∈ R>0
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SHE moments ⇔ attractive BPs

By Feynman–Kac,

E
[
Z(T, y1) · · · Z(T, ym)

]
= EBM

[
e
∫ T

0 ds
∑

i<j δ0(Xi−Xj)
m∏

i=1
Z(0,Xi(T))

]
By Tanaka + Girsanov,

EBM

[
e
∫ T

0 ds
∑

i<j δ0(Xi−Xj)
( · )]

= e
T
24 (m

3−m)

EaBP

[
e
∑

i,j
1
2 |Xi(0)−Xj(0)|( · )e−∑

i,j
1
2 |Xi(T)−Xj(T)|

]
dXi(s) =

m∑
j=1

1
2

sgn(Xj − Xi)ds + dBi(s)

BMs weighted 
by localtimes

aBPs = 
BMs with 
pairwise,
attractive drift 
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Another way to get the attractive BPs

Define Q(t, y1, . . . , ym) := E
[
Z(t, y1) · · · Z(t, ym)

]
. By Itô,

∂tQ =
(1

2

m∑
i=1

∂2
yi +

∑
i<j

δ0(yi − yj)
)

︸ ︷︷ ︸
:=−H

Q

The Hamiltonian H has the ground state

ψ(y1, . . . , ym) = exp
(
− 1

2
∑
i<j

|yi − yj|
)

Performing the ground-state transformation gives

1
ψ

(
− H

)
ψ =

m3 − m
24

+
∑
i ̸=j

1
2

sgn(xj − xi)∂xi +
1
2

m∑
i=1

∂2
xi︸ ︷︷ ︸

:=L, generator of attractive BPs
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Multi-point moments

The goal of this talk is to
1. get

E
[ n∏
c=1

(
Z(T,Txc)e

T
24
)mc

]
= E

[
e
∑n

c=1 mc(h(T,Txc)+ T
24 )

]
≈ eT LSHE (⃗x,m⃗),

for x⃗ = (x1, . . . , xn) ∈ Rn, m⃗ ∈ (Z>0)
n and an explicit

LSHE(⃗x, m⃗), and
2. then use the moments to get the LDP and limit shape (caveat

to be explained).
[Lin 23]: Doing Step 1 by formulas.
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High powers

We’ll actually consider powers that grow to +∞ with T → ∞:

E
[ n∏
c=1

(
Z(T, 0)e

T
24
)mcN

]
= E

[
e
∑n

c=1 mN(h(T,xc)+ T
24 )

]
≈ eTN3 LSHE (⃗x,m⃗),

for x⃗ ∈ Rn, m⃗ ∈ ( 1
NR>0)

n, and N → ∞ at arbitrary rate relative to
T → ∞.
Why doing this?

E
[(

Z(T, 0)e
T
24
)m]

= E
[
em(h(T,0)+ T

24 )
]
≈ e

T
24m

3
, m ∈ Z>0

◦ 1
NZ>0 → R>0 which gives the full upper-tail LDP.

◦ But doing this changes the scale of deviations:

P
[
h(T,NTxc) + T

24 ≈ TN2rc, c = 1, . . . , n
]
≈ exp

(
− TN3 IKPZ(⃗x, r⃗)

)
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E
[ n∏
c=1

(
Z(T, 0)e

T
24
)mcN

]
= E

[
e
∑n

c=1 mN(h(T,xc)+ T
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E
[(

Z(T, 0)e
T
24
)Nm]

= E
[
eNm(h(T,0)+ T

24 )
]
≈ e

TN3
24 m3

, m ∈ 1
NZ>0
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)
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LDP for the attractive BPs

µN(s) :=
1
N

Nm∑
i=1

δXN
i (s)

, µN ∈ C
(
[0, 1], mP(R)

)
Take any T = TN with N2T = N2TN → ∞.

Theorem (T 23)

As N → ∞, the empirical measure µN satisfies an LDP on
C ([0, 1],mP(R)) with speed N3T and an explicit rate function I.

