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Abstract –We obtain a simple formula for the stationary measure of the height field evolving
according to the Kardar-Parisi-Zhang equation on the interval [0, L] with general Neumann type
boundary conditions and any interval size. This is achieved using the recent results of Corwin
and Knizel (arXiv:2103.12253) together with Liouville quantum mechanics. Our formula allows to
easily determine the stationary measure in various limits: KPZ fixed point on an interval, half-line
KPZ equation, KPZ fixed point on a half-line, as well as the Edwards-Wilkinson equation on an
interval.

Introduction. – The Kardar-Parisi-Zhang (KPZ)
equation [1] describes the stochastic growth of a contin-
uum interface driven by white noise. In one dimension it
is at the center of the so-called KPZ class which contains a
number of well-studied models sharing the same universal
behavior at large scale. For all these models one can define
a height field. For example, in particle transport models
such as the asymmetric simple exclusion process (ASEP)
on a lattice, the local density is a discrete analog to the
height gradient [2, 3]. In the limit of weak asymmetry,
ASEP converges [4], upon rescaling space and time to the
KPZ equation. In the large scale limit, all models in the
KPZ class (in particular ASEP and the KPZ equation) are
expected to converge to a universal process called the KPZ
fixed point [5, 6]. Note that the KPZ fixed point is uni-
versal with respect to the microscopic dynamics but still
depends on the geometry of the space considered (full-line,
half-line, circle, segment with boundary conditions).

An important question is the nature of the steady state.
While the global height grows linearly in time with non
trivial t1/3 fluctuations, the height gradient, or the height
differences between any two points, will reach a stationary
distribution. It was noticed long ago [1,7,8] that the KPZ
equation on the full line admits the Brownian motion as
a stationary measure. It was proved rigorously in [4, 9],
and in [10] for periodic boundary conditions. For ASEP,
stationary measures were studied on the full and half-line
[11, 12] and exact formulas were obtained on an interval
using the matrix product ansatz [13]. The large scale limit
of the stationary measures for ASEP on an interval was
studied in [14,15]. The processes obtained there as a limit

can be described in terms of textbook stochastic processes
such as Brownian motions, excursions and meanders, and
they should correspond to stationary measures of the KPZ
fixed point on an interval.

For the KPZ equation, while the stationary measures
are simply Brownian in the full-line and circle case, the
situation is more complicated (not translation invariant,
not Gaussian) in the cases of the half-line and the interval.
One typically imposes Neumann type boundary conditions
(that is, we fix the derivative of the height field at the
boundary) so that stationary measures depend on bound-
ary parameters and involve more complicated stochastic
processes (see below). For the KPZ equation on the half-
line with Neumann type boundary condition, it can be
shown [16] that a Brownian motion with an appropriate
drift is stationary (the drift must be proportional to the
boundary parameter). This specific stationary measure
was studied in [17] for the equivalent directed polymer
problem for which the boundary parameter measures the
attractiveness of the wall. However, based on the analysis
of stationary measures of ASEP on a half-line [11], it was
expected that more complicated stationary measures for
the KPZ equation also exist.

The question of the stationary measure for the KPZ
equation on the interval [0, L] has also remained open. In
a recent breakthrough, Corwin and Knizel obtained [18]
an explicit formula for the Laplace transform of the sta-
tionary height distribution (for L = 1, and for some range
of parameters). This Laplace transform formula relates
the stationary measure to an auxiliary stochastic process
called continuous dual Hahn process. This construction
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For the KPZ equation, while the stationary measures
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situation is more complicated (not translation invariant,
not Gaussian) in the cases of the half-line and the interval.
One typically imposes Neumann type boundary conditions
(that is, we fix the derivative of the height field at the
boundary) so that stationary measures depend on bound-
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processes (see below). For the KPZ equation on the half-
line with Neumann type boundary condition, it can be
shown [16] that a Brownian motion with an appropriate
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boundary parameter). This specific stationary measure
was studied in [17] for the equivalent directed polymer
problem for which the boundary parameter measures the
attractiveness of the wall. However, based on the analysis
of stationary measures of ASEP on a half-line [11], it was
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While the global height grows linearly in time with non
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differences between any two points, will reach a stationary
distribution. It was noticed long ago [1,7,8] that the KPZ
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not Gaussian) in the cases of the half-line and the interval.
One typically imposes Neumann type boundary conditions
(that is, we fix the derivative of the height field at the
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processes (see below). For the KPZ equation on the half-
line with Neumann type boundary condition, it can be
shown [16] that a Brownian motion with an appropriate
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was studied in [17] for the equivalent directed polymer
problem for which the boundary parameter measures the
attractiveness of the wall. However, based on the analysis
of stationary measures of ASEP on a half-line [11], it was
expected that more complicated stationary measures for
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a recent breakthrough, Corwin and Knizel obtained [18]
an explicit formula for the Laplace transform of the sta-
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The integral in (F12) cannot be simplified directly using (F11), but we may use that

(F12) = lim
ε→0

1

Γ(2w)

∫ i∞

−i∞

dz

2iπ

Γ(w + z)2Γ(w − z)2Γ(ε− w − z)Γ(ε− w + z)

Γ(2z)Γ(−2z)
. (F13)

When 0 < w < 1, this integral above is analytic in ε ∈ (0, +∞), and the expression for 0 < ε < w can be obtained by
an analytic continuation from the expression when ε > w, which is given by (F11). More precisely, for 0 < ε < w,

1

Γ(2w)

∫ i∞

−i∞

dz

2iπ

Γ(w + z)2Γ(w − z)2Γ(ε− w − z)Γ(ε− w + z)

Γ(2z)Γ(−2z)
=

1

Γ(2w)

(
2Γ(2w)Γ(ε)2 + Rε−w − R−ε+w

)
(F14)

where R±ε∓w are residues of the integrand at z = ±ε∓ w, which can be computed as

Rε−w = −Rw−ε = −
Γ(2w − ε)2Γ(ε)2

Γ(2w − 2ε)
. (F15)

Finally, taking the limit ε → 0, we obtain
∫ +∞

0
xE[pA(x)]dx = lim

ε→0

1

Γ(2w)

(
2Γ(2w)Γ(ε)2 − 2

Γ(2w − ε)2Γ(ε)2

Γ(2w − 2ε)

)
= 2ψ′(2w). (F16)

Remark: Value of E[pA(0)]. Letting x = 0 in (F6) and using the identity (F11) yields E[pA(0)] = w. This result

has a simple origin: when x = 0 pA(0) =
(∫∞

0 eB(x)−wxdx
)−1 ∼ Γ(2w, 1/2) and E[Γ(2w, 1/2)] = w.

Remark: Decay for large x. Let us start with 0 < w < 1. Saddle point analysis and rescaling in formula (F6)
gives that at large x the decay is exponential with a −3/2 power law prefactor