Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Grothendieck spaces: topology and applications

Franklin D. Tall

March 11, 2024 version

イロン イロン イヨン イヨン 三日

1/128

Background	Arhangel'skiĭ	lovino	Conclusion	Grothendieck	PFA C-Tight & Grothendieck
●	00000	0000000	0000	000000	

Grothendieck's Theorem (1952) asserts that countably compact subspaces of certain function spaces are actually compact. He also connected that topological condition to exchanging double limits.

Background	Arhangel'skiĭ	lovino	Conclusion	Grothendieck	PFA C-Tight & Grothendieck
●	00000	0000000	0000	000000	

Grothendieck's Theorem (1952) asserts that countably compact subspaces of certain function spaces are actually compact. He also connected that topological condition to exchanging double limits.

Many applications in functional analysis, recent applications in model theory (undefinability of pathological Banach spaces), and more recent applications (lovino) to machine learning.

Background	Arhangel'skiĭ	lovino	Conclusion	Grothendieck	PFA C-Tight & Grothendieck
●	00000	0000000	0000	000000	

Grothendieck's Theorem (1952) asserts that countably compact subspaces of certain function spaces are actually compact. He also connected that topological condition to exchanging double limits.

Many applications in functional analysis, recent applications in model theory (undefinability of pathological Banach spaces), and more recent applications (lovino) to machine learning.

Arhangel'skiĭ showed that the conclusion of Grothendieck's Theorem held for a large class of spaces he called *Grothendieck spaces*.

Background	Arhangel'skiĭ	lovino	Conclusion	Grothendieck	PFA C-Tight & Grothendieck
●	00000	0000000	0000	000000	

Grothendieck's Theorem (1952) asserts that countably compact subspaces of certain function spaces are actually compact. He also connected that topological condition to exchanging double limits.

Many applications in functional analysis, recent applications in model theory (undefinability of pathological Banach spaces), and more recent applications (lovino) to machine learning.

Arhangel'skiĭ showed that the conclusion of Grothendieck's Theorem held for a large class of spaces he called *Grothendieck spaces*.

We showed that the boundaries of that class are set-theoretically indeterminate, answering several of Arhangel'skii's questions.

Background	Arhangel'skiĭ	lovino	Conclusion	Grothendieck	PFA C-Tight & Grothendieck
●	00000	0000000	0000	000000	

Many applications in functional analysis, recent applications in model theory (undefinability of pathological Banach spaces), and more recent applications (lovino) to machine learning.

Arhangel'skiĭ showed that the conclusion of Grothendieck's Theorem held for a large class of spaces he called *Grothendieck spaces*.

We showed that the boundaries of that class are set-theoretically indeterminate, answering several of Arhangel'skii's questions.

With Clovis Hamel, we used Arhangel'skii's work to greatly generalize the results of Jose Iovino and his collaborators on the undefinability in compact logics of pathological Banach spaces (related to a problem of W. T. Gowers).

Background	Arhangel'skiĭ	lovino	Conclusion	Grothendieck	PFA C-Tight & Grothendieck
●	00000	0000000	0000	000000	

Arhangel'skiĭ showed that the conclusion of Grothendieck's Theorem held for a large class of spaces he called *Grothendieck spaces*.

We showed that the boundaries of that class are set-theoretically indeterminate, answering several of Arhangel'skii's questions.

With Clovis Hamel, we used Arhangel'skii's work to greatly generalize the results of Jose Iovino and his collaborators on the undefinability in compact logics of pathological Banach spaces (related to a problem of W. T. Gowers).

More recently, Hamel and I have shown that these results hold for a much larger class of logics, highlighting the importance of conditions that assert the exchangeability of certain double limits. See our arXiv preprint: *On the undefinability of pathological Banach spaces.*

Arhangel'skiĭ ●0000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Definition

Let X be a topological space. We will assume X is completely regular unless specified otherwise. Then $C_p(X)$ is the collection of real-valued continuous functions on X, given the topology of pointwise convergence, which means the topology $C_p(X)$ inherits from \mathbb{R}^X .

Arhangel'skiĭ ●0000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Definition

Let X be a topological space. We will assume X is completely regular unless specified otherwise. Then $C_p(X)$ is the collection of real-valued continuous functions on X, given the topology of pointwise convergence, which means the topology $C_p(X)$ inherits from \mathbb{R}^X .

 C_p -theory studies the interrelations between the topology of X and the topology of $C_p(X)$. Good references are Arhangel'skii's Topological Function Spaces and V. V. Tkachuk's 4-volume A C_p -theory Problem Book.

Arhangel'skiĭ ●0000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Definition

Let X be a topological space. We will assume X is completely regular unless specified otherwise. Then $C_p(X)$ is the collection of real-valued continuous functions on X, given the topology of pointwise convergence, which means the topology $C_p(X)$ inherits from \mathbb{R}^X .

 C_p -theory studies the interrelations between the topology of X and the topology of $C_p(X)$. Good references are Arhangel'skii's *Topological Function Spaces* and V. V. Tkachuk's 4-volume A C_p -theory Problem Book.

A typical theorem (recall that a space is countably tight if whenever $a \in \overline{A}$, there is a countable $B \subseteq A$ with $a \in \overline{B}$):

Arhangel'skiĭ ●0000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Definition

Let X be a topological space. We will assume X is completely regular unless specified otherwise. Then $C_p(X)$ is the collection of real-valued continuous functions on X, given the topology of pointwise convergence, which means the topology $C_p(X)$ inherits from \mathbb{R}^X .

A typical theorem (recall that a space is countably tight if whenever $a \in \overline{A}$, there is a countable $B \subseteq A$ with $a \in \overline{B}$):

Theorem (Arhangel'skiĭ-Pytkeev)

All finite powers of X are Lindelöf if and only if $C_p(X)$ is countably tight.

Arhangel'skiĭ ●0000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

C_p -Theory

Definition

Let X be a topological space. We will assume X is completely regular unless specified otherwise. Then $C_p(X)$ is the collection of real-valued continuous functions on X, given the topology of pointwise convergence, which means the topology $C_p(X)$ inherits from \mathbb{R}^X .

Theorem (Arhangel'skiĭ-Pytkeev)

All finite powers of X are Lindelöf if and only if $C_p(X)$ is countably tight.

Corollary

If X is compact, $C_p(X)$ is countably tight.

Arhangel'skiĭ 0●000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Grothendieck Spaces

Definition

A subspace Y of X is

countably compact in X if every infinite subset of Y has a limit point in X. We equivalently say Y is relatively countably compact.

relatively compact if \overline{Y} is compact.

A space X is a g-space if relatively countably compact \implies relatively compact.

Arhangel'skiĭ 0●000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Grothendieck Spaces

Definition

A subspace Y of X is

countably compact in X if every infinite subset of Y has a limit point in X. We equivalently say Y is relatively countably compact.

relatively compact if \overline{Y} is compact.

A space X is a *g*-space if relatively countably compact \implies relatively compact.

Definition

A space X is weakly Grothendieck if $C_p(X)$ is a g-space. A space X is Grothendieck if $C_p(X)$ is a hereditary g-space. (A hereditary g-space is also called angelic.)

Some of Arhangel'skii's work:

Definition

A space X is Fréchet-Urysohn iff for every subset $A \subseteq X$, every point $a \in \overline{A}$ is the limit of a sequence of points in A.

Some of Arhangel'skii's work:

Definition

A space X is Fréchet-Urysohn iff for every subset $A \subseteq X$, every point $a \in \overline{A}$ is the limit of a sequence of points in A.

Theorem

A g-space is a hereditary g-space iff every compact subspace of it is Fréchet-Urysohn.

Some of Arhangel'skii's work:

Definition

A space X is Fréchet-Urysohn iff for every subset $A \subseteq X$, every point $a \in \overline{A}$ is the limit of a sequence of points in A.

Theorem

A g-space is a hereditary g-space iff every compact subspace of it is Fréchet-Urysohn.

Theorem

The Grothendieck property is preserved by dense subspaces and continuous images.

Background	Arhangel'skiĭ	Conclusion	Grothendieck	PFA C-Tight & Grothendieck
	00000			

Some of Arhangel'skiĭ's work: Definition

A space X is Fréchet-Urysohn iff for every subset $A \subseteq X$, every point $a \in \overline{A}$ is the limit of a sequence of points in A.

Theorem

A g-space is a hereditary g-space iff every compact subspace of it is Fréchet-Urysohn.

Theorem

The Grothendieck property is preserved by dense subspaces and continuous images.

Theorem

Every countable union of countably compact spaces is Grothendieck.

Arhangel'skiĭ 000●0	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

A Lindelöf Σ -space is a continuous image of a perfect pre-image of a separable metrizable space. Equivalently, a member of the smallest class of spaces containing all compact spaces, all separable metrizable spaces, and that is closed under finite products, closed subspaces and continuous images.

Arhangel'skiĭ 000●0	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

A Lindelöf Σ -space is a continuous image of a perfect pre-image of a separable metrizable space. Equivalently, a member of the smallest class of spaces containing all compact spaces, all separable metrizable spaces, and that is closed under finite products, closed subspaces and continuous images.

Theorem

Every Lindelöf Σ -space is Grothendieck.

Arhangel'skiĭ 000●0	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

A space X is a k-space if for every subspace $Y \subseteq X$ we have: Y is closed \iff every intersection of Y with a compact subspace is closed.

Arhangel'skiĭ 000●0	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

A space X is a k-space if for every subspace $Y \subseteq X$ we have: Y is closed \iff every intersection of Y with a compact subspace is closed.

Theorem

Compact spaces, completely metrizable spaces (more generally, Čech-complete spaces) and first countable spaces are k-spaces.

Arhangel'skiĭ 000●0	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

A space X is a k-space if for every subspace $Y \subseteq X$ we have: Y is closed \iff every intersection of Y with a compact subspace is closed.

Theorem

Compact spaces, completely metrizable spaces (more generally, Čech-complete spaces) and first countable spaces are k-spaces.

Theorem

Every countably tight space is weakly Grothendieck. Every k-space is weakly Grothendieck.

Arhangel'skiĭ 0000●	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

 $MA_{\omega_1} \implies$ if finite powers of X are Lindelöf and X is countably tight, then X is Grothendieck.

Arhangel'skiĭ 0000●	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

 $MA_{\omega_1} \implies$ if finite powers of X are Lindelöf and X is countably tight, then X is Grothendieck.

Theorem (T)

$PFA \implies if X$ is Lindelöf and countably tight, then X is Grothendieck.

Arhangel'skiĭ 0000●	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

 $MA_{\omega_1} \implies$ if finite powers of X are Lindelöf and X is countably tight, then X is Grothendieck.

Theorem (T)

 $PFA \implies if X \text{ is Lindelöf and countably tight, then } X \text{ is Grothendieck.}$

Theorem (T)

 $(V = L) \implies$ there is a countably tight X with finite powers Lindelöf which is not Grothendieck.

Arhangel'skiĭ 0000●	lovino 0000000	Conclusion	Grothendieck	PFA C-Tight & Grothendieck

 $MA_{\omega_1} \implies$ if finite powers of X are Lindelöf and X is countably tight, then X is Grothendieck.

Theorem (T)

 $PFA \implies if X$ is Lindelöf and countably tight, then X is Grothendieck.

Theorem (T)

 $(V = L) \implies$ there is a countably tight X with finite powers Lindelöf which is not Grothendieck.

Theorem (T)

 $MA_{\omega_1} \implies$ Lindelöf first countable spaces are Grothendieck.

Theorem (T)

 $PFA \implies if X$ is Lindelöf and countably tight, then X is Grothendieck.

Theorem (T)

 $(V = L) \implies$ there is a countably tight X with finite powers Lindelöf which is not Grothendieck.

Theorem (T)

 $MA_{\omega_1} \implies$ Lindelöf first countable spaces are Grothendieck.

Problem

Is there a consistent example of a Lindelöf first countable space which is not Grothendieck?

Arhangel'skiĭ 0000●	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Theorem (T)

 $(V = L) \implies$ there is a countably tight X with finite powers Lindelöf which is not Grothendieck.

Theorem (T)

 $MA_{\omega_1} \implies$ Lindelöf first countable spaces are Grothendieck.

Problem

Is there a consistent example of a Lindelöf first countable space which is not Grothendieck?

Conjecture

 $CH \implies there is such an example.$

Theorem (T)

 $(V = L) \implies$ there is a countably tight X with finite powers Lindelöf which is not Grothendieck.

Theorem (T)

 $MA_{\omega_1} \implies$ Lindelöf first countable spaces are Grothendieck.

Problem

Is there a consistent example of a Lindelöf first countable space which is not Grothendieck?

Conjecture

 $CH \implies there is such an example.$

See my Top. Appl. paper: Countable tightness and the Grothendieck property in C_p -theory.

Double Limit Conditions

Definition

Let X be a topological space and $A \subseteq C_p(X, [0, 1])$. We write DLC(A, X) if: for every X-sequence $\{x_n\}_{n < \omega}$ and A-sequence $\{f_m\}_{m < \omega}$ the following double limits agree whenever they both exist: $\lim_{n \to \infty} \lim_{m \to \infty} f_m(x_n) = \lim_{m \to \infty} \lim_{n \to \infty} f_m(x_n)$.

Double Limit Conditions

Definition

Let X be a topological space and $A \subseteq C_p(X, [0, 1])$. We write DLC(A, X) if: for every X-sequence $\{x_n\}_{n < \omega}$ and A-sequence $\{f_m\}_{m < \omega}$ the following double limits agree whenever they both exist: $\lim_{n \to \infty} \lim_{m \to \infty} f_m(x_n) = \lim_{m \to \infty} \lim_{n \to \infty} f_m(x_n)$.

We write DLC(X) if DLC(A, X) holds for all $A \subseteq C_p(X, [0, 1])$. We say that X satisfies the double-limit condition if for each $A \subseteq C_p(X, [0, 1])$ we have: $DLC(A, X) \iff A$ is relatively countably compact.

Arhangel'skiĭ 00000	lovino o●ooooo	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Let X be compact and $A \subseteq C_p(X)$ pointwise bounded. Then A is relatively compact in $C_p(X)$ if and only if DLC(A, X) holds.

Arhangel'skiĭ 00000	lovino o●ooooo	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Let X be compact and $A \subseteq C_p(X)$ pointwise bounded. Then A is relatively compact in $C_p(X)$ if and only if DLC(A, X) holds.

(Note that if A is countably compact in $C_p(X)$ then it is pointwise bounded.)

Arhangel'skiĭ 00000	lovino o●ooooo	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Let X be compact and $A \subseteq C_p(X)$ pointwise bounded. Then A is relatively compact in $C_p(X)$ if and only if DLC(A, X) holds.

(Note that if A is countably compact in $C_p(X)$ then it is pointwise bounded.)

Definition

Let X be a topological space. Given an ultrafilter \mathcal{U} on a regular cardinal κ , and a κ -sequence $\{x_{\alpha}\}_{\alpha < \kappa}$ in X, we say that $\lim_{\alpha \to \mathcal{U}} x_{\alpha} = x$ if and only if for every open neighbourhood U of x we have $\{\alpha < \kappa : x_{\alpha} \in U\} \in \mathcal{U}$.

Background	Arhangel'skiĭ	lovino	Conclusion	Grothendieck	PFA C-Tight & Grothendieck
		000000			

Let X be compact and $A \subseteq C_p(X)$ pointwise bounded. Then A is relatively compact in $C_p(X)$ if and only if DLC(A, X) holds.

(Note that if A is countably compact in $C_p(X)$ then it is pointwise bounded.)

Definition

Let X be a topological space. Given an ultrafilter \mathcal{U} on a regular cardinal κ , and a κ -sequence $\{x_{\alpha}\}_{\alpha < \kappa}$ in X, we say that $\lim_{\alpha \to \mathcal{U}} x_{\alpha} = x$ if and only if for every open neighbourhood U of x we have $\{\alpha < \kappa : x_{\alpha} \in U\} \in \mathcal{U}$.

Theorem (lovino)

A space X is compact if and only if every ultralimit in X exists.
Arhangel'skiĭ 00000	lovino oooooo	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Definition

Let X be a topological space and $A \subseteq C_p(X, [0, 1])$. We write DULC(A, X) if: for every pair of sequences $\{x_n\}_{n < \omega} \subseteq X$ and $\{f_m\}_{m < \omega} \subseteq A$, and ultrafilters \mathcal{U} and \mathcal{V} on ω , the double limits below agree whenever they both exist:

$$\lim_{n\to\mathcal{U}}\lim_{m\to\mathcal{V}}f_m(x_n)=\lim_{m\to\mathcal{V}}\lim_{n\to\mathcal{U}}f_m(x_n).$$

Arhangel'skiĭ 00000	lovino oo●oooo	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Definition

Let X be a topological space and $A \subseteq C_p(X, [0, 1])$. We write DULC(A, X) if: for every pair of sequences $\{x_n\}_{n < \omega} \subseteq X$ and $\{f_m\}_{m < \omega} \subseteq A$, and ultrafilters \mathcal{U} and \mathcal{V} on ω , the double limits below agree whenever they both exist:

$$\lim_{n\to\mathcal{U}}\lim_{m\to\mathcal{V}}f_m(x_n)=\lim_{m\to\mathcal{V}}\lim_{n\to\mathcal{U}}f_m(x_n).$$

We write DULC(X) if for each $A \subseteq C_p(X, [0, 1])$ we have DULC(A, X). We say that X satisfies the double ultralimit condition if for each $A \subseteq C_p(X, [0, 1])$ we have: $DULC(A, X) \iff A$ is relatively countably compact.

Arhangel'skiĭ 00000	lovino 00●0000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Definition

Let X be a topological space and $A \subseteq C_p(X, [0, 1])$. We write DULC(A, X) if: for every pair of sequences $\{x_n\}_{n < \omega} \subseteq X$ and $\{f_m\}_{m < \omega} \subseteq A$, and ultrafilters \mathcal{U} and \mathcal{V} on ω , the double limits below agree whenever they both exist:

$$\lim_{n\to\mathcal{U}}\lim_{m\to\mathcal{V}}f_m(x_n)=\lim_{m\to\mathcal{V}}\lim_{n\to\mathcal{U}}f_m(x_n).$$

We write DULC(X) if for each $A \subseteq C_p(X, [0, 1])$ we have DULC(A, X). We say that X satisfies the double ultralimit condition if for each $A \subseteq C_p(X, [0, 1])$ we have: $DULC(A, X) \iff A$ is relatively countably compact.

Theorem

 $DLC(X) \implies DULC(X).$

Arhangel'skiĭ 00000	lovino 000●000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Exchangeability of limits is very useful in Analysis. In 1999, lovino noticed that such exchangeability (of *ultralimits*) was equivalent to model-theoretic *stability* in certain contexts.

Arhangel'skiĭ 00000	lovino 000●000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Exchangeability of limits is very useful in Analysis. In 1999, lovino noticed that such exchangeability (of *ultralimits*) was equivalent to model-theoretic *stability* in certain contexts.

Shelah had already shown that stability was equivalent to *definability*. This led lovino and colleagues to a solution of Gowers' problem on the undefinability in compact logics (i.e., satisfying the Compactness Theorem) of pathological Banach spaces (i.e., no copies of c_0 or ℓ^p).

Exchangeability of limits is very useful in Analysis. In 1999, lovino noticed that such exchangeability (of *ultralimits*) was equivalent to model-theoretic *stability* in certain contexts.

Shelah had already shown that stability was equivalent to *definability*. This led lovino and colleagues to a solution of Gowers' problem on the undefinability in compact logics (i.e., satisfying the Compactness Theorem) of pathological Banach spaces (i.e., no copies of c_0 or ℓ^p).

Definition

 c_0 is the Banach space of sequences of real numbers converging to 0. ℓ^p is the Banach space of sequences $\{x_n\}_{n<\omega}$ of real numbers such that $\sum_{n<\omega} |x_n|^p < \infty.$

Arhangel'skiĭ 00000	lovino oooo●oo	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Let's state four conditions for a topological space X and a subset $A \subseteq C_p(X, [0, 1])$.

Arhangel'skiĭ 00000	lovino oooo●oo	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Let's state four conditions for a topological space X and a subset $A \subseteq C_p(X, [0, 1])$.

(I) A is relatively compact in $C_p(X, [0, 1])$.

Arhangel'skiĭ 00000	lovino oooo●oo	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Let's state four conditions for a topological space X and a subset $A \subseteq C_p(X, [0, 1])$.

- (I) A is relatively compact in $C_p(X, [0, 1])$.
- (II) A is relatively countably compact in $C_p(X, [0, 1])$.

Arhangel'skiĭ 00000	lovino oooo●oo	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Let's state four conditions for a topological space X and a subset $A \subseteq C_p(X, [0, 1])$.

- (1) A is relatively compact in $C_p(X, [0, 1])$.
- (II) A is relatively countably compact in $C_p(X, [0, 1])$. (III) DLC(A, X).

Arhangel'skiĭ 00000	lovino oooo●oo	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

- Let's state four conditions for a topological space X and a subset $A \subseteq C_p(X, [0, 1])$.
 - (I) A is relatively compact in $C_p(X, [0, 1])$.
- (II) A is relatively countably compact in $C_p(X, [0, 1])$.
- (III) DLC(A, X).
- (\mathbf{IV}) DULC(A, X).

Arhangel'skiĭ 00000	lovino oooo●oo	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Let's state four conditions for a topological space X and a subset $A \subseteq C_p(X, [0, 1])$.

- (I) A is relatively compact in $C_p(X, [0, 1])$.
- (II) A is relatively countably compact in $C_p(X, [0, 1])$.
- (III) DLC(A, X).
- $(\mathsf{IV}) \ \mathrm{DULC}(A,X).$

Pták proved (I) \iff (III) for X compact, i.e., compact spaces satisfy the double-limit condition.

Summary

Let's state four conditions for a topological space X and a subset $A \subseteq C_p(X, [0, 1])$.

- (I) A is relatively compact in $C_p(X, [0, 1])$.
- (II) A is relatively countably compact in $C_p(X, [0, 1])$.
- (III) DLC(A, X).
- (\mathbf{IV}) DULC(A, X).

Pták proved (I) \iff (III) for X compact, i.e., compact spaces satisfy the double-limit condition.

We proved (I) \iff (IV) for X countably tight, i.e., countably tight spaces satisfy the double ultralimit condition.

Arhangel'skiĭ 00000	lovino oooo●oo	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Let's state four conditions for a topological space X and a subset $A \subseteq C_p(X, [0, 1])$.

- (I) A is relatively compact in $C_p(X, [0, 1])$.
- (II) A is relatively countably compact in $C_p(X, [0, 1])$.
- (III) DLC(A, X).
- (\mathbf{IV}) DULC(A, X).

Pták proved (I) \iff (III) for X compact, i.e., compact spaces satisfy the double-limit condition.

We proved (I) \iff (IV) for X countably tight, i.e., countably tight spaces satisfy the double ultralimit condition.

We trivially have (I) \iff (II) if X is weakly Grothendieck.

Arhangel'skiĭ 00000	lovino ooooooo	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

An immediate consequence of the ultralimit definitions:

Lemma

If X is weakly Grothendieck and satisfies the double ultralimit condition, then for every $A \subseteq C_p(X, [0, 1])$ we have $\text{DULC}(A, X) \implies A$ is relatively compact.

Arhangel'skiĭ 00000	lovino 00000●0	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck 000000000000

An immediate consequence of the ultralimit definitions:

Lemma

If X is weakly Grothendieck and satisfies the double ultralimit condition, then for every $A \subseteq C_p(X, [0, 1])$ we have $\text{DULC}(A, X) \implies A$ is relatively compact.

The \implies can be strengthened to \iff for countably tight spaces.

Theorem

Let X be countably tight. Then $A \subseteq C_p(X, [0, 1])$ is relatively compact $\iff \text{DULC}(A, X)$.

Some of our work

Hamel and I used Arhangel'skii's work on Grothendieck spaces to generalize lovino et al's work far beyond compactness.

Some of our work

Hamel and I used Arhangel'skiï's work on Grothendieck spaces to generalize lovino et al's work far beyond compactness.

Recently, building also on the work of functional analysts H. König and N. Kuhn, we have further explored exchangeability of double ultralimits and shown that the undefinability results hold for logics satisfying the common generalization "weakly Grothendieck plus the double ultralimit condition" of compactness and countable tightness.

Some of our work

Hamel and I used Arhangel'skii's work on Grothendieck spaces to generalize lovino et al's work far beyond compactness.

Recently, building also on the work of functional analysts H. König and N. Kuhn, we have further explored exchangeability of double ultralimits and shown that the undefinability results hold for logics satisfying the common generalization "weakly Grothendieck plus the double ultralimit condition" of compactness and countable tightness.

This greatly improves the undefinability results in our paper C_p -theory for model theorists, which appeared in lovino's book Beyond First-order Model Theory, II. This new paper, On the undefinability of pathological Banach spaces, is available on arXiv and will hopefully enable us to generalize the results of lovino et al on Deep Learning.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion ●000	Grothendieck 000000	PFA C-Tight & Grothendieck

Conclusion

In the many applications of double limit exchange, much weaker assumptions than compactness suffice. In particular, the following classes of spaces are all weakly Grothendieck and satisfy the double ultralimit condition: countably compact spaces, countably tight spaces, *k*-spaces, separable spaces. This observation enables us to extend lovino et al's undefinability results from compact logics to countably compact logics, which they claimed in their first preprint but later withdrew.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0●00	Grothendieck 000000	PFA C-Tight & Grothendieck

It is remarkable that there is a useful common generalization of compactness and countable tightness.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0●00	Grothendieck 000000	PFA C-Tight & Grothendieck

It is remarkable that there is a useful common generalization of compactness and countable tightness.

That compactness implies the Grothendieck property and the double-limit condition has been known since the 1950's, but the fact that countably tightness implies weak Grothendieck was only proved by Arhangel'skiĩ in the 1990's and that it implies the double ultralimit condition (and that that combination is useful) was only proved last spring.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion ○●○○	Grothendieck 000000	PFA C-Tight & Grothendieck

It is remarkable that there is a useful common generalization of compactness and countable tightness.

That compactness implies the Grothendieck property and the double-limit condition has been known since the 1950's, but the fact that countably tightness implies weak Grothendieck was only proved by Arhangel'skiĩ in the 1990's and that it implies the double ultralimit condition (and that that combination is useful) was only proved last spring.

We will therefore give the proof of our result. Arhangel'skii's proof can be found in his book. It is straightforward general topology.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 00●0	Grothendieck 000000	PFA C-Tight & Grothendieck

Let X be countably tight. A subset A of $C_p(X, [0, 1])$ is relatively compact in $C_p(X, [0, 1])$ if and only if DULC(A, X).

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 00●0	Grothendieck 000000	PFA C-Tight & Grothendieck

Let X be countably tight. A subset A of $C_p(X, [0, 1])$ is relatively compact in $C_p(X, [0, 1])$ if and only if DULC(A, X).

Proof. Let \overline{A} denote the closure of A in $[0, 1]^X$.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion	Grothendieck 000000	PFA C-Tight & Grothendieck

Let X be countably tight. A subset A of $C_p(X, [0, 1])$ is relatively compact in $C_p(X, [0, 1])$ if and only if DULC(A, X).

Proof. Let \overline{A} denote the closure of A in $[0,1]^X$. Suppose $\overline{A} \cap C_p(X)$ is not compact in $C_p(X)$. Then $\overline{A} \cap C_p(X)$ is closed but it is not countably compact in $C_p(X)$, since X is weakly Grothendieck.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 00●0	Grothendieck 000000	PFA C-Tight & Grothendieck

Let X be countably tight. A subset A of $C_p(X, [0, 1])$ is relatively compact in $C_p(X, [0, 1])$ if and only if DULC(A, X).

Proof. Suppose $\overline{A} \cap C_p(X)$ is not compact in $C_p(X)$. Then $\overline{A} \cap C_p(X)$ is closed but it is not countably compact in $C_p(X)$, since X is weakly Grothendieck.

Let $\{f_n\}_{n<\omega}$ be a subset of A with closure disjoint from $\overline{A} \cap C_p(X)$. Since \overline{A} is a compact subset of $[0,1]^X$, each ultralimit of the sequence $\{f_n\}_{n<\omega}$ exists, and is discontinuous. Take a nonprincipal ultrafilter \mathcal{U} over ω and let $\lim_{n\to\mathcal{U}} f_n = g$, where g is discontinuous by assumption.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 00●0	Grothendieck 000000	PFA C-Tight & Grothendieck

Let X be countably tight. A subset A of $C_p(X, [0, 1])$ is relatively compact in $C_p(X, [0, 1])$ if and only if DULC(A, X).

Proof. Suppose $\overline{A} \cap C_p(X)$ is not compact in $C_p(X)$.

Let $\{f_n\}_{n<\omega}$ be a subset of A with closure disjoint from $\overline{A} \cap C_p(X)$. Take a nonprincipal ultrafilter \mathcal{U} over ω and let $\lim_{n\to\mathcal{U}} f_n = g$, where g is discontinuous by assumption.

g is a real-valued function so there is some $g(y) \in \mathbb{R}$ and an open interval about it such that its inverse under g is not open, so the complement of that inverse is not closed.

	Arhangel'skiĭ 00000	lovino 0000000	Conclusion 00●0	Grothendieck 000000	PFA C-Tight & Grothendieck		
Theo	orem (HT)						
Let X be countably tight. A subset A of $C_{\rho}(X, [0, 1])$ is relatively							

compact in $C_p(X, [0, 1])$ it and only it DULC(A, X).

Proof. Suppose $\overline{A} \cap C_p(X)$ is not compact in $C_p(X)$.

Let $\{f_n\}_{n < \omega}$ be a subset of A with closure disjoint from $\overline{A} \cap C_p(X)$. Take a nonprincipal ultrafilter \mathcal{U} over ω and let $\lim_{n\to\mathcal{U}} f_n = g$, where g is discontinuous by assumption.

g is a real-valued function so there is some $g(y) \in \mathbb{R}$ and an open interval about it such that its inverse under g is not open, so the complement of that inverse is not closed.

Then there are $\varepsilon > 0$ and $y \in X$ such that $y \in \overline{Y}$, where

$$Y = X \setminus g^{-1}(g(y) - \varepsilon, g(y) + \varepsilon).$$

Theorem (HT)

Let X be countably tight. A subset A of $C_p(X, [0, 1])$ is relatively compact in $C_p(X, [0, 1])$ if and only if DULC(A, X).

Proof. Suppose $\overline{A} \cap C_p(X)$ is not compact in $C_p(X)$.

Let $\{f_n\}_{n<\omega}$ be a subset of A with closure disjoint from $\overline{A} \cap C_p(X)$. Take a nonprincipal ultrafilter \mathcal{U} over ω and let $\lim_{n\to\mathcal{U}} f_n = g$, where g is discontinuous by assumption.

g is a real-valued function so there is some $g(y) \in \mathbb{R}$ and an open interval about it such that its inverse under g is not open, so the complement of that inverse is not closed.

Then there are $\varepsilon > 0$ and $y \in X$ such that $y \in \overline{Y}$, where

$$Y = X \setminus g^{-1}(g(y) - \varepsilon, g(y) + \varepsilon).$$

Since $t(X) = \aleph_0$, there is some $Z \subseteq Y$ with $|Z| = \aleph_0$ and $y \in \overline{Z}$. Suppose $Z = \{x_m\}_{m < \omega}$ and for each open neighbourhood U of y, let $M_U := \{m < \omega : x_m \in U\}.$

Background 0	Arhangel'skiĭ 00000	lovino 0000000	Conclusion 00●0	Grothendieck 000000	PFA C-Tight & Grother 0000000000000	dieck
Theo	orem (HT)					
			1		1 1	

Let X be countably tight. A subset A of $C_p(X, [0, 1])$ is relatively compact in $C_p(X, [0, 1])$ if and only if DULC(A, X).

Proof. Suppose $\overline{A} \cap C_p(X)$ is not compact in $C_p(X)$.

Let $\{f_n\}_{n<\omega}$ be a subset of A with closure disjoint from $\overline{A} \cap C_p(X)$. Take a nonprincipal ultrafilter \mathcal{U} over ω and let $\lim_{n\to\mathcal{U}} f_n = g$, where g is discontinuous by assumption.

Then there are $\varepsilon > 0$ and $y \in X$ such that $y \in \overline{Y}$, where

$$Y = X \setminus g^{-1}(g(y) - \varepsilon, g(y) + \varepsilon).$$

Suppose $Z = \{x_m\}_{m < \omega}$ and for each open neighbourhood U of y, let $M_U := \{m < \omega : x_m \in U\}$. Clearly, the family of all M_U is centred (i.e., all finite subfamilies have non-empty intersections) and so it can be extended to an ultrafilter \mathcal{V} on ω so that

Background O	Arhangel'skiî 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	00000000000000000000000000000000000000	endieck
The	orem (HT)					
Let > comp	X be countably pact in $C_p(X, [$	v tight. A su [0,1]) if and	ubset A of C only if DUI	$\sum_{p(X, [0, 1])} is$ LC(A, X).	relatively	

Proof. Suppose $\overline{A} \cap C_p(X)$ is not compact in $C_p(X)$.

Let $\{f_n\}_{n<\omega}$ be a subset of A with closure disjoint from $\overline{A} \cap C_p(X)$. Take a nonprincipal ultrafilter \mathcal{U} over ω and let $\lim_{n\to\mathcal{U}} f_n = g$, where g is discontinuous by assumption.

Then there are $\varepsilon > 0$ and $y \in X$ such that $y \in \overline{Y}$, where

$$Y = X \setminus g^{-1}(g(y) - \varepsilon, g(y) + \varepsilon).$$

$$\lim_{n\to\mathcal{U}}\lim_{m\to\mathcal{V}}f_n(x_m)=g(y)$$

since each f_n is continuous.

Background 0	Arhangel'skiĭ 00000	lovino 0000000	Conclusion 00●0	Grothendieck 000000	PFA C-Tight & Grothendi	eck
Theo	orem (HT)					
let X	' he countably	tiont Asi	ubset A of C	(X [0 1]) is	relatively	

Let X be countably tight. A subset A of $C_p(X, [0, 1])$ is relatively compact in $C_p(X, [0, 1])$ if and only if DULC(A, X).

Proof. Suppose $\overline{A} \cap C_p(X)$ is not compact in $C_p(X)$.

Let $\{f_n\}_{n<\omega}$ be a subset of A with closure disjoint from $\overline{A} \cap C_p(X)$. Take a nonprincipal ultrafilter \mathcal{U} over ω and let $\lim_{n\to\mathcal{U}} f_n = g$, where g is discontinuous by assumption.

Then there are $\varepsilon > 0$ and $y \in X$ such that $y \in \overline{Y}$, where

$$Y = X \setminus g^{-1}(g(y) - \varepsilon, g(y) + \varepsilon).$$

 $\lim_{n\to\mathcal{U}}\lim_{m\to\mathcal{V}}f_n(x_m)=g(y)$

On the other hand, $\lim_{m\to\mathcal{V}}\lim_{n\to\mathcal{U}}f_n(x_m) = \lim_{m\to\mathcal{V}}g(x_m)$ exists by the compactness of [0, 1].

Background 0	Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck	
Theo	rem (HT)					

Let X be countably tight. A subset A of $C_p(X, [0, 1])$ is relatively compact in $C_p(X, [0, 1])$ if and only if DULC(A, X).

Proof. Suppose $\overline{A} \cap C_p(X)$ is not compact in $C_p(X)$.

Let $\{f_n\}_{n<\omega}$ be a subset of A with closure disjoint from $\overline{A} \cap C_p(X)$. Take a nonprincipal ultrafilter \mathcal{U} over ω and let $\lim_{n\to\mathcal{U}} f_n = g$, where g is discontinuous by assumption.

Then there are $\varepsilon > 0$ and $y \in X$ such that $y \in \overline{Y}$, where

$$Y = X \setminus g^{-1}(g(y) - \varepsilon, g(y) + \varepsilon).$$

 $\lim_{n\to\mathcal{U}}\lim_{m\to\mathcal{V}}f_n(x_m)=g(y)$

However, by the choice of each x_m , we have $|g(y) - g(x_m)| \ge \varepsilon$ and so the ultralimits exist but are different, a contradiction. \Box

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 000●	Grothendieck 000000	PFA C-Tight & Grothendieck

The application of these topological results to Model Theory and then to the undefinability of Banach spaces is rather technical so we won't do it here. It can be found in the paper of Hamel and myself recently posted on arXiv.

Grothendieck's Theorem

For a topological space X, $C_p(X)$ is the set of continuous real-valued functions on X, given the pointwise topology inherited from \mathbb{R}^X . The classic theorem of Grothendieck states:
Grothendieck's Theorem

For a topological space X, $C_p(X)$ is the set of continuous real-valued functions on X, given the pointwise topology inherited from \mathbb{R}^X . The classic theorem of Grothendieck states:

Proposition 1 ([Gro52])

Let X be countably compact and let $A \subseteq C_p(X)$ be such that every infinite subset of A has a limit point in $C_p(X)$. Then the closure of A in $C_p(X)$ is compact.

Grothendieck's Theorem

For a topological space X, $C_p(X)$ is the set of continuous real-valued functions on X, given the pointwise topology inherited from \mathbb{R}^X . The classic theorem of Grothendieck states:

Proposition 1 ([Gro52])

Let X be countably compact and let $A \subseteq C_p(X)$ be such that every infinite subset of A has a limit point in $C_p(X)$. Then the closure of A in $C_p(X)$ is compact.

[Gro52] A. Grothendieck. Critéres de compacité dans les espaces fonctionnels généraux. *Amer. J. Math.*, **74**:168–186, 1952.

Countably Tight & Grothendieck

Definition ([Arh98])

Recall that $A \subseteq X$ is relatively countably compact if every infinite subset of A has a limit point in X.

X is a *g*-space if each $A \subseteq X$ which is countably compact in X has compact closure.

X is a Grothendieck space (resp. weakly Grothendieck space) if $C_p(X)$ is a hereditary g-space (resp. a g-space).

Countably Tight & Grothendieck

Definition ([Arh98])

Recall that $A \subseteq X$ is relatively countably compact if every infinite subset of A has a limit point in X.

X is a *g*-space if each $A \subseteq X$ which is countably compact in X has compact closure.

X is a Grothendieck space (resp. weakly Grothendieck space) if

 $C_p(X)$ is a hereditary g-space (resp. a g-space).

Theorem ([Arh98])

If X is countably tight, then X is weakly Grothendieck.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 00●000	PFA C-Tight & Grothendieck

Theorem

If Y is a hereditary g-space, then countably compact subspaces of Y are compact.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck ○○●○○○	PFA C-Tight & Grothendieck

Theorem

If Y is a hereditary g-space, then countably compact subspaces of Y are compact.

Proof. Let $Z \subseteq Y$ be countably compact. Then it is relatively countably compact in itself and its closure in itself is compact.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 00●000	PFA C-Tight & Grothendieck

Theorem

If Y is a hereditary g-space, then countably compact subspaces of Y are compact.

Proof. Let $Z \subseteq Y$ be countably compact. Then it is relatively countably compact in itself and its closure in itself is compact.

Problem

If countably compact subspaces of $C_p(X)$ are compact, is X Grothendieck?

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000●00	PFA C-Tight & Grothendieck

Free Sequences

Definition

 $\{x_{\alpha} : \alpha < \kappa\}$ is free if for every $\eta < \kappa$, $\{x_{\alpha} : \alpha < \eta\}$ and $\{x_{\alpha} : \eta < \alpha < \kappa\}$ have disjoint closures.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000●00	PFA C-Tight & Grothendieck

Free Sequences

Definition

 $\{x_{\alpha} : \alpha < \kappa\}$ is free if for every $\eta < \kappa$, $\{x_{\alpha} : \alpha < \eta\}$ and $\{x_{\alpha} : \eta < \alpha < \kappa\}$ have disjoint closures.

Todorcevic's paper in The Work of Mary Ellen Rudin proves:

Theorem

 $PFA \implies If X \text{ does not include an uncountable free sequence,}$ then every countably compact subspace of $C_p(X)$ is compact.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Free Sequences

Definition

 $\{x_{\alpha} : \alpha < \kappa\}$ is free if for every $\eta < \kappa$, $\{x_{\alpha} : \alpha < \eta\}$ and $\{x_{\alpha} : \eta < \alpha < \kappa\}$ have disjoint closures.

Todorcevic's paper in The Work of Mary Ellen Rudin proves:

Theorem

PFA \implies If X does not include an uncountable free sequence, then every countably compact subspace of $C_p(X)$ is compact.

Can that conclusion be strengthened to X being Grothendieck?

The Grothendieck property has become important in research on the definability of pathological Banach spaces [CI18], [HT20], [HT22].

Countable Tightness and the Grothendieck Property in C_p Theory

Grothendieck

000000

The Grothendieck property has become important in research on the definability of pathological Banach spaces [CI18], [HT20], [HT22].

The proof of Grothendieck's Theorem involves interchanging double limits as one often does in Analysis, e.g. under suitable conditions,

$$\lim_{m\to\infty}\lim_{n\to\infty}f_n(x_m)=\lim_{n\to\infty}\lim_{m\to\infty}f_n(x_m).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PFA C-Tight & Grothendieck

Countable Tightness and the Grothendieck Property in C_p Theory

Grothendieck

000000

The Grothendieck property has become important in research on the definability of pathological Banach spaces [CI18], [HT20], [HT22].

The proof of Grothendieck's Theorem involves interchanging double limits as one often does in Analysis, e.g. under suitable conditions,

$$\lim_{m\to\infty}\lim_{n\to\infty}f_n(x_m)=\lim_{n\to\infty}\lim_{m\to\infty}f_n(x_m).$$

PFA C-Tight & Grothendieck

Countable Tightness and the Grothendieck Property in C_p Theory

Grothendieck

The Grothendieck property has become important in research on the definability of pathological Banach spaces [CI18], [HT20], [HT22].

The proof of Grothendieck's Theorem involves interchanging double limits as one often does in Analysis, e.g. under suitable conditions,

$$\lim_{m\to\infty}\lim_{n\to\infty}f_n(x_m)=\lim_{n\to\infty}\lim_{m\to\infty}f_n(x_m).$$

Jose lovino noticed a connection between interchanging double limits and definability in model theory.

PFA C-Tight & Grothendieck

Countable Tightness and the Grothendieck Property in C_{ρ} Theory

The Grothendieck property has become important in research on the definability of pathological Banach spaces [CI18], [HT20], [HT22].

The proof of Grothendieck's Theorem involves interchanging double limits as one often does in Analysis, e.g. under suitable conditions,

$$\lim_{m\to\infty}\lim_{n\to\infty}f_n(x_m)=\lim_{n\to\infty}\lim_{m\to\infty}f_n(x_m).$$

Jose lovino noticed a connection between interchanging double limits and definability in model theory. He and P. Casazza used this to prove the undefinability in first order (continuous) logic of a famous pathological Banach space: Tsirelson's space.

Countable Tightness and the Grothendieck Property in C_{ρ} Theory

The Grothendieck property has become important in research on the definability of pathological Banach spaces [CI18], [HT20], [HT22].

The proof of Grothendieck's Theorem involves interchanging double limits as one often does in Analysis, e.g. under suitable conditions,

$$\lim_{m\to\infty}\lim_{n\to\infty}f_n(x_m)=\lim_{n\to\infty}\lim_{m\to\infty}f_n(x_m).$$

Jose lovino noticed a connection between interchanging double limits and definability in model theory. He and P. Casazza used this to prove the undefinability in first order (continuous) logic of a famous pathological Banach space: Tsirelson's space. I saw that their results could be greatly generalized using C_p -theory, but today I'm just talking about topology rather than model theory.

Countable Tightness and the Grothendieck Property in C_{ρ} Theory

The Grothendieck property has become important in research on the definability of pathological Banach spaces [CI18], [HT20], [HT22].

- **[Cl18]** P. Casazza and J. Iovino. On the undefinability of Tsirelson's space and its descendants. ArXiv: 1812.02840, 2018.
- **[HT20]** C. Hamel and F. D. Tall. Model theory for C_p-theorists. Top. Appl., paper 107197, 2020.
- [HT23] C. Hamel and F. D. Tall, C_p-theory for model theorists, in J. lovino, ed., Beyond first order model theory, II, CRC Press, Boca Raton, 2023.
- **[HT24]** C. Hamel and F. D. Tall, On the undefinability of pathological Banach spaces, submitted.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck ○○○○○●	PFA C-Tight & Grothendieck

We here answer a question of Arhangel'skiĭ by proving it undecidable whether countably tight spaces with Lindelöf finite powers are Grothendieck.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 00000●	PFA C-Tight & Grothendieck

We here answer a question of Arhangel'skiĭ by proving it undecidable whether countably tight spaces with Lindelöf finite powers are Grothendieck.

We answer another of his questions by proving that PFA implies Lindelöf countably tight spaces are Grothendieck.

Strengthening Arhangel'skii's Result

In [Arh98], Arhangel'skiĭ proved:

Proposition 2

 $MA + \neg CH$ implies that if X is countably tight and Xⁿ is Lindelöf for all $n < \omega$, then X is Grothendieck.

Strengthening Arhangel'skii's Result

In [Arh98], Arhangel'skiĭ proved:

Proposition 2

 $MA + \neg CH$ implies that if X is countably tight and Xⁿ is Lindelöf for all $n < \omega$, then X is Grothendieck.

In fact, MA_{ω_1} suffices.

Strengthening Arhangel'skii's Result

In [Arh98], Arhangel'skiĭ proved:

Proposition 2

 $MA + \neg CH$ implies that if X is countably tight and X^n is Lindelöf for all $n < \omega$, then X is Grothendieck.

In fact, MA_{ω_1} suffices.

Arhangel'skiĭ asked whether the conclusion of the Proposition is true in ZFC.

Strengthening Arhangel'skii's Result

Proposition 2

 $MA + \neg CH$ implies that if X is countably tight and Xⁿ is Lindelöf for all $n < \omega$, then X is Grothendieck.

Arhangel'skiĭ asked whether the conclusion of the Proposition is true in ZFC.

It is not:

 Background
 Arhangel'skii
 Iovino
 Conclusion
 Grothendieck
 PFA C-Tight & Grothendieck

 0
 00000
 00000
 00000
 000000
 000000

Strengthening Arhangel'skii's Result

Proposition 2

 $MA + \neg CH$ implies that if X is countably tight and X^n is Lindelöf for all $n < \omega$, then X is Grothendieck.

Arhangel'skiĭ asked whether the conclusion of the Proposition is true in ZFC.

It is not:

Example

Assuming \diamond plus Kurepa's Hypothesis, Ivanov [Iva78] constructed a compact space Y of cardinality 2^c such that Yⁿ is hereditarily separable for all $n < \omega$. $C_p(Y)$ is the required counterexample.
 Background
 Arhangel'skii
 Iovino
 Conclusion
 Grothendieck
 PFA C-Tight & Grothendieck

 0
 00000
 00000
 00000
 000000
 000000

Strengthening Arhangel'skii's Result

Proposition 2

 $MA + \neg CH$ implies that if X is countably tight and X^n is Lindelöf for all $n < \omega$, then X is Grothendieck.

Arhangel'skiĭ asked whether the conclusion of the Proposition is true in ZFC.

Example

Assuming \diamondsuit plus Kurepa's Hypothesis, Ivanov [Iva78] constructed a compact space Y of cardinality 2^c such that Yⁿ is hereditarily separable for all $n < \omega$. $C_p(Y)$ is the required counterexample.

To see this, we require several results from the literature.

Arhangel'skiï's Result and ZFC

Lemma ([Arh92])

 X^n is Lindelöf for every $n < \omega$ if and only if $C_p(X)$ is countably tight.

Arhangel'skii's Result and ZFC

Lemma ([Arh92])

 X^n is Lindelöf for every $n < \omega$ if and only if $C_p(X)$ is countably tight.

Definition

A space X is Fréchet-Urysohn if whenever x is a limit point of $Z \subseteq X$, there is a sequence in Z converging to x.

 Background
 Arhangel'skiĭ
 Iovino
 Conclusion
 Grothendieck
 PFA C-Tight & Grothendieck

 0
 00000
 00000
 00000
 000000
 000000

Arhangel'skiĭ's Result and ZFC

Lemma ([Arh92])

 X^n is Lindelöf for every $n < \omega$ if and only if $C_p(X)$ is countably tight.

Definition

A space X is Fréchet-Urysohn if whenever x is a limit point of $Z \subseteq X$, there is a sequence in Z converging to x.

Arhangel'skiĭ later proved:

Lemma ([Arh98])

X is Grothendieck if and only if it is weakly Grothendieck and compact subspaces of $C_p(X)$ are Fréchet-Urysohn.

 Background
 Arhangel'skiĭ
 Iovino
 Conclusion
 Grothendieck
 PFA C-Tight & Grothendieck

 0
 00000
 00000
 000000
 000000
 0000000

Arhangel'skii's Result and ZFC

Lemma ([Arh92])

 X^n is Lindelöf for every $n < \omega$ if and only if $C_p(X)$ is countably tight.

Lemma ([Arh98])

X is Grothendieck if and only if it is weakly Grothendieck and compact subspaces of $C_p(X)$ are Fréchet-Urysohn.

He also proved:

Lemma ([Arh92])

X embeds into $C_p(C_p(X))$.

Arhangel'skiĭ's Result and ZFC

Lemma ([Arh92])

 X^n is Lindelöf for every $n < \omega$ if and only if $C_p(X)$ is countably tight.

Lemma ([Arh98])

X is Grothendieck if and only if it is weakly Grothendieck and compact subspaces of $C_p(X)$ are Fréchet-Urysohn.

Lemma ([Arh92])

X embeds into $C_p(C_p(X))$.

Clearly, separable Fréchet-Urysohn spaces have cardinality $\leq c$. Ivanov's space Y is too big to be Fréchet-Urysohn, yet it embeds in $C_p(C_p(Y))$, so $C_p(Y)$ cannot be Grothendieck, although it is weakly Grothendieck.

Arhangel'skiï's Result and ZFC

Clearly, separable Fréchet-Urysohn spaces have cardinality $\leq c$. Ivanov's space Y is too big to be Fréchet-Urysohn, yet it embeds in $C_p(C_p(Y))$, so $C_p(Y)$ cannot be Grothendieck, although it is weakly Grothendieck.

 $(C_p(Y))^n$ is, however, (hereditarily) Lindelöf for all $n < \omega$ by the Velichko-Zenor theorem:

Arhangel'skii's Result and ZFC

Clearly, separable Fréchet-Urysohn spaces have cardinality $\leq c$. Ivanov's space Y is too big to be Fréchet-Urysohn, yet it embeds in $C_p(C_p(Y))$, so $C_p(Y)$ cannot be Grothendieck, although it is weakly Grothendieck.

 $(C_p(Y))^n$ is, however, (hereditarily) Lindelöf for all $n < \omega$ by the Velichko-Zenor theorem:

Lemma ([Vel81], [Zen80])

If X^n is hereditarily separable for all $n < \omega$, then $(C_p(X))^n$ is hereditarily Lindelöf for all $n < \omega$.

- - [Iva78] A. V. Ivanov On bicompacta all finite powers of which are hereditarily separable. *Doklady Akademii Nauk SSSR*, 243(5):1109–1112, 1978.

85:9–33, 1998.

- [Vel81] N. V. Velichko. Weak topology of spaces of continuous functions. Mathematical Notes of the Academy of Sciences of the USSR, 30:849–854, 1981.
- [Zen80] P. Zenor. Hereditary *m*-separability and the hereditary *m*-Lindelöf property in product spaces and function spaces. *Fund. Math.*, **106**(3):175–180, 1980.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Finally, $C_p(Y)$ is countably tight since Y is compact, so $C_p(Y)$ is Lindelöf, countably tight, but not Grothendieck.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Finally, $C_p(Y)$ is countably tight since Y is compact, so $C_p(Y)$ is Lindelöf, countably tight, but not Grothendieck.

A dramatic strengthening of the conclusion of Arhangel'skii's Proposition is

Theorem

PFA implies Lindelöf countably tight spaces are Grothendieck.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Finally, $C_p(Y)$ is countably tight since Y is compact, so $C_p(Y)$ is Lindelöf, countably tight, but not Grothendieck.

A dramatic strengthening of the conclusion of Arhangel'skii's Proposition is

Theorem

PFA implies Lindelöf countably tight spaces are Grothendieck.

The proof actually follows easily from known results.
Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

A space is surlindelöf if it is a subspace of $C_p(X)$ for some Lindelöf X.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

A space is surlindelöf if it is a subspace of $C_p(X)$ for some Lindelöf X.

Arhangel'skiĭ proved:

Lemma ([Arh92])

PFA implies that every surlindelöf compact space is countably tight.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

A space is surlindelöf if it is a subspace of $C_p(X)$ for some Lindelöf X.

Lemma ([Arh92])

PFA implies that every surlindelöf compact space is countably tight.

Okunev and Reznichenko proved:

Lemma ([OR07])

 MA_{ω_1} implies that every separable surlindelöf compact countably tight space is metrizable.

The Proof: Fréchet-Urysohn

Theorem

PFA implies that every surlindelöf compact space is *Fréchet-Urysohn*.

The Proof: Fréchet-Urysohn

Theorem

PFA implies that every surlindelöf compact space is *Fréchet-Urysohn*.

Proof. Metrizable spaces are clearly Fréchet-Urysohn. By countable tightness, if K is compact and $L \subseteq K$ and $p \in \overline{L}$, then there is a countable $M \subseteq L$ such that $p \in \overline{M}$. But \overline{M} is separable compact and so metrizable.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

This proves the Theorem.

Theorem

PFA implies Lindelöf countably tight spaces are Grothendieck.

This proves the Theorem.

Theorem

PFA implies Lindelöf countably tight spaces are Grothendieck.

In fact, as often happens, we have:

Theorem

If ZFC is consistent, so is ZFC plus "every Lindelöf countably tight space is Grothendieck".

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

- [Arh92] A. V. Arhangel'skiĭ. Topological Function Spaces, vol. 78 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1992.
- [Arh98] A. V. Arhangel'skii. Embedding in C_p-spaces. Topology Appl., 85:9–33, 1998.
- [OR07] O. Okunev and E. Reznichenko. A note on surlindelöf spaces. *Topology Proc.*, **31**(2):667–675, 2007.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Example

A space X and a $Y \subseteq X$ such that Y is countably compact in X but \overline{Y} is not countably compact. In Ψ -space, the closure of ω includes an uncountable closed discrete set.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Example

A space X and a $Y \subseteq X$ such that Y is countably compact in X but \overline{Y} is not countably compact. In Ψ -space, the closure of ω includes an uncountable closed discrete set.

Theorem

Countably tight spaces are weakly Grothendieck.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

A space is realcompact if it can be embedded as a closed subspace in a product of copies of the real line.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

A space is realcompact if it can be embedded as a closed subspace in a product of copies of the real line.

Lemma

A closed subspace of a realcompact space is realcompact.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

A space is realcompact if it can be embedded as a closed subspace in a product of copies of the real line.

Lemma

A closed subspace of a realcompact space is realcompact.

Lemma

A completely regular space is compact if and only if it is realcompact and countably compact.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

A space is realcompact if it can be embedded as a closed subspace in a product of copies of the real line.

Lemma

A closed subspace of a realcompact space is realcompact.

Lemma

A completely regular space is compact if and only if it is realcompact and countably compact.

Lemma

If X is countably tight, then $C_p(X)$ is realcompact.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

A space is *wD* if whenever $\{d_n : n < \omega\}$ is closed discrete, there is an infinite $S \subseteq \omega$ and a discrete collection of open sets $\{U_n : n \in S\}$ with $d_n \in U_n$ for all $n \in S$.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

A space is wD if whenever $\{d_n : n < \omega\}$ is closed discrete, there is an infinite $S \subseteq \omega$ and a discrete collection of open sets $\{U_n : n \in S\}$ with $d_n \in U_n$ for all $n \in S$.

Lemma

Every realcompact space is wD.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Lemma

Let X be wD. Let Y be countably compact in X. Then \overline{Y} is countably compact.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Lemma

Let X be wD. Let Y be countably compact in X. Then \overline{Y} is countably compact.

Proof. Suppose not. Let $\{d_n : n < \omega\}$ be a closed discrete subspace of \overline{Y} . Let $\{U_n : n < \omega\}$ be a discrete collection of open subsets of X, with $d_n \in U_n$ for every $n \in S$, where $S \subseteq \omega$ is infinite. Pick $e_n \in U_n \cap Y$. Then $\{e_n : n \in S\}$ is a closed discrete subspace of Y, contradiction.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Theorem

Countably tight spaces are weakly Grothendieck.

Arhangel'skiĭ 00000	lovino 0000000	Conclusion 0000	Grothendieck 000000	PFA C-Tight & Grothendieck

Theorem

Countably tight spaces are weakly Grothendieck.

Proof. Let X be countably tight. Then $C_p(X)$ is realcompact and hence wD. Let Y be countably compact in $C_p(X)$, then \overline{Y} is countably compact. But \overline{Y} is realcompact so \overline{Y} is compact.