Large deviations of the KPZ equation via the delta Bose gas

KPZ meets KPZ

Li-Cheng Tsai

University of Utah

KPZ and SHE

Kardar-Parisi-Zhang (KPZ)

$$
\partial_{t} h=\frac{1}{2} \partial_{x x} h+\frac{1}{2}\left(\partial_{x} h\right)^{2}+\eta
$$

Stochastic Heat Equation (SHE)

$$
\partial_{t} Z=\frac{1}{2} \partial_{x x} Z+\eta Z
$$

Feynman-Kac:

$$
Z(T, x)=
$$

$$
\mathbb{E}_{\mathrm{BM}}\left[e^{\int_{0}^{T} \mathrm{~d} s \eta(T-s, X(s))} Z(0, X(T))\right]
$$

$$
e^{h(t, x)}=Z(t, x)
$$

Plan for this talk

$Z(0, \cdot)=\delta_{0}$ for most of the talk

SHE moments \Leftrightarrow LDP of KPZ equation

$$
\mathbf{E}\left[\left(Z(T, 0) e^{\frac{T}{24}}\right)^{\mathfrak{m}}\right]=\mathbf{E}\left[e^{\mathfrak{m}\left(h(T, 0)+\frac{T}{24}\right)}\right] \approx e^{\frac{T}{24} \mathfrak{m}^{3}}, \quad \mathfrak{m} \in \mathbb{Z}_{>0}
$$

- Proven by [Chen 15] by Feynman-Kac (for flat-like initial condition).
- Proven in [Corwin-Ghosal 20] by formulas.
[Das-T 21]

$$
\mathbf{E}\left[\left(Z(T, 0) e^{\frac{T}{2^{4}}}\right)^{p}\right]=\mathbf{E}\left[e^{p\left(h(T, 0)+\frac{T}{24}\right)}\right]=e^{\frac{T}{24} p^{3}}, \quad p \in \mathbb{R}_{>0}
$$

which gives the upper tail LDP

$$
\mathbf{P}\left[h(T, 0)+\frac{T}{24} \approx \mathbf{r}\right] \approx e^{-T \frac{4 \sqrt{2}}{3} \mathbf{r}^{3 / 2}}, \quad \mathbf{r} \in \mathbb{R}_{>0}
$$

SHE moments \Leftrightarrow attractive BPs

By Feynman-Kac,

$$
\begin{aligned}
& \mathbf{E}\left[Z\left(T, y_{1}\right) \cdots Z\left(T, y_{m}\right)\right] \\
& =\mathbb{E}_{\mathrm{BM}}\left[e^{\int_{0}^{T} \mathrm{~d} s \sum_{i<j} \delta_{0}\left(X_{i}-X_{j}\right)} \prod_{i=1}^{m} Z\left(0, X_{i}(T)\right)\right]
\end{aligned}
$$

By Tanaka + Girsanov,

BMs weighted

$\mathbb{E}_{\mathrm{BM}}\left[e^{\int_{0}^{T} \mathrm{~d} s \sum_{i<j} \delta_{0}\left(X_{i}-X_{j}\right)}(\cdot)\right]$
$=e^{\frac{T}{24}\left(m^{3}-m\right)}$
$\mathbb{E}_{\mathrm{aBP}}\left[e^{\sum_{i, j} \frac{1}{2}\left|X_{i}(0)-X_{j}(0)\right|}(\cdot) e^{-\sum_{i, j} \frac{1}{2}\left|X_{i}(T)-X_{j}(T)\right|}\right]$

$$
\mathrm{d} X_{i}(s)=\sum_{j=1}^{m} \frac{1}{2} \operatorname{sgn}\left(X_{j}-X_{i}\right) \mathrm{d} s+\mathrm{d} B_{i}(s)
$$

$\mathrm{aBPs}=$
BMs with

Another way to get the attractive BPs

Define $Q\left(t, y_{1}, \ldots, y_{m}\right):=\mathbf{E}\left[Z\left(t, y_{1}\right) \cdots Z\left(t, y_{m}\right)\right]$. By Itô,

$$
\partial_{t} Q=\underbrace{\left(\frac{1}{2} \sum_{i=1}^{m} \partial_{y_{i}}^{2}+\sum_{i<j} \delta_{0}\left(y_{i}-y_{j}\right)\right)}_{:=-H} Q
$$

