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KPZ and SHE

Kardar-Parisi—-Zhang (KPZ)
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Plan for this talk

Z(0, «) = & for most of the talk

(x?nrd)
attractive (X2,T2) o (xy 1y)
Brownian n-point, (xi,r)s" Ce(xs,15)
Particles (PBs) upper-tail L

\ LDP for KPZ / @
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of SHE I~ spacetime
limit shape
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SHE moments < LDP of KPZ equation

E[(Z(T,0)e%)"] = E[e""(T0F3)] x en™, m e Zs

o Proven by [Chen 15] by Feynman—Kac (for flat-like initial
condition).

o Proven in [Corwin—-Ghosal 20] by formulas.

[Das-T 21]
E[(Z(T, O)eﬁ)p] _ E[ep(h(T,O)Jr%)} — e3P peRy
which gives the upper tail LDP

42 .3/2
o T Y

P[A(T,0) + 5 = 1] & , TERy
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SHE moments < attractive BPs

By Feynman—Kac,
E[Z(T,y1)- - Z(T,yn)]

m
Tds S 8(Xi—X;
:Ew[efo $ 2icj S0(X X’)HZ((),Xi(T))] BMs weighted
i=1 by localtimes

By Tanaka + Girsanov,

Y1 Y2 Y3
Egn |: fo ds 37 ; d0(Xi _X./')( . )]
= e%(ms_m) _
E,. [ezw OO (), iy %|x,-<T>—x,-<T>|] aBPs =
! BMs with
| t -pairwise,
Z n(X; — X;)ds + dB;(s) T “attractive drift
oy ==
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Another way to get the attractive BPs

Define Q(t,y1,...,ym) := E[Z(t,y1) -+ - Z(t,y,)]. By It6,

90 = (% Zl 0%+ oy — )’j)> Q
i= i<j

:=—H

The Hamiltonian H has the ground state
1
(V155 Ym) = exp ( — 5> - yﬂ)
i<j
Performing the ground-state transformation gives

3 _ 1 1 m
(=) =+ et 00+ 3708
i#j i=1

:=L, generator of attractive BPs
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Multi-point moments

The goal of this talk is to
1. get

n
E[H (Z(T, Txc)e%)mc} _ E[eZ'c’:lmc(h(T,Txc)—l—%)] ~ o Lsne (%)
c=1
forX = (x1,...,%,) € R",m € (Z-0)" and an explicit
Lo (X, 1), and
2. then use the moments to get the LDP and limit shape (caveat
to be explained).

[Lin 23]: Doing Step 1 by formulas.
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High powers

We’'ll actually consider powers that grow to 4+co with T — oo:
n
E[H ( (T O) 14) Ni| = E[eZ::l mN(h(Tvxt)""%)] ~ eTN3 LSHE(§7€1)’
=1

forx e R",m € (%,RN))", and N — oo at arbitrary rate relative to
T — oo.
Why doing this?

E[(Z(T.0)ex)"] = B["M T+ 20)] s e5™, e Zsg
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High powers

We’'ll actually consider powers that grow to 4+co with T — oo:
n

E[H (Z(T, O)e%)ch} _ E[ezgzlm/v(h(r,xc)+§)] ~ oIV Loue (%)
=1

for X € R, mi € (xR0)", and N — oo at arbitrary rate relative to
T — oo.
Why doing this?

E[(Z(T, O)e%)Nm] = E[eNm(h(T’OH% | = e%ma, m € +Zsg

o +Zso — Ro which gives the full upper-tail LDP.
o But doing this changes the scale of deviations:

P[h(T,NTx.) + L ~ TN*re,c = 1,...,n] ~ exp (— TN’ L, (X, T) )
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LDP for the attractive BPs

Nm
1
By (s) o= N ZéXIN(s)’ py € €([0,1], mZ(R))
i=1

Take any T = Ty with N°T = N*Ty — oc.

