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Morley's Theorem

Conjecture (Vaught, 1961)

Every countable first-order theory has either at most countably
many or continuum many non-isomorphic countable models.
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Morley's Theorem

Conjecture (Vaught, 1961)

Every countable first-order theory has either at most countably
many or continuum many non-isomorphic countable models.

Theorem (Morley, 1970)

Every countable first-order theory has either at most Ny or
continuum many non-isomorphic countable models.

To avoid a trivial application of CH implying VC, we can identify
countable models with elements of the Cantor set to obtain:
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Morley Theorem
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Morley's Theorem

To avoid a trivial application of CH implying VC, we can identify
countable models with elements of the Cantor set to obtain:

Conjecture (Absolute Vaught)

Every countable first-order theory has either at most countably
many or perfectly many non-isomorphic countable models.

Theorem (Absolute Morley)

Every countable first-order theory has either at most X1 or
perfectly many non-isomorphic countable models.
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Coding countable structures as reals

Let S = {Ri}ic/ be a signature, where each R; is a relation symbol with
arity n;, and / is countable.
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Coding countable structures as reals

Let S = {Ri}ic/ be a signature, where each R; is a relation symbol with
arity n;, and I is countable.

Suppose that M is a countable S-structure. Up to isomorphism, we may
assume that the underlying set of M is w.
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Let S = {Ri}ics be a signature, where each R; is a relation symbol with
arity n;, and I is countable.

Suppose that M is a countable S-structure. Up to isomorphism, we may
assume that the underlying set of M is w.

For each i € I the interpretation R,-M of R; is a subset of w™, and so we
identify R; with an element of w*" .
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Let S = {R;}ies be a signature, where each R; is a relation symbol with
arity n;, and / is countable.

Suppose that M is a countable S-structure. Up to isomorphism, we may
assume that the underlying set of M is w.

For each i € | the interpretation F\’,-M of R; is a subset of w™, and so we
identify R; with an element of w*” .

As the structure M is completely determined by the interpretations of
each of the relation symbols, we may identify M with an element of
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Coding countable structures as reals

Let S = {Ri}ics be a signature, where each R; is a relation symbol with
arity n;, and I is countable.

Suppose that M is a countable S-structure. Up to isomorphism, we may
assume that the underlying set of M is w.

For each i € I the interpretation R of R; is a subset of w™, and so we
identify R; with an element of w*" .

As the structure M is completely determined by the interpretations of
each of the relation symbols, we may identify M with an element of

[T 2.

This identification provides a bijective map from the collection of

S-structures with universe w to [, 2¢"  We thus view the Cantor
space [[;¢, 2
MOds = H

“"as being the space of countable S-structures, and define

w"i
iel 2 .
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2nd Order Logic
(1)

Second-order Logic

Syntax

Semantics
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2nd Order Logic
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Second-order Logic

Syntax Variables to represent individual elements of structures;
for each n, variables to represent sets of n-tuples of elements
(these are the n-ary relation variables).

Semantics
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Second-order Logic

Syntax Variables to represent individual elements of structures;
for each n, variables to represent sets of n-tuples of elements
(these are the n-ary relation variables).

Formulas are then defined recursively in a straightforward manner.

Semantics
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Second-order Logic

Syntax Variables to represent individual elements of structures;
for each n, variables to represent sets of n-tuples of elements
(these are the n-ary relation variables).

Formulas are then defined recursively in a straightforward manner.

Semantics As for first-order, with the following additions, where
o(P) is a second-order formula:
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Second-order Logic

Syntax Variables to represent individual elements of structures;
for each n, variables to represent sets of n-tuples of elements
(these are the n-ary relation variables).

Formulas are then defined recursively in a straightforward manner.

Semantics As for first-order, with the following additions, where
¢(P) is a second-order formula:

e If P is an n-ary relation variable and A C M", then

M = ¢(P)[A] if and only if (M, A) = ¢, where (M, A) is the
expanded structure obtained by interpreting P as A.
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2nd Order Logic
(1)

Second-order Logic

Syntax Variables to represent individual elements of structures;
for each n, variables to represent sets of n-tuples of elements
(these are the n-ary relation variables).

Formulas are then defined recursively in a straightforward manner.

Semantics As for first-order, with the following additions, where
¢(P) is a second-order formula:

e If P is an n-ary relation variable and A C M", then
M = ¢(P)[A] if and only if (M, A) = ¢, where (M, A) is the
expanded structure obtained by interpreting P as A.

e M = (3P)¢(P) if and only if there is some A C M" such
that M |= ¢(A). The definition for second-order universal
quantifier is analogous.
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2nd Order Logic
(1)

Second-order Logic

- CH = 2nd order VC fails: one can express in second-order
logic that a linear order is a well-order and hence there is a
second-order theory whose countable models are (up to
isomorphism) exactly countable ordinals.
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2nd Order Logic
(1)

Second-order Logic

= CH = 2nd order VC fails: one can express in second-order
logic that a linear order is a well-order and hence there is a
second-order theory whose countable models are (up to
isomorphism) exactly countable ordinals.

Just say “< is a linear order” —that's the first order; then say every
subset ordered by < has a least element.
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Theorem (A)

There is a forcing such that in the resulting universe of set theory,
there is a second-order theory T in a countable signature* such
that the number of non-isomorphic countable models of T is
exactly No, while 280 — N3, Add to L X, Cohen reals and then X3
random reals.