The Hamiltonian H has the ground state

$$
\psi\left(y_{1}, \ldots, y_{m}\right)=\exp \left(-\frac{1}{2} \sum_{i<j}\left|y_{i}-y_{j}\right|\right)
$$

Performing the ground-state transformation gives

$$
\frac{1}{\psi}(-H) \psi=\frac{m^{3}-m}{24}+\underbrace{\sum_{i \neq j} \frac{1}{2} \operatorname{sgn}\left(x_{j}-x_{i}\right) \partial_{x_{i}}+\frac{1}{2} \sum_{i=1}^{m} \partial_{x_{i}}^{2}}_{:=L, \text { generator of attractive BPs }}
$$

Multi-point moments

The goal of this talk is to

1. get

$$
\mathbf{E}\left[\prod_{\mathfrak{c}=1}^{n}\left(Z\left(T, T \mathbf{x}_{\mathfrak{c}}\right) e^{\frac{T}{24}}\right)^{\mathfrak{m}_{\mathfrak{c}}}\right]=\mathbf{E}\left[e^{\sum_{\mathfrak{c}=1}^{n} \mathfrak{m}_{\mathfrak{c}}\left(h\left(T, T \mathbf{x}_{\mathrm{c}}\right)+\frac{T}{24}\right)}\right] \approx e^{T L_{\mathrm{SHE}}(\overrightarrow{\mathbf{x}}, \overrightarrow{\mathrm{~m}})}
$$

for $\overrightarrow{\mathbf{x}}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \in \mathbb{R}^{n}, \overrightarrow{\mathfrak{m}} \in\left(\mathbb{Z}_{>0}\right)^{n}$ and an explicit $L_{\text {SHE }}(\overrightarrow{\mathbf{x}}, \overrightarrow{\mathfrak{m}})$, and
2. then use the moments to get the LDP and limit shape (caveat to be explained).
[Lin 23]: Doing Step 1 by formulas.

High powers

We'll actually consider powers that grow to $+\infty$ with $T \rightarrow \infty$:

$$
\mathbf{E}\left[\prod_{\mathfrak{c}=1}^{n}\left(Z(T, 0) e^{\frac{T}{24}}\right)^{\mathfrak{m}_{c} N}\right]=\mathbf{E}\left[e^{\sum_{\mathfrak{c}=1}^{n} \mathfrak{m} N\left(h\left(T, \mathbf{x}_{\mathrm{c}}\right)+\frac{T}{24}\right)}\right] \approx e^{T N^{3} L_{\mathrm{SHE}}(\overrightarrow{\mathbf{x}}, \overrightarrow{\mathfrak{m}})}
$$

for $\overrightarrow{\mathbf{x}} \in \mathbb{R}^{n}, \overrightarrow{\mathfrak{m}} \in\left(\frac{1}{N} \mathbb{R}_{>0}\right)^{n}$, and $N \rightarrow \infty$ at arbitrary rate relative to $T \rightarrow \infty$.

Why doing this?

$$
\mathbf{E}\left[\left(Z(T, 0) e^{\frac{T}{24}}\right)^{\mathfrak{m}}\right]=\mathbf{E}\left[e^{\mathfrak{m}\left(h(T, 0)+\frac{T}{24}\right)}\right] \approx e^{\frac{T}{24} \mathfrak{m}^{3}}, \quad \mathfrak{m} \in \mathbb{Z}_{>0}
$$

High powers

We'll actually consider powers that grow to $+\infty$ with $T \rightarrow \infty$:

$$
\mathbf{E}\left[\prod_{\mathfrak{c}=1}^{n}\left(Z(T, 0) e^{\frac{T}{24}}\right)^{\mathfrak{m}_{c} N}\right]=\mathbf{E}\left[e^{\sum_{\mathfrak{c}=1}^{n} \mathfrak{m} N\left(h\left(T, \mathbf{x}_{\mathfrak{c}}\right)+\frac{T}{24}\right)}\right] \approx e^{T N^{3} L_{\mathrm{SHE}}(\overrightarrow{\mathbf{x}}, \overrightarrow{\mathfrak{m}})}
$$

for $\overrightarrow{\mathbf{x}} \in \mathbb{R}^{n}, \overrightarrow{\mathfrak{m}} \in\left(\frac{1}{N} \mathbb{R}_{>0}\right)^{n}$, and $N \rightarrow \infty$ at arbitrary rate relative to $T \rightarrow \infty$.