Remark

• Under the diffusive scaling, N → ∞ and N2T fixed,
[Dembo–Shkolnikov–Varadhan–Zeitouni 16] proved the LDP for a
general class of rank-based diffusions.

• The behavior under N2T → ∞ (considered here) is very different
from that under the diffusion scaling (considered in [DSVZ 12]).
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Back to moment Lyapunov exponents

Corollary

Under Z(0, ·) = δ0, E
[ n∏
c=1

Z(T,NTxc)Nmc

]
≈ eN3T · LSHE(m⃗)

LSHE(m⃗) = LSHE(m1, . . . ,mn)

:=
m3

24
+

n∑
c,c′=1

1
2
mcmc′ |xc − xc′ | − I∗

I∗ := inf
{
I(µ) : µ ∈ C ([0, 1],mP(R)), µ(0) =

n∑
c=1

mcδxc , µ(1) = mδ0

}
Remark. The initial condition should actually be: Z(0, ·) = 1[−α,α], with N → ∞
first and α → 0 later. A separate argument in [Lin–T 23] shows that this initial
condition approximates the true delta initial condition.

Theorem (T 23)

The infimum has a unique minimizer µ = ξ, the optimal deviation, which we
describe next.

Li-Cheng Tsai LDP of KPZ via δ Bose



Back to moment Lyapunov exponents

Corollary

Under Z(0, ·) = δ0, E
[ n∏
c=1

Z(T,NTxc)Nmc

]
≈ eN3T · LSHE(m⃗)

LSHE(m⃗) = LSHE(m1, . . . ,mn)

:=
m3

24
+

n∑
c,c′=1

1
2
mcmc′ |xc − xc′ | − I∗

I∗ := inf
{
I(µ) : µ ∈ C ([0, 1],mP(R)), µ(0) =

n∑
c=1

mcδxc , µ(1) = mδ0

}

Theorem (T 23)

The infimum has a unique minimizer µ = ξ, the optimal deviation, which
we describe next.

Li-Cheng Tsai LDP of KPZ via δ Bose



Optimal deviation

dXN
i =

1
N

Nm∑
j=1

1
2

sgn(XN
j − XN

i ) ds+
1√
N2T

dBi(s)

Inertia clusters, ζ1, . . . , ζc

• ζc has mass mc.
• Start with velocity
(. . .− 1

2mc−1 +
1
2mc+1 + . . .).

• Merge according to
conservation of momentum.

Branches, b: c, c′ ∈ b if and only if ζc(1) = ζc′(1)

Optimal clusters ξ1, . . . , ξn and optimal deviation ξ

• ξc(s) :=

ζc(s) + (−ζb(1)) s, c ∈ b

ξ(s) =
∑n

c=1 mcδξc(s)
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So far and what’s next

spacetime 
limit shape
of KPZ

n-point, 
upper-tail
LDP for KPZ

n-point 
moments 
of SHE

attractive 
Brownian 
Particles (PBs)

done next
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Moments of SHE → LDP for KPZ: Legendre transform

n-point, upper-tail rate function

IKPZ(⃗r) = IKPZ(r1, . . . , rn) :=
∫
R dx (1

2(∂xf⋆,⃗r)2 − 1
2(∂xp)2)

Gibbs line ensembles [Corwin–Hammond 14, 16] and
[Ganguly–Hegde 22].

Theorem (T 23)

Let Rconc := {⃗r : f⋆,⃗r ≥ p, f⋆,⃗r is concave}. The functions

LSHE(m⃗) : [0,∞)n → [0,∞) IKPZ(⃗r) : Rconc → [0,∞)

are strictly convex and the Legendre transform of each other.
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n-point, upper-tail LDP for the KPZ equation

hN(t, x) := 1
N2T

(
h(Tt,NTx)− log

√
T
)

EN,δ (⃗r) := {|hN(1, xc)− rc| ≤ δ, c = 1, . . . , n}

Corollary (T 23 & Lin–T 23)

Under delta initial condition Z(0, ·) = δ0, for any r⃗ ∈ R◦
conc,

P
[
EN,δ (⃗r)

]
≈ e−N3T· IKPZ (⃗r)

N → ∞ and N2T = N2TN → ∞ first; δ → 0 later.
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Related results

First, when n = 1 and x1 = 0, we recover IKPZ(r) = 4
√

2
3 r3/2.