*Signature = collection of relation symbols, each with specified arity. Note we can

code function symbols and constants as relations.
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Theorem (B (Foreman-Magidor))

Beginning with a supercompact cardinal, carry out the standard
forcing iteration for producing a model of the Proper Forcing
Axiom. Then 2nd order Absolute Morley holds. In fact, every
equivalence relation on R that is in L(R) either has < ¥;
equivalence classes or a perfect set of equivalence classes.
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Theorem (B (Foreman-Magidor))

Beginning with a supercompact cardinal, carry out the standard
forcing iteration for producing a model of the Proper Forcing
Axiom. Then 2nd order Absolute Morley holds. In fact, every
equivalence relation on R that is in L(R) either has < N;
equivalence classes or a perfect set of equivalence classes.

Definition

A cardinal k is supercompact if for every cardinal A > « there
exists an elementary embedding j) of V into an inner model M
(i.e. a proper class model of ZFC included in V') with critical point
# (least ordinal j, moves) and A < jy(k), such that M? is included
in M.
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Theorem (C)

If there are infinitely many Woodin cardinals, then there is a model
of set theory in which the Absolute Morley Theorem holds for
second-order theories in countable signatures. In fact, every
o-projective equivalence relation on R has < Xy or perfectly many
equivalence classes.
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2nd Order Logic
oe

Theorem (C)

If there are infinitely many Woodin cardinals, then there is a model
of set theory in which the Absolute Morley Theorem holds for
second-order theories in countable signatures. In fact, every
o-projective equivalence relation on R has < Xy or perfectly many
equivalence classes.

Problem

Are large cardinals necessary to prove the conclusion of Theorem
C? If so, how large?
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2nd Order Logic
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Problem

Are large cardinals necessary to prove the conclusion of Theorem
C? If so, how large?

Recently solved by J. Zhang. Just add at least X, Cohen reals.
[TZ] just appeared in Arch. Math Logic.
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Complexity
(1)

Descriptive complexity of 2nd-order theories

Definition (Mods(o))

For o a sentence of some logic with signature S, define
Mods(o) = {M € Mods : M |= o} where Mods is the collection of
countable S-models and M is a model with universe w. (If S is clear

from context we may omit it.)
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Complexity
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Descriptive complexity of 2nd-order theories

Definition (Mods(o))

For o a sentence of some logic with signature S, define

Mods(o) = {M € Mods : M |= o} where Mods is the collection of
countable S-models and M is a model with universe w. (If S is clear
from context we may omit it.)

Definition (=7)

Let S be a countable signature, and let T be an S-theory of some logic.
The equivalence relation of isomorphism of models of T is the
equivalence relation 2+ on Mods defined by declaring that M =+ N if
and only if either: neither of the two structures is a model of T, or

M=N.
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Theorem 2nd Order Logic Complexity

Defmltlon (Mods(c))

For o a sentence of some logic with signature S, define

Mods(o) = {M € Mods : M |= o} where Mods is the collection of
countable S-models and M is a model with universe w. (If S is clear
from context we may omit it.)

Definition (=7)

Let S be a countable signature, and let T be an S-theory of some logic.
The equivalence relation of isomorphism of models of T is the
equivalence relation =+ on Mods defined by declaring that M =+ N if
and only if either: neither of the two structures is a model of T, or

M=N.

The equivalence classes of =27 are thus one class for each isomorphism
class of countable models of T, together with one additional class

containing all elements of Mods \ Mods(T).
28 /105



Complexity
(1)

Descriptive complexity of 2nd-order theories

Definition (=7)

Let S be a countable signature, and let T be an S-theory of some logic.
The equivalence relation of isomorphism of models of T is the
equivalence relation 2+ on Mods defined by declaring that M =+ N if
and only if either: neither of the two structures is a model of T, or

M=N.

The projective sets are obtained from the Borel sets by iterating the
operations of projection (continuous real-valued images) and
complementation, forming a hierarchy of length w. Closing under
countable unions and extending that hierarchy up through the countable
ordinals yields the o-projective sets.
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Complexity
(1)

Descriptive complexity of 2nd-order theories

Definition (Mods(o))

For o a sentence of some logic with signature S, define

Mods(o) = {M € Mods : M = o} where Mods is the collection of
countable S-models and M is a model with universe w. (If S is clear
from context we may omit it.)

The projective sets are obtained from the Borel sets by iterating the
operations of projection (continuous real-valued images) and
complementation, forming a hierarchy of length w. Closing under
countable unions and extending that hierarchy up through the countable
ordinals yields the o-projective sets.

One can also characterize the collection of o-projective sets as
L,,(R) N Z(R).
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Complexity
(1)

Descriptive complexity of 2nd-order theories

The projective sets are obtained from the Borel sets by iterating the
operations of projection (continuous real-valued images) and
complementation, forming a hierarchy of length w. Closing under
countable unions and extending that hierarchy up through the countable
ordinals yields the o-projective sets.

One can also characterize the collection of o-projective sets as

Lo, (R) N 2(R).

Lemma

Let S be a countable signature, and let o be a second-order S-sentence.
Then Mods(o) is projective.

31/105



Complexity
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Descriptive complexity of 2nd-order theories

Definition (=)

Let S be a countable signature, and let T be an S-theory of some logic.
The equivalence relation of isomorphism of models of T is the
equivalence relation 21 on Mods defined by declaring that M =+ N if
and only if either: neither of the two structures is a model of T, or

M=N.