Why doing this?

$$
\mathbf{E}\left[\left(Z(T, 0) e^{\frac{T}{24}}\right)^{N \mathfrak{m}}\right]=\mathbf{E}\left[e^{N \mathfrak{m}\left(h(T, 0)+\frac{T}{24}\right)}\right] \approx e^{\frac{T N^{3}}{24} \mathfrak{m}^{3}}, \quad \mathfrak{m} \in \frac{1}{N} \mathbb{Z}_{>0}
$$

- $\frac{1}{N} \mathbb{Z}_{>0} \rightarrow \mathbb{R}_{>0}$ which gives the full upper-tail LDP.
- But doing this changes the scale of deviations:

$$
\mathbf{P}\left[h\left(T, N T \mathbf{x}_{\mathfrak{c}}\right)+\frac{T}{24} \approx T N^{2} \mathbf{r}_{\mathfrak{c}}, \mathfrak{c}=1, \ldots, n\right] \approx \exp \left(-T N^{3} I_{\mathrm{KPZ}}(\overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{r}})\right)
$$

LDP for the attractive BPs

$$
\boldsymbol{\mu}_{N}(s):=\frac{1}{N} \sum_{i=1}^{N \mathfrak{m}} \delta_{X_{i}^{N}(s)}, \quad \boldsymbol{\mu}_{N} \in \mathscr{C}([0,1], \mathfrak{m} \mathscr{P}(\mathbb{R}))
$$

Take any $T=T_{N}$ with $N^{2} T=N^{2} T_{N} \rightarrow \infty$.
Theorem (T 23)
As $N \rightarrow \infty$, the empirical measure μ_{N} satisfies an LDP on $\mathscr{C}([0,1], \mathfrak{m} \mathscr{P}(\mathbb{R}))$ with speed $N^{3} T$ and an explicit rate function \mathbb{I}.

Remark

- Under the diffusive scaling, $N \rightarrow \infty$ and $N^{2} T$ fixed, [Dembo-Shkolnikov-Varadhan-Zeitouni 16] proved the LDP for a general class of rank-based diffusions.
- The behavior under $N^{2} T \rightarrow \infty$ (considered here) is very different from that under the diffusion scaling (considered in [DSVZ 12]).

Back to moment Lyapunov exponents

Corollary

Under $Z(0, \cdot)=\delta_{0}, \quad \mathbf{E}\left[\prod_{\mathfrak{c}=1}^{n} Z\left(T, N T \mathbf{x}_{\mathbf{c}}\right)^{N \mathfrak{m}_{c}}\right] \approx e^{N^{3} T \cdot L_{\text {SHE }}(\overrightarrow{\mathfrak{m}})}$

$$
\mathbb{I}_{*}:=\inf \left\{\mathbb{I}(\mu): \mu \in \mathscr{C}([0,1], \mathfrak{m} \mathscr{P}(\mathbb{R})), \mu(0)=\sum_{\mathfrak{c}=1}^{n} \mathfrak{m}_{\mathfrak{c}} \delta_{\mathbf{x}_{\mathfrak{c}}}, \mu(1)=\mathfrak{m} \delta_{0}\right\}
$$

Remark. The initial condition should actually be: $Z(0, \cdot)=\mathbf{1}_{[-\alpha, \alpha]}$, with $N \rightarrow \infty$ first and $\alpha \rightarrow 0$ later. A separate argument in [Lin-T 23] shows that this initial condition approximates the true delta initial condition.