Theorem (T 23)

As N — oo, the empirical measure py satisfies an LDP on
([0, 1],mZ(R)) with speed N3T and an explicit rate function 1.

e Under the diffusive scaling, N — oo and N2T fixed,
[Dembo—-Shkolnikov—Varadhan—Zeitouni 16] proved the LDP for a
general class of rank-based diffusions.

e The behavior under N>T — oo (considered here) is very different
from that under the diffusion scaling (considered in [DSVZ 12]).
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Back to moment Lyapunov exponents

Corollary

n
Under Z(0, ) = &, E[HZ(T,NTXC)N‘“‘} ~ T Lo ()
e=ll

my my mg ! my m LSHE(n_i) LSHE(m17 . ,m,,)
m= _ m’ I
mi+...+my T ‘__4+ mmc/|xc—xc| *
L ¢, /= 1
I, = inf{]l( ) e (0,1, mP(R Zm 5o (1) mgo}

Remark. The initial condition should actually be: Z(0, +) = 1;_4 o], With N — o0
firstand e — O later. A separate argument in [Lin—T 23] shows that this initial
condition approximates the true delta initial condition.
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Back to moment Lyapunov exponents

Corollary

n
Under Z(0, ) = &, E[HZ(T,NTXC)ch] s T L)
c=1

my my mg A my mg LSHE(Tﬁ) LSHE(ml, e 7mn)
m? 1
'm“i+---+m5 T = _4 Z Emcm6’|xc_xc’| — I
]I* = inf {H(M) CH € %([0’ 1]’m'@(R>)aM(O) = m:(Sme(U = méO}

c=1

Theorem (T 23)

The infimum has a unique minimizer 1. = &, the optimal deviation, which
we describe next.
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Optimal deviation

Optimal clusters &, . . ., £, and optimal deviation £

o £.(s) = £(s) =D oy mtéﬁc(s)
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Optimal deviation

Nm
1 1 1
N _ - N _ yN (e

Xy’ = N ; zsgn(Xj X; )ds—i—\/WdB,(‘s)
Inertia clusters, ¢, ..., (.
e (. has mass m,.
Optimal clusters &, . . ., , and optimal deviation £
o &(s) = £(s) = Doc1 Mee ()
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Optimal deviation

Nm

1 |
dxV = =Y —sen(XY —XM)ds+————dB(s

Njg,zg(, ) ds+— =B ()

Inertia clusters, ¢, ..., (.
e (. has mass m,.

e Start with velocity
(. o= %mc_l + %mc“ + .. )

(=im; —1m,

Ly + Tms)

Optimal clusters &, . . ., , and optimal deviation £

o £.(s):= £(s) =D oy mtéﬁc(s)
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Optimal deviation

Nm
1 1 1
N _ - N _ yN (e
axy = NJEII zsgn(Xj X; )ds—i—\/WdB,(s)
Inertia clusters, ¢, ..., (.

e (. has mass m,.
e Start with velocity
(. o= %mc_l + %mc“ + .. )

e Merge according to
conservation of momentum.

Optimal clusters &, . . ., , and optimal deviation £

o £.(s) = £(s) =D oy mtéﬁc(s)
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Optimal deviation

Nm
1 1 1
N __ - N _ yN e
axy = N JEZI zsgn(Xj X;') ds+ 7\/Wd81(3)
Inertia clusters, ¢, ..., (.

e (. has mass m,.
e Start with velocity
(. o= %mc_l + %mc“ + .. )

e Merge according to
conservation of momentum.

oy (1) Casy (1)

Cn
Branches, b: ¢,¢’ € bifand only if ¢.(1) = ¢ (1)
Optimal clusters &, . . ., , and optimal deviation £

o £.(s) = £(s) =D oy mt&EC(S)
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Optimal deviation

Nm
1 1 1
N _ il N _ yN
Xy’ = NJEII zsgn(X] X; )ds—i—\/WdB,(s)
Xy X2 X3 X4 X5
Inertia clusters, ¢, ..., (.

e (. has mass m,.
e Start with velocity
(. o= %mc_l + %mc“ + .. )

e Merge according to
conservation of momentum.

Crragy (1) Crasy (1)
Branches, b: ¢, ¢’ € bifand only if ¢.(1) = ¢ (1)
Optimal clusters &, . . ., , and optimal deviation £

o £(s) = Ce(s) + (=Cp(1))s, ccb £(s) = 2otz mede ()
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So far and what’s next

; (X37I'3)
attractive (X2,72) o * 7 (xy 1)
Erov_vrlnan o5 n-point, (lerl)ﬁ,,/ r \{\,\‘(xs.,rs)

articles (PBs) upper-tail L \

\ . |LDP for KPZ v

done ek
n-point ¢
moments
of SHE spacetime

limit shape
of KPZ
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Moments of SHE — LDP for KPZ: Legendre transform

n-point, upper-tail rate function

Ipz (F) = Ipr (11, - . : fR % *r 2 - %(axp)z)

Gibbs line ensembles [Corwin—-Hammond 14, 16] and
[Ganguly—Hegde 22].
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Moments of SHE — LDP for KPZ: Legendre transform

n-point, upper-tail rate function

IKPZ(F) = IKPZ(r17 .- : fR % 2 - %(axp)z)

Theorem (T 23)

Let Zconc := {T : f, 7 > p, f, z is concave}. The functions
Lee(m) : [0,00)" = [0,00)  Ikpz(F) : Zeone — [0, 00)

are strictly convex and the Legendre transform of each other.
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n-point, upper-tail LDP for the KPZ equation

hy(t,x) := b (h(Tt, NTx) — log V'T)
gN,(S(F) = {|hN(17Xt) - rC| S 57 C= 17 v 7n}

Corollary (T 23 & Lin—T 23)

Under delta initial condition Z(0, «) = 0o, for any ¥ € Zg, e,

PlEw ()] ~ T @

N — oo and N2T = N3Ty — oo first: 6 — 0 later.

Li-Cheng Tsai LDP of KPZ via 6 Bose



Related results

First, when n = 1 and x; = 0, we recover Iy, (r) = 4\761.3/2_

One point, upper-tail LDPs
e Hyperbolic scaling regime

42 .3/2
T

P[Lh(T1,0) = — 5 + 1] ~ , T —o0,r>0

o Predicted in [Le Doussal-Majumdar—Schehr 16]; proven in
[Das-T 21].
e Other scaling regimes and/or other initial conditions
o Physics: Asida, Hartman, Janas, Kolokolov, Korshunov, Katzav,
Krajenbrink, Le Doussal, Majumdar, Livhe, Meerson, Prolhac,
Rosso, Sasorov, Schmidt, Smith, Vilenkin, ...
o Math rigorous: Corwin, Das, Gaudreau Lamarre, Ghosal, Lin,
Tsai, ...
n-point upper tails and terminal-time limit shape
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Related results

n-point upper tails and terminal-time limit shape
e [Ganguly—Hegde 22]
o Detailed and optimal n-point bounds that hold for all > 1.
o When specialized onto the hyperbolic scaling regime: the
n-point LDP and the terminal-time limit shape f, .
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So far and what’s next

(X37I'3)
attractive (X2,72) o * 7 (xy 1)
Erov_vrlnan o8 n-point, (lerl)/ T *«e\\.\\\(x5,r5)
articles (PBs) upper-tail L |
LDP for KPZ / T
done done i

n-point & ¢
moments | ¢

of SHE spacetime
limit shape
of KPZ
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Spacetime limit shape

Theorem (Lin—T 23)

Under Z(0, «) = 0, for any ¥ € %g,,. and R < oo,
P lx — Pl goe 14 ¢ < & | Eno(E)] — 1
N — oo and N*T = N*Ty — oo first: § — 0 later.

f*’f:(iL‘) = h*(]., ZIZ’)
/’/}7/—\ \
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Hydrodynamic limit (without conditioning)

e [Janjigian—Rassoul-Agha—Seppélainen 22] The hydrodynamic
limit h is the entropy solution of 9;hg = §(d:ho)>.

e [Amir—Corwin—Quastel 11] Here hy(z,x) = p(t,x) := —x*/(2t).

At

Limit shape (with conditioning)
e h,(z,x) also solves 0;h, = %(&ch*)z, but is a non-entropy solution.
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Limit shape (with conditioning)
e h,(t,x) also solves 8t e = 2, but is a non-entropy solution.

e How to describe h,?
h.(1 — s,x) is the entropy solution of the backward equation
—0sh, = %(@h*)z.
Consistent with [Jensen 00] [Varadhan 04]
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Mechanism of the deviations

MINTY) Z(T,NTx) = Egy [efOT ds n(T—s,X(S))5O(X(T))]

Considern = 1 and x; = 0.

(t,z) = (0,0)
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Noise corridors = optimal clusters in aBPs

Proposition (T 23)

(Noise corridors in KPZ) = (optimal clusters in attractive BPs)
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Elements of the proof

Given &y ;(r), we want to argue Ay ~ h,.

e Use a tree structure to show that Zy(z, x) ~ h,(¢,x) at any point
(t,x) on the noise corridors / shocks.

/
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Elements of the proof

Given &y ;(r), we want to argue Ay ~ h,.
e Use a tree structure to show that Zy(z, x) ~ h,(¢,x) at any point
(t,x) on the noise corridors / shocks.

e Once hy =~ h, holds along the noise corridors / shocks, the rest
can be obtained by analyze the increments of iy along

characteristics.
/ . | y
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e e




Food for thought?

/ \“’””“/ \

Thank you for the attention and thanks to the organ