Lemma

Let S be a countable signature, and let o be a second-order S-sentence.
Then Mods(o) is projective.

Proof.

By induction on the complexity of o. O
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Complexity
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Descriptive complexity of 2nd-order theories

Lemma

Let S be a countable signature, and let T be a second-order S-theory.
Then Mods(T) is o-projective; it is in fact a countable intersection of

projective sets.
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Complexity
(1)

Descriptive complexity of 2nd-order theories

Lemma

Let S be a countable signature, and let T be a second-order S-theory.
Then Mods(T) is o-projective; it is in fact a countable intersection of
projective sets.

Proposition 1

Let S be a countable signature, and let T be an S-theory of some logic.
The complexity of the equivalence relation =t (on P(R)) is the
minimum complexity that includes both X1 and the complexity of the
complement of Mods(T).

34/105



Morley Theorem 2nd Order Logic Complexity

@O

Descriitive comilexiti of 2nd-order theories

Let S be a countable signature, and let T be a second-order S-theory.
Then Mods(T) is o-projective; it is in fact a countable intersection of
projective sets.

Proposition 1

Let S be a countable signature, and let T be an S-theory of some logic.
The complexity of the equivalence relation =1 (on P(R)) is the
minimum complexity that includes both X} and the complexity of the
complement of Mods(T).

Proposition 2

If T is a second-order theory of bounded quantifier complexity, then =+
is a projective equivalence relation. Omitting “bounded”, then =1 is
o-projective.
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o-projective sets

Definition

The collection of o-projective sets is the smallest o-algebra
containing the open subsets (of R) and closed under projections
(continuous real-valued images).
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Complexity
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o-projective sets

Definition

The collection of o-projective sets is the smallest o-algebra
containing the open subsets (of R) and closed under projections
(continuous real-valued images).

Lemma

Let S be a countable signature, and let T be a second-order
S-theory. Then Mods(T) is o-projective; it is in fact a countable
intersection of projective sets.
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Second-order Morley

Morley’s Theorem fails consistently for second-order logic

Idea of proof.

Adjoin N, Cohen reals to L. Then add N3 random reals. In the resulting
model 2% = N3, but there are still only N, reals Cohen over L.

We exhibit a second-order theory T whose countable models are all
isomorphic to some (w, <, x), where x is Cohen over L. O
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0000000000000 0

Second-order Morley

Morley’s Theorem fails consistently for second-order logic

Idea of proof.

Adjoin N, Cohen reals to L. Then add N3 random reals. In the resulting
model 2% = R3, but there are still only X, reals Cohen over L.

We exhibit a second-order theory T whose countable models are all
isomorphic to some (w, <, x), where x is Cohen over L. O

Definition

A second-order formula is V,, if it is equivalent to a prenex formula that
begins with a second-order universal quantifier and has a total of n
blocks of quantifiers. Similarly for 3,,.
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Second-order Morley

Morley’s Theorem fails consistently for second-order logic

Definition

A second-order formula is V,, if it is equivalent to a prenex formula that
begins with a second-order universal quantifier and has a total of n
blocks of quantifiers. Similarly for 3,,.

Lemma

Let S ={+,-,<,0,1, R}, where R is a unary relation symbol. Suppose
that A C 2¥ and A is T (respectively, M%) for some n > 2. Then there is
a 3, (respectively, V) S-sentence such that every model of o is
isomorphic to (w,+, -, <,0,1, R) for some R € A, and moreover
(w,+,,<,0,1,R) & (w,+,+,<,0,1,R") ifand only if R=R’. In
particular, the number of isomorphism classes of models of o is |A|.
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Second-order Morley

Morley’s Theorem fails consistently for second-order logic

Lemma

Let S = {+,:,<,0,1, R}, where R is a unary relation symbol. Suppose
that A C 2* and A is X1 (respectively, M) for some n > 2. Then there is
a 3, (respectively, ¥, ) S-sentence such that every model of o is
isomorphic to (w,+,-,<,0,1,R) for some R € A, and moreover
(w,+,+,<,0,1,R) & (w,+,-,<,0,1, R") ifand only if R=R’. In
particular, the number of isomorphism classes of models of o is |A|.
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Proof. We give the proof for 1; the proof for M} is similar.
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Proof. We give the proof for 1 the proof for M} is similar.

Let PA; be second-order Peano arithmetic, which can be expressed as a
V1 sentence S\ {R}. It is well-known that PAy; is categorical, and (up to
isomorphism) the only S\ {R} structure satisfying PAj; is
(w,+,-,<,0,1).
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Proof. We give the proof for ¥1; the proof for M} is similar.

Let PA; be second-order Peano arithmetic, which can be expressed as a
V1 sentence S\ {R}. It is well-known that PAy; is categorical, and (up to
isomorphism) the only S\ {R} structure satisfying PAyy is
(w,+,-,<,0,1).

Since Ais X1, there is an 3, formula ¢(X), in one second-order variable
X, such that for every a € 2¢, a € A if and only if

(w,+,-,<,0,1) = &(a) (refer to Moschovakis's Descriptive Set Theory
for the details).
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Proof. We give the proof for ¥1; the proof for M} is similar.

Let PA; be second-order Peano arithmetic, which can be expressed as a
V1 sentence S\ {R}. It is well-known that PAj; is categorical, and (up to
isomorphism) the only S\ {R} structure satisfying PAj; is
(w,+,-,<,0,1).

Since Ais X1, there is an 3, formula ¢(X), in one second-order variable
X, such that for every a € 2¢, a € A if and only if

(w,+,-,<,0,1) = &(a) (refer to Moschovakis's Descriptive Set Theory
for the details).

Let o be PA;r A ¢(R); o is 3, because PAyy is V4 and ¢ is 3, with
n > 2. As noted above, every model of ¢ is isomorphic to one of the
form (w,+,-,<,0,1, R) for some R € A.
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Proof. We give the proof for ¥1; the proof for M} is similar.

Let PA; be second-order Peano arithmetic, which can be expressed as a
V1 sentence S\ {R}. It is well-known that PAj; is categorical, and (up to
isomorphism) the only S\ {R} structure satisfying PAj; is
(w,+,-,<,0,1).

Since Ais X1, there is an 3, formula ¢(X), in one second-order variable
X, such that for every a € 2¢, a € A if and only if

(w,+,-,<,0,1) | &(a) (refer to Moschovakis's Descriptive Set Theory
for the details).

Let o be PA;r A ¢(R); o is 3, because PAyy is V4 and ¢ is 3, with
n > 2. As noted above, every model of ¢ is isomorphic to one of the
form (w,+,-,<,0,1, R) for some R € A.

Finally, (w, <) has no non-trivial automorphisms, so the only possible
isomorphism from (w,+,-,<,0,1, R) to (w,+,+,<,0,1,R’) is the
identity map. ]
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Theorem

It is consistent with ZFC that there exists a second-order sentence

with exactly No non-isomorphic countable models while the
continuum is N3.
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Theorem

It is consistent with ZFC that there exists a second-order sentence
with exactly No non-isomorphic countable models while the
continuum is N3,

Proof.

Force over L to add N> Cohen reals, and then force over the
resulting model to add N3 random reals. Let C be the set of reals
in this model that are Cohen over L. Then |C| = Ny, while

2% = 3. It is a folklore result that C is M3. Thus, the Lemma
provides a V» sentence with exactly Ry models (all of which are
countable). O
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Second-order Morley

Morley's Theorem is consistently true (modulo a large cardinal) for
second-order logic
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Second-order Morley

Morley's Theorem is consistently true (modulo a large cardinal) for
second-order logic

Theorem

If it is consistent that there is a supercompact cardinal, then it is
consistent that — CH and every equivalence relation on the power set of
R that is in L(R) has < N; or a perfect set of inequivalent elements.
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Second-order Morley

Morley’s Theorem is consistently true (modulo a large cardinal) for
second-order logic

Theorem

If it is consistent that there is a supercompact cardinal, then it is
consistent that = CH and every equivalence relation on the power set of
R that is in L(R) has < N; or a perfect set of inequivalent elements.

Proof. This is implicit in [FM 95] who use the usual model for PFA .
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Second-order Morley

Theorem

If it is consistent that there is a supercompact cardinal, then it is
consistent that — CH and every equivalence relation on the power set of
R that is in L(R) has < N; or a perfect set of inequivalent elements.

Proof. This is implicit in [FM 95] who use the usual model for PFA .

[FM95] M. Foreman and M. Magidor. Large cardinals and definable
counterexamples to the continuum hypothesis. Annals of Pure and
Applied Logic, 76(1):47-97, 1995.
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Second-order Morley

Theorem

If it is consistent that there is a supercompact cardinal, then it is
consistent that = CH and every equivalence relation on the power set of
R that is in L(R) has < N; or a perfect set of inequivalent elements.

Proof. This is implicit in [FM 95] who use the usual model for PFA .

Corollary

Second-order Morley holds in this model since o-projective sets are in
L(R).
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|dea of [FM95] proof in the o-projective case

Definition (Thin)

An equivalence relation E on a Polish space X is thin if there is no
perfect set of pairwise E-inequivalent elements of X.
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|dea of [FM95] proof in the o-projective case

Definition (Thin)

An equivalence relation E on a Polish space X is thin if there is no
perfect set of pairwise E-inequivalent elements of X.

Consider the usual model for PFA. The code for a o-projective set of
reals is a real and appears at an initial stage of the iteration.
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|dea of [FM95] proof in the o-projective case

Definition (Thin)

An equivalence relation E on a Polish space X is thin if there is no
perfect set of pairwise E-inequivalent elements of X.

Consider the usual model for PFA. The code for a o-projective set of
reals is a real and appears at an initial stage of the iteration.

If an equivalence relation in L(R) is thin, then FM show (via
supercompactness) that the interpretation of that code when it appears is
also thin (“downwards generic absoluteness”).
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|dea of [FM95] proof in the o-projective case

Definition (Thin)

An equivalence relation E on a Polish space X is thin if there is no
perfect set of pairwise E-inequivalent elements of X.

Consider the usual model for PFA. The code for a o-projective set of
reals is a real and appears at an initial stage of the iteration.

If an equivalence relation in L(R) is thin, then FM show (via
supercompactness) that the interpretation of that code when it appears is
also thin (“downwards generic absoluteness"). Without loss of generality,
CH holds at that stage, since it holds cofinally often.

57/105



2nd-order Morley
0000e000000000

Idea of [FM95| proof in the o-projective case
Definition (Thin)

An equivalence relation E on a Polish space X is thin if there is no
perfect set of pairwise E-inequivalent elements of X.

Consider the usual model for PFA. The code for a o-projective set of
reals is a real and appears at an initial stage of the iteration.

If an equivalence relation in L(R) is thin, then FM show (via
supercompactness) that the interpretation of that code when it appears is
also thin (“downwards generic absoluteness”). Without loss of generality,
CH holds at that stage, since it holds cofinally often.

They then prove via supercompactness that, because the interpretation of
the code at that stage is thin, and because the equivalence relation is in
L(R), the rest of the forcing adds no new equivalence classes (“upwards
generic absoluteness”).
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|dea of [FM95] proof in the o-projective case

Consider the usual model for PFA. The code for a o-projective set of
reals is a real and appears at an initial stage of the iteration.

If an equivalence relation in L(R) is thin, then FM show (via
supercompactness) that the interpretation of that code when it appears is
also thin (“downwards generic absoluteness”). Without loss of generality,
CH holds at that stage, since it holds cofinally often. Thus, at that stage,
the interpretation of the code for the equivalence relation has at most ¥
equivalence classes.

They then prove via supercompactness that, because the interpretation of
the code at that stage is thin, and because the equivalence relation is in
L(R), the rest of the forcing adds no new equivalence classes ( “upwards
generic absoluteness”). But the interpretation of the code at the end of
the forcing is just the equivalence relation we started with, so indeed, it
has no more than N; equivalence classes. O
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Strengthening FM

With more modern methods, we can greatly reduce the strength of the
large cardinal hypothesis from [FM95], at least for o-projective
equivalence relations and hence for second-order Morley.
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Strengthening FM

Theorem (C)

Suppose there are infinitely many Woodin cardinals. Then there is a
model of = CH in which every o-projective equivalence relation on the
power set of R has < Ny or a perfect set of inequivalent elements.
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Strengthening FM

Theorem (C)

Suppose there are infinitely many Woodin cardinals. Then there is a
model of = CH in which every o-projective equivalence relation on the
power set of R has < Ny or a perfect set of inequivalent elements.

Definition (Woodin)

(i) Let x < 0 be ordinals and A C V;s. Then & is called A-reflecting in § if
and only if for all n < § there is an elementary embedding i : V — M
with critical point & such that i(k) > n and i(A)NV,, = AN V,,.
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Strengthening FM

Theorem (C)

Suppose there are infinitely many Woodin cardinals. Then there is a
model of = CH in which every o-projective equivalence relation on the
power set of R has < Ny or a perfect set of inequivalent elements.

Definition (Woodin)

(i) Let x < 0 be ordinals and A C V;s. Then & is called A-reflecting in § if
and only if for all 7 < § there is an elementary embedding i : V — M
with critical point £ such that i(x) > n and i(A)NV, = AN V,.

(i) A cardinal 0 is a Woodin cardinal if and only if for all A C ¢ there is
some k < § that is A-reflecting in 6.
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Strepgthening FM
Theorem (C)
Suppose there are infinitely many Woodin cardinals. Then there is a

model of = CH in which every o-projective equivalence relation on the
power set of R has < Ny or a perfect set of inequivalent elements.

Definition (Woodin)

(i) Let x < 0 be ordinals and A C V;. Then k is called A-reflecting in 0 if
and only if for all n < § there is an elementary embedding i : V — M
with critical point £ such that i(x) > 7 and i(A)NV, = AN V,.

(i1) A cardinal ¢ is a Woodin cardinal if and only if for all A C § there is
some Kk < § that is A-reflecting in §.

In terms of consistency strength, measurable < Woodin < a

measurable above infinitely many Woodins < supercompact.
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By work of Martin, Steele, Woodin, many applications of
supercompactness can be replaced by the assumption of (a
measurable above) infinitely many Woodins.
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By work of Martin, Steele, Woodin, many applications of
supercompactness can be replaced by the assumption of (a
measurable above) infinitely many Woodins.

The proof of the Theorem is technical but similar to the [FM]
supercompact proof sketched earlier.
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By work of Martin, Steele, Woodin, many applications of
supercompactness can be replaced by the assumption of (a
measurable above) infinitely many Woodins.

The proof of the Theorem is technical but similar to the [FM]
supercompact proof sketched earlier.

One simplification is that we don't need PFA ; instead we just
iteratively blow up the continuum and collapse it down to Nj,
entailing that in the final model 2% = Rj.
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By work of Martin, Steele, Woodin, many applications of
supercompactness can be replaced by the assumption of (a
measurable above) infinitely many Woodins.

The proof of the Theorem is technical but similar to the [FM]
supercompact proof sketched earlier.

One simplification is that we don't need PFA ; instead we just
iteratively blow up the continuum and collapse it down to Nj,
entailing that in the final model 2% = 5.

Surprising us, Jing Zhang [TZ, Arch. Math Logic, just appeared]
later proved:

Theorem (D)

Adjoin at least Ny Cohen reals to a model of CH . Then Absolute
Morley holds.
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As in the proofs of Theorems B and C, generic absoluteness is key.
It turns out that because Cohen real forcing is so simple and
homogeneous and because adding one Cohen real by forcing adds
perfectly many Cohen reals, we don't need the large cardinal. This
latter observation substitutes for upwards generic absoluteness.
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As in the proofs of Theorems B and C, generic absoluteness is key.
It turns out that because Cohen real forcing is so simple and
homogeneous and because adding one Cohen real by forcing adds
perfectly many Cohen reals, we don't need the large cardinal. This
latter observation substitutes for upwards generic absoluteness.

If we add Ny-many Cohen reals, the code for a o-projective set
appeared at a stage where CH holds.
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As in the proofs of Theorems B and C, generic absoluteness is key.
It turns out that because Cohen real forcing is so simple and
homogeneous and because adding one Cohen real by forcing adds
perfectly many Cohen reals, we don't need the large cardinal. This
latter observation substitutes for upwards generic absoluteness.

If we add Ny-many Cohen reals, the code for a o-projective set
appeared at a stage where CH holds.

In the case where we add more than Ny Cohen reals, we need to
apply an automorphism argument to get that without loss of
generality we may assume that the real that codes the o-projective
set appears in the first wy stages.
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As in the proofs of Theorems B and C, generic absoluteness is key.
It turns out that because Cohen real forcing is so simple and
homogeneous and because adding one Cohen real by forcing adds
perfectly many Cohen reals, we don't need the large cardinal. This
latter observation substitutes for upwards generic absoluteness.

If we add Ny-many Cohen reals, the code for a o-projective set
appeared at a stage where CH holds.

In the case where we add more than Ny Cohen reals, we need to
apply an automorphism argument to get that without loss of
generality we may assume that the real that codes the o-projective
set appears in the first wy stages.

The required downward generic absoluteness is proved by induction
on the complexity of the o-projective formulas that define our
equivalence relations. []
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Proof of Theorem C

Proof of Theorem C. Let M be a model of ZFC with a sequence of
Woodin cardinals (d; : i < w) and let k be the least inaccessible cardinal
in M. In particular, k < dp.
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Proof of Theorem C

Proof of Theorem C. Let M be a model of ZFC with a sequence of
Woodin cardinals (§; : i < w) and let k be the least inaccessible cardinal
in M. In particular, K < dy. We consider a generic extension M[G] of M

via the following forcing:
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Proof of Theorem C

Proof of Theorem C. Let M be a model of ZFC with a sequence of
Woodin cardinals (d; : i < w) and let x be the least inaccessible cardinal
in M. In particular, K < dy. We consider a generic extension M[G] of M
via the following forcing:

Consider the countable support iteration P,; of length « of the partial
orders {Q,, : a < K}.
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Proof of Theorem C

Proof of Theorem C. Let M be a model of ZFC with a sequence of
Woodin cardinals (J; : i < w) and let k be the least inaccessible cardinal
in M. In particular, K < dy. We consider a generic extension M[G] of M
via the following forcing:

Consider the countable support iteration I,; of length r of the partial
orders {Q,, : a < K}.

At an even stage o < k that is not a limit stage of cofinality w, let Q,
be the usual countably closed collapse of the continuum (of the current
stage of the iteration) to w;.
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Proof of Theorem C

Proof of Theorem C. Let M be a model of ZFC with a sequence of
Woodin cardinals (J; : i < w) and let k be the least inaccessible cardinal
in M. In particular, K < dy. We consider a generic extension M[G] of M
via the following forcing:

Consider the countable support iteration I,; of length r of the partial
orders {Q,, : a < K}.

At an even stage o < k that is not a limit stage of cofinality w, let Q,
be the usual countably closed collapse of the continuum (of the current
stage of the iteration) to wy. At limit stages o < k of cofinality w, let
Q. be the trivial forcing.
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Proof of Theorem C

Proof of Theorem C. Let M be a model of ZFC with a sequence of
Woodin cardinals (d; : i < w) and let x be the least inaccessible cardinal
in M. In particular, K < do. We consider a generic extension M[G] of M
via the following forcing:

Consider the countable support iteration P,; of length r of the partial
orders {Qq : a < Kk}

At an even stage o < k that is not a limit stage of cofinality w, let Q. be
the usual countably closed collapse of the continuum (of the current stage
of the iteration) to wy. At limit stages a < k of cofinality w, let Qq be
the trivial forcing. At an odd stage § < k, let Q,@ add 3 Cohen reals.

78 /105



2nd-order Morley
00000000 e00000

Proof of Theorem C

Proof of Theorem C. Let M be a model of ZFC with a sequence of
Woodin cardinals (J; : i < w) and let x be the least inaccessible cardinal
in M. In particular, K < dy. We consider a generic extension M[G] of M
via the following forcing:

Consider the countable support iteration P,; of length r of the partial
orders {Q,, : a < K}.

At an even stage o < & that is not a limit stage of cofinality w, let Q, be
the usual countably closed collapse of the continuum (of the current stage
of the iteration) to wy. At limit stages o < k of cofinality w, let Q. be
the trivial forcing. At an odd stage 8 < k, let Qﬁ add 3 Cohen reals.

Note that each individual forcing Qa and hence the whole iteration P,. is
proper and in particular preserves Nj.
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Proof of Theorem C

Consider the countable support iteration P,; of length r of the partial
orders {Qq : o < K}.

At an even stage a < k that is not a limit stage of cofinality w, let Q. be
the usual countably closed collapse of the continuum (of the current stage
of the iteration) to wy. At limit stages a < k of cofinality w, let Qq be
the trivial forcing. At an odd stage 8 < k, let Qg add 3 Cohen reals.

Note that each individual forcing Q. and hence the whole iteration P, is
proper and in particular preserves Nj.

The final model M[G] satisfies 2% = R, but CH holds at cofinally many
initial segments M[G[,] of the iteration. (Here G|, denotes the
canonical restriction of the generic G to the initial segment P, of the
iteration.)
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Proof of Theorem C

Consider the countable support iteration P,; of length r of the partial
orders {Q,, : a < K}.

At an even stage o < & that is not a limit stage of cofinality w, let Q, be
the usual countably closed collapse of the continuum (of the current stage
of the iteration) to wy. At limit stages o < k of cofinality w, let Qq be
the trivial forcing. At an odd stage 8 < k, let Qﬁ add 3 Cohen reals.

Note that each individual forcing Qa and hence the whole iteration P,. is
proper and in particular preserves Nj.

The final model M[G] satisfies 2™ = X, but CH holds at cofinally many
initial segments M[G1,] of the iteration. (Here G|, denotes the
canonical restriction of the generic G to the initial segment P, of the
iteration.)

We claim that in M[G] every o-projective equivalence relation on the

power set of R has < N; or a perfect set of inequivalent_elements.
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Proof components

The proof that the above model works uses ideas similar to those of
[FM95]. The key definitions and fact are:
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Proof components

Definition (Universally Baire [FMW92])

Let A be a set of reals. A is A\-universally Baire if for any topological
space X with a regular open basis of cardinality < A, and any continuous
f: X — R, the preimage f~1(A) has the property of Baire.

A is universally Baire if it is A-universally Baire for every infinite \.
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Proof components

Definition (Universally Baire [FMW92])

Let A be a set of reals. A is A\-universally Baire if for any topological
space X with a regular open basis of cardinality < A, and any continuous
f: X — R, the preimage f~1(A) has the property of Baire.

A is universally Baire if it is A-universally Baire for every infinite A.

Lemma (Woodin)

Let M be a model of ZFC with a sequence of Woodin cardinals
(6; : i < w). Then all o-projective sets in M are < do-universally Baire.
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Proof components
Definition (Universally Baire [FMW92])

Let A be a set of reals. A is A\-universally Baire if for any topological
space X with a regular open basis of cardinality < A, and any continuous
f: X — R, the preimage f~1(A) has the property of Baire.

A is universally Baire if it is A-universally Baire for every infinite \.

Lemma (Woodin)

Let M be a model of ZFC with a sequence of Woodin cardinals
(67 : i < w). Then all o-projective sets in M are < do-universally Baire.

[FMWO92] Q. Feng, M. Magidor, and H. Woodin. Universally Baire Sets of
Reals.

In H. Judah, W. Just, and H. Woodin, editors, Set Theory of the
Continuum, pages 203-242, New York, NY, 1992. Springer US
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Proof components

Definition (o-projective)

A formula ¢(v) in the language L, ., is called o-projective if and only if
it is X, for some o < wy.
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Proof components

Definition (o-projective)

A formula ¢(v) in the language L, ., is called o-projective if and only if
it is X, for some o < wy.

Note that a set of reals A is o-projective iff there is a ¥ ,-formula ¢ for
some a < wy and a parameter z € “w such that A is ¥, (z) definable in
second-order arithmetic in z
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Proof components
Definition (o-projective)
A formula ¢(v) in the language Ly, ., is called o-projective if and only if

it is X, for some o < wy.

Note that a set of reals A is o-projective iff there is a ¥ ,-formula ¢ for
some « < wy and a parameter z € “w such that A is X,(z) definable in
second-order arithmetic in z, i.e.,

A= {x e s £(2)  ol2).
where A?(z) is the two-sorted structure
(w’ww’ ap,+, x,exp, <,0,1, Z).

Here ap : “w — w denotes the binary operation of application, i.e.,
ap(x, n) = x(n).
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Proof components

Definition (o-projective)

A formula ¢(v) in the language L, ., is called o-projective if and only if
it is X, for some o < wy.

Lemma

Let M be a model of ZFC with a sequence of Woodin cardinals

(6; : i < w). Let P be a partial order in M with |P| < &y, and let G be
P-generic over M.

Then for every o-projective formula ¢(v) and every x € (“w)V,

(A2 | () if and only if (AZ(x))ME) = ().
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Proof components

Lemma

Let M be a model of ZFC with a sequence of Woodin cardinals

(6; : i < w). Let P be a partial order in M with |P| < &y, and let G be
P-generic over M.

Then for every a-projective formula o(v) and every x € (“w)M,

(A2 | () if and only if (AZ(x))ME) | ().

We now have everything we need in order to carry out the FM proof for
o-projective sets with much weaker large cardinal hypotheses.
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Proof overview

We now proceed as in FM, arguing that if the (o-projective) set of
isomorphism classes of countable models for second-order theory is
thin in the final model, then its code appears in an intermediate
model in which there is an infinite sequence of Woodins. In that
model, that code codes a o-projective set, which, by the Woodins
is universally Baire.
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Proof overview

We now proceed as in FM, arguing that if the (o-projective) set of
isomorphism classes of countable models for second-order theory is
thin in the final model, then its code appears in an intermediate
model in which there is an infinite sequence of Woodins. In that
model, that code codes a o-projective set, which, by the Woodins
is universally Baire.

That model can be assumed to be a model of CH, so there are
only ¥ isomorphism classes there.
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Proof overview

We now proceed as in FM, arguing that if the (o-projective) set of
isomorphism classes of countable models for second-order theory is
thin in the final model, then its code appears in an intermediate
model in which there is an infinite sequence of Woodins. In that
model, that code codes a o-projective set, which, by the Woodins
is universally Baire.

That model can be assumed to be a model of CH, so there are
only ¥ isomorphism classes there.

The universal Baireness assures that no equivalence class added
after that is equivalent to those in the thin set, so the thin set
doesn’t grow in size as its code becomes the code in the final
model for our original thin set. This last argument about universal
Baireness is carried out in [FM95]. O
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Definition (Absolutely complementing trees)

Let (S, T) be trees on w X k for some ordinal &, and let ) be an ordinal.
We say (S, T) is n-absolutely complementing if and only if
p[S] = “w\ p[T] in every Col(w,n)-generic extension of V.
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Definition (Absolutely complementing trees)

Let (S, T) be trees on w X k for some ordinal k, and let ) be an ordinal.
We say (S, T) is n-absolutely complementing if and only if
p[S] = “w \ p[T] in every Col(w,n)-generic extension of V.

We don't have time to define p[T] here. The basic idea is that it's a
projection of T into “w. The trees S, T act as codes to provide
absoluteness for complicated sets of reals. For details, see [FM95].
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Definition (Absolutely complementing trees)

Let (S, T) be trees on w X k for some ordinal k, and let ) be an ordinal.
We say (S, T) is n-absolutely complementing if and only if
p[S] = “w \ p[T] in every Col(w,n)-generic extension of V.

We don't have time to define p[T] here. The basic idea is that it's a
projection of T into “w. The trees S, T act as codes to provide
absoluteness for complicated sets of reals. For details, see [FM95].

[FM95] M. Foreman and M. Magidor. Large cardinals and definable
counterexamples to the continuum hypothesis.

Annals of Pure and Applied Logic, 76(1):47-97, 1995.
doi:https: / /doi.org/10.1016,/0168-0072(94)00031-W
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Definition (Absolutely complementing trees)

Let (S, T) be trees on w X k for some ordinal «, and let 7 be an ordinal.
We say (S, T) is n-absolutely complementing if and only if
p[S] = “w \ p[T] in every Col(w,n)-generic extension of V.

Definition (Universally Baire, FMW92)

Let A be a set of reals. We say that A is < n-universally Baire (< n-uB)
if for every ordinal v < 7, there are v-absolutely complementing trees
(S, T) with p[S] = A.

We say A is universally Baire (uB) if it is < n-universally Baire for every
ordinal 7).
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Definition (Universally Baire, FMW92)

Let A be a set of reals. We say that A is < n-universally Baire (< n-uB)
if for every ordinal v < 7, there are v-absolutely complementing trees
(S, T) with p[S] = A.

We say A is universally Baire (uB) if it is < n-universally Baire for every
ordinal 7).

Proposition 3 ([FMW92])

The two definitions of < n-universally Baire are equivalent.
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Definition (Universally Baire, FMW92)

Let A be a set of reals. We say that A is < n-universally Baire (< n-uB)
if for every ordinal v < 7, there are v-absolutely complementing trees
(S, T) with p[S] = A.

We say A is universally Baire (uB) if it is < n-universally Baire for every
ordinal 7.

Lemma

Let M be a model of ZFC with a sequence of Woodin cardinals
(6; : i <w). Then all o-projective sets in M are < do-universally-Baire.
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Thin Equivalence Relations

Can one prove in ZFC restricted versions of Absolute Morley?
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Thin Equivalence Relations

Can one prove in ZFC restricted versions of Absolute Morley?

Yes for X1 thin equivalence relations and hence for universal second order
sentences. But
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Thin Equivalence Relations

Can one prove in ZFC restricted versions of Absolute Morley?

Yes for X1 thin equivalence relations and hence for universal second order
sentences. But

Theorem

In ZFC there is no upper bound below 2%° for the number of equivalence
classes of thin Y1 equivalence relations.
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Thin Equivalence Relations

Can one prove in ZFC restricted versions of Absolute Morley?

Yes for ¥ thin equivalence relations and hence for universal second order
sentences. But
Theorem

In ZFC there is no upper bound below 2%° for the number of equivalence
classes of thin ¥} equivalence relations.

Can one prove upper bounds from large cardinals rather than from
generic extensions involving large cardinals?
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Thin Equivalence Relations

Can one prove in ZFC restricted versions of Absolute Morley?

Yes for £} thin equivalence relations and hence for universal second order
sentences. But

Theorem

In ZFC there is no upper bound below 2% for the number of equivalence
classes of thin ¥} equivalence relations.

Can one prove upper bounds from large cardinals rather than from
generic extensions involving large cardinals?

Theorem

Assume the Axiom of Projective Determinacy (which follows from the
existence of a supercompact cardinal). Then thin ¥3 equivalence
relations have at most N1 equivalence classes.
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Thin Equivalence Relations
Can one prove in ZFC restricted versions of Absolute Morley?

Yes for ¥} thin equivalence relations and hence for universal second order
sentences. But

Theorem

In ZFC there is no upper bound below 2%° for the number of equivalence
classes of thin Y1 equivalence relations.

Can one prove upper bounds from large cardinals rather than from
generic extensions involving large cardinals?

Theorem

Assume the Axiom of Projective Determinacy (which follows from the
existence of a supercompact cardinal). Then thin ¥} equivalence
relations have at most Xy equivalence classes.

Other logics, e.g. with game quantifiers. 105 /105



	Morley Theorem
	Second-order Logic
	Descriptive Complexity of 2nd-order Theories
	Second-order Morley