Back to moment Lyapunov exponents

Corollary

Under $Z(0, \cdot)=\delta_{0}, \quad \mathbf{E}\left[\prod_{\boldsymbol{c}=1}^{n} Z\left(T, N T \mathbf{x}_{\mathbf{c}}\right)^{N \mathfrak{m}_{\boldsymbol{c}}}\right] \approx e^{N^{3} T \cdot L_{\text {SHE }}(\overrightarrow{\mathbf{m}})}$

$$
\mathbb{I}_{*}:=\inf \left\{\mathbb{I}(\mu): \mu \in \mathscr{C}([0,1], \mathfrak{m} \mathscr{P}(\mathbb{R})), \mu(0)=\sum_{\mathfrak{c}=1}^{n} \mathfrak{m}_{\mathfrak{c}} \delta_{\mathbf{x}_{\mathfrak{c}}}, \mu(1)=\mathfrak{m} \delta_{0}\right\}
$$

Theorem (T 23)

The infimum has a unique minimizer $\mu=\xi$, the optimal deviation, which we describe next.

Optimal deviation

Optimal clusters $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{n}$ and optimal deviation $\boldsymbol{\xi}$

- $\boldsymbol{\xi}_{\mathfrak{c}}(s):=$

$$
\boldsymbol{\xi}(s)=\sum_{\mathfrak{c}=1}^{n} \mathfrak{m}_{\mathfrak{c}} \delta_{\boldsymbol{\xi}_{\mathfrak{c}}(s)}
$$

Optimal deviation

$$
\mathrm{d} X_{i}^{N}=\frac{1}{N} \sum_{j=1}^{N \mathrm{~m}} \frac{1}{2} \operatorname{sgn}\left(X_{j}^{N}-X_{i}^{N}\right) \mathrm{d} s+\frac{1}{\sqrt{N^{2} T}} \mathrm{~d} B_{i}(s)
$$

Inertia clusters, $\zeta_{1}, \ldots, \boldsymbol{\zeta}_{\mathrm{c}}$

- $\zeta_{\mathfrak{c}}$ has mass $\mathfrak{m}_{\mathfrak{c}}$.

Optimal clusters $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{n}$ and optimal deviation $\boldsymbol{\xi}$

- $\boldsymbol{\xi}_{\mathrm{c}}(s):=$

$$
\boldsymbol{\xi}(s)=\sum_{\mathfrak{c}=1}^{n} \mathfrak{m}_{\mathfrak{c}} \delta_{\boldsymbol{\xi}_{\mathfrak{c}}(s)}
$$

Optimal deviation

$$
\mathrm{d} X_{i}^{N}=\frac{1}{N} \sum_{j=1}^{N \mathrm{~m}} \frac{1}{2} \operatorname{sgn}\left(X_{j}^{N}-X_{i}^{N}\right) \mathrm{d} s+\frac{1}{\sqrt{N^{2} T}} \mathrm{~d} B_{i}(s)
$$

Inertia clusters, $\boldsymbol{\zeta}_{1}, \ldots, \boldsymbol{\zeta}_{\mathrm{c}}$

- ζ_{c} has mass \mathfrak{m}_{c}.
- Start with velocity

$$
\left(\ldots-\frac{1}{2} \mathfrak{m}_{\mathfrak{c}-1}+\frac{1}{2} \mathfrak{m}_{\mathfrak{c}+1}+\ldots\right)
$$

Optimal clusters $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{n}$ and optimal deviation $\boldsymbol{\xi}$

- $\boldsymbol{\xi}_{\mathrm{c}}(s):=$

$$
\boldsymbol{\xi}(s)=\sum_{\mathfrak{c}=1}^{n} \mathfrak{m}_{\mathfrak{c}} \delta_{\boldsymbol{\xi}_{\mathfrak{c}}(s)}
$$

Optimal deviation

$$
\mathrm{d} X_{i}^{N}=\frac{1}{N} \sum_{j=1}^{N \mathrm{~m}} \frac{1}{2} \operatorname{sgn}\left(X_{j}^{N}-X_{i}^{N}\right) \mathrm{d} s+\frac{1}{\sqrt{N^{2} T}} \mathrm{~d} B_{i}(s)
$$

Inertia clusters, $\boldsymbol{\zeta}_{1}, \ldots, \boldsymbol{\zeta}_{\mathrm{c}}$

- ζ_{c} has mass \mathfrak{m}_{c}.
- Start with velocity

$$
\left(\ldots-\frac{1}{2} \mathfrak{m}_{\mathfrak{c}-1}+\frac{1}{2} \mathfrak{m}_{\mathfrak{c}+1}+\ldots\right)
$$

- Merge according to conservation of momentum.

Optimal clusters $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{n}$ and optimal deviation $\boldsymbol{\xi}$

- $\boldsymbol{\xi}_{\mathfrak{c}}(s):=$

$$
\boldsymbol{\xi}(s)=\sum_{\mathfrak{c}=1}^{n} \mathfrak{m}_{\mathfrak{c}} \delta_{\boldsymbol{\xi}_{\mathfrak{c}}(s)}
$$

Optimal deviation

$$
\mathrm{d} X_{i}^{N}=\frac{1}{N} \sum_{j=1}^{N \mathrm{~m}} \frac{1}{2} \operatorname{sgn}\left(X_{j}^{N}-X_{i}^{N}\right) \mathrm{d} s+\frac{1}{\sqrt{N^{2} T}} \mathrm{~d} B_{i}(s)
$$

Inertia clusters, $\boldsymbol{\zeta}_{1}, \ldots, \boldsymbol{\zeta}_{\mathrm{c}}$

- ζ_{c} has mass \mathfrak{m}_{c}.
- Start with velocity

$$
\left(\ldots-\frac{1}{2} \mathfrak{m}_{\mathfrak{c}-1}+\frac{1}{2} \mathfrak{m}_{\mathfrak{c}+1}+\ldots\right)
$$

- Merge according to conservation of momentum.

Branches, $\mathfrak{b}: \mathfrak{c}, \mathfrak{c}^{\prime} \in \mathfrak{b}$ if and only if $\zeta_{\mathfrak{c}}(1)=\boldsymbol{\zeta}_{\mathfrak{c}^{\prime}}(1)$
Optimal clusters $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{n}$ and optimal deviation $\boldsymbol{\xi}$

- $\boldsymbol{\xi}_{\mathfrak{c}}(s):=$

$$
\boldsymbol{\xi}(s)=\sum_{\mathfrak{c}=1}^{n} \mathfrak{m}_{\mathfrak{c}} \delta_{\boldsymbol{\xi}_{\mathfrak{c}}(s)}
$$

Optimal deviation

$$
\mathrm{d} X_{i}^{N}=\frac{1}{N} \sum_{j=1}^{N \mathrm{~m}} \frac{1}{2} \operatorname{sgn}\left(X_{j}^{N}-X_{i}^{N}\right) \mathrm{d} s+\frac{1}{\sqrt{N^{2} T}} \mathrm{~d} B_{i}(s)
$$

Inertia clusters, $\boldsymbol{\zeta}_{1}, \ldots, \boldsymbol{\zeta}_{\mathrm{c}}$

- ζ_{c} has mass \mathfrak{m}_{c}.
- Start with velocity

$$
\left(\ldots-\frac{1}{2} \mathfrak{m}_{\mathfrak{c}-1}+\frac{1}{2} \mathfrak{m}_{\mathfrak{c}+1}+\ldots\right)
$$

- Merge according to conservation of momentum.

Branches, $\mathfrak{b}: \mathfrak{c}, \mathfrak{c}^{\prime} \in \mathfrak{b}$ if and only if $\zeta_{\mathfrak{c}}(1)=\boldsymbol{\zeta}_{\mathfrak{c}^{\prime}}(1)$
Optimal clusters $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{n}$ and optimal deviation $\boldsymbol{\xi}$

- $\boldsymbol{\xi}_{\mathfrak{c}}(s):=\boldsymbol{\zeta}_{\mathfrak{c}}(s)+\left(-\boldsymbol{\zeta}_{\mathfrak{b}}(1)\right) s, \quad \mathfrak{c} \in \mathfrak{b}$

$$
\boldsymbol{\xi}(s)=\sum_{\mathfrak{c}=1}^{n} \mathfrak{m}_{\mathfrak{c}} \delta_{\boldsymbol{\xi}_{\mathfrak{c}}(s)}
$$

So far and what's next

attractive Brownian Particles (PBs)

done \downarrow

n-point moments of SHE

Moments of SHE \rightarrow LDP for KPZ: Legendre transform

n-point, upper-tail rate function

$$
I_{\mathrm{KPZ}}(\overrightarrow{\mathbf{r}})=I_{\mathrm{KPZ}}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right):=\int_{\mathbb{R}} \mathrm{d} x\left(\frac{1}{2}\left(\partial_{x} \mathrm{f}_{\star, \overrightarrow{\mathbf{r}}}\right)^{2}-\frac{1}{2}\left(\partial_{x} \mathrm{p}\right)^{2}\right)
$$

Gibbs line ensembles [Corwin-Hammond 14, 16] and [Ganguly-Hegde 22].