One point, upper-tail LDPs
• Hyperbolic scaling regime

P
[ 1

T h(Tt, 0) ≈ − 1
24 + r

]
≈ e−T 4

√
2

3 r3/2
, T → ∞, r > 0

◦ Predicted in [Le Doussal–Majumdar–Schehr 16]; proven in
[Das–T 21].

• Other scaling regimes and/or other initial conditions
◦ Physics: Asida, Hartman, Janas, Kolokolov, Korshunov, Katzav,

Krajenbrink, Le Doussal, Majumdar, Livne, Meerson, Prolhac,
Rosso, Sasorov, Schmidt, Smith, Vilenkin, . . .

◦ Math rigorous: Corwin, Das, Gaudreau Lamarre, Ghosal, Lin,
Tsai, . . .

n-point upper tails and terminal-time limit shape

• [Ganguly–Hegde 22]
◦ Detailed and optimal n-point bounds that hold for all t > t0.
◦ When specialized onto the hyperbolic scaling regime: the

n-point LDP and the terminal-time limit shape f⋆,r.
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So far and what’s next

spacetime 
limit shape
of KPZ

n-point, 
upper-tail
LDP for KPZ

n-point 
moments 
of SHE

attractive 
Brownian 
Particles (PBs)

done

ne
xt

done
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Spacetime limit shape

Theorem (Lin–T 23)

Under Z(0, ·) = δ0, for any r⃗ ∈ R◦
conc and R <∞,

P
[
∥hN − h⋆∥L ∞([ 1

R ,1]×[−R,R]) <
1
R

∣∣∣ EN,δ (⃗r)
]
−→ 1

N → ∞ and N2T = N2TN → ∞ first; δ → 0 later.
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Limit shape

Hydrodynamic limit (without conditioning)
• [Janjigian–Rassoul-Agha–Seppäläinen 22] The hydrodynamic

limit h0 is the entropy solution of ∂th0 = 1
2(∂xh0)

2.
• [Amir–Corwin–Quastel 11] Here h0(t, x) = p(t, x) := −x2/(2t).

Limit shape (with conditioning)
• h⋆(t, x) also solves ∂th⋆ =

1
2(∂xh⋆)

2, but is a non-entropy solution.

• How to describe h⋆?
h⋆(1 − s, x) is the entropy solution of the backward equation
−∂sh⋆ =

1
2(∂xh⋆)

2.
Consistent with [Jensen 00] [Varadhan 04]

Li-Cheng Tsai LDP of KPZ via δ Bose



Limit shape

Limit shape (with conditioning)
• h⋆(t, x) also solves ∂th⋆ =

1
2(∂xh⋆)

2, but is a non-entropy solution.

• How to describe h⋆?
h⋆(1 − s, x) is the entropy solution of the backward equation
−∂sh⋆ =

1
2(∂xh⋆)

2.
Consistent with [Jensen 00] [Varadhan 04]

Li-Cheng Tsai LDP of KPZ via δ Bose



Mechanism of the deviations

eh(T,NTx) = Z(T,NTx) = EBM

[
e
∫ T

0 ds η(T−s,X(s))δ0(X(T))
]

Consider n = 1 and x1 = 0.
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Noise corridors = optimal clusters in aBPs

Proposition (T 23)

(Noise corridors in KPZ) = (optimal clusters in attractive BPs)
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Elements of the proof

Given EN,δ (⃗r), we want to argue hN ≈ h⋆.
• Use a tree structure to show that hN(t, x) ≈ h⋆(t, x) at any point

(t, x) on the noise corridors / shocks.

• Once hN ≈ h⋆ holds along the noise corridors / shocks, the rest
can be obtained by analyze the increments of hN along
characteristics.
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Food for thought?

time

space

Thank you for the attention and thanks to the organizers!
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