Moments of SHE \rightarrow LDP for KPZ: Legendre transform

n-point, upper-tail rate function
$I_{\mathrm{KPZ}}(\overrightarrow{\mathbf{r}})=I_{\mathrm{KPZ}}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right):=\int_{\mathbb{R}} \mathrm{d} x\left(\frac{1}{2}\left(\partial_{x} \mathrm{f}_{\star, \overrightarrow{\mathbf{r}}}\right)^{2}-\frac{1}{2}\left(\partial_{x} \mathrm{p}\right)^{2}\right)$

Theorem (T 23)

Let $\mathscr{R}_{\text {conc }}:=\left\{\overrightarrow{\mathbf{r}}: \mathrm{f}_{\star, \overrightarrow{\mathbf{r}}} \geq \mathrm{p}, \mathrm{f}_{\star, \overrightarrow{\mathbf{r}}}\right.$ is concave $\}$. The functions

$$
L_{\mathrm{SHE}}(\overrightarrow{\mathfrak{m}}):[0, \infty)^{n} \rightarrow[0, \infty) \quad I_{\mathrm{KPZ}}(\overrightarrow{\mathbf{r}}): \mathscr{R}_{\text {conc }} \rightarrow[0, \infty)
$$

are strictly convex and the Legendre transform of each other.

n-point, upper-tail LDP for the KPZ equation

$$
\begin{aligned}
h_{N}(t, x) & :=\frac{1}{N^{2} T}(h(T t, N T x)-\log \sqrt{T}) \\
\mathcal{E}_{N, \delta}(\overrightarrow{\mathbf{r}}) & :=\left\{\left|h_{N}\left(1, \mathbf{x}_{\mathfrak{c}}\right)-\mathbf{r}_{\mathfrak{c}}\right| \leq \delta, \mathfrak{c}=1, \ldots, n\right\}
\end{aligned}
$$

Corollary (T 23 \& Lin-T 23)

Under delta initial condition $Z(0, \cdot)=\delta_{0}$, for any $\overrightarrow{\mathbf{r}} \in \mathscr{R}_{\text {conc }}^{\circ}$,

$$
\mathbf{P}\left[\mathcal{E}_{N, \delta}(\overrightarrow{\mathbf{r}})\right] \approx e^{-N^{3} T \cdot I_{\mathrm{KPZ}}(\overrightarrow{\mathbf{r}})}
$$

$N \rightarrow \infty$ and $N^{2} T=N^{2} T_{N} \rightarrow \infty$ first; $\delta \rightarrow 0$ later.

Related results

First, when $n=1$ and $\mathbf{x}_{1}=0$, we recover $I_{\mathrm{KPZ}}(\mathbf{r})=\frac{4 \sqrt{2}}{3} \mathbf{r}^{3 / 2}$.
One point, upper-tail LDPs

- Hyperbolic scaling regime

$$
\mathbf{P}\left[\frac{1}{T} h(T t, 0) \approx-\frac{1}{24}+\mathbf{r}\right] \approx e^{-T \frac{4 \sqrt{2}}{3} \mathbf{r}^{3 / 2}}, \quad T \rightarrow \infty, \mathbf{r}>0
$$

- Predicted in [Le Doussal-Majumdar-Schehr 16]; proven in [Das-T 21].
- Other scaling regimes and/or other initial conditions
- Physics: Asida, Hartman, Janas, Kolokolov, Korshunov, Katzav, Krajenbrink, Le Doussal, Majumdar, Livne, Meerson, Prolhac, Rosso, Sasorov, Schmidt, Smith, Vilenkin, ...
- Math rigorous: Corwin, Das, Gaudreau Lamarre, Ghosal, Lin, Tsai, ...
n-point upper tails and terminal-time limit shape

Related results

n-point upper tails and terminal-time limit shape

- [Ganguly-Hegde 22]
- Detailed and optimal n-point bounds that hold for all $t>t_{0}$.
- When specialized onto the hyperbolic scaling regime: the n-point LDP and the terminal-time limit shape $f_{\star, \mathbf{r}}$.

So far and what's next

attractive Brownian Particles (PBs)

done \downarrow
 n-point moments of SHE

Spacetime limit shape

Theorem (Lin-T 23)

Under $Z(0, \cdot)=\delta_{0}$, for any $\overrightarrow{\mathbf{r}} \in \mathscr{R}_{\text {conc }}^{\circ}$ and $R<\infty$,

$$
\mathbf{P}\left[\left.\left\|h_{N}-\mathrm{h}_{\star}\right\|_{\mathscr{L}^{\infty}\left(\left[\frac{1}{R}, 1\right] \times[-R, R]\right)}<\frac{1}{R} \right\rvert\, \mathcal{E}_{N, \delta}(\overrightarrow{\mathbf{r}})\right] \longrightarrow 1
$$

$N \rightarrow \infty$ and $N^{2} T=N^{2} T_{N} \rightarrow \infty$ first; $\delta \rightarrow 0$ later.

$$
\mathbf{f}_{\star, \overrightarrow{\mathbf{r}}}(x)=\mathrm{h}_{\star}(1, x)
$$

Limit shape

Hydrodynamic limit (without conditioning)

- [Janjigian-Rassoul-Agha-Seppäläinen 22] The hydrodynamic limit h_{0} is the entropy solution of $\partial_{t} \mathrm{~h}_{0}=\frac{1}{2}\left(\partial_{x} \mathrm{~h}_{0}\right)^{2}$.
- [Amir-Corwin-Quastel 11] Here $\mathrm{h}_{0}(t, x)=\mathrm{p}(t, x):=-x^{2} /(2 t)$.

Limit shape (with conditioning)

- $\mathrm{h}_{\star}(t, x)$ also solves $\partial_{t} \mathrm{~h}_{\star}=\frac{1}{2}\left(\partial_{x} \mathrm{~h}_{\star}\right)^{2}$, but is a non-entropy solution.

Limit shape

Limit shape (with conditioning)

- $\mathrm{h}_{\star}(t, x)$ also solves $\partial_{t} \mathrm{~h}_{\star}=\frac{1}{2}\left(\partial_{x} \mathrm{~h}_{\star}\right)^{2}$, but is a non-entropy solution.

- How to describe h_{\star} ?
$h_{\star}(1-s, x)$ is the entropy solution of the backward equation $-\partial_{s} \mathrm{~h}_{\star}=\frac{1}{2}\left(\partial_{x} \mathrm{~h}_{\star}\right)^{2}$.
Consistent with [Jensen 00] [Varadhan 04]

Mechanism of the deviations

$$
e^{h(T, N T x)}=Z(T, N T x)=\mathbb{E}_{\mathrm{BM}}\left[e^{\int_{0}^{T} \mathrm{~d} s \eta(T-s, X(s))} \delta_{0}(X(T))\right]
$$

Consider $n=1$ and $\mathbf{x}_{1}=0$.

Noise corridors = optimal clusters in aBPs

Proposition (T23)

(Noise corridors in KPZ) $=$ (optimal clusters in attractive BPs)

Elements of the proof

Given $\mathcal{E}_{N, \delta}(\overrightarrow{\mathbf{r}})$, we want to argue $h_{N} \approx \mathrm{~h}_{\star}$.

- Use a tree structure to show that $h_{N}(t, x) \approx \mathrm{h}_{\star}(t, x)$ at any point (t, x) on the noise corridors / shocks.

Elements of the proof

Given $\mathcal{E}_{N, \delta}(\overrightarrow{\mathbf{r}})$, we want to argue $h_{N} \approx \mathrm{~h}_{\star}$.

- Use a tree structure to show that $h_{N}(t, x) \approx \mathrm{h}_{\star}(t, x)$ at any point (t, x) on the noise corridors / shocks.
- Once $h_{N} \approx \mathrm{~h}_{\star}$ holds along the noise corridors / shocks, the rest can be obtained by analyze the increments of h_{N} along characteristics.

Food for thought?

Food for thought?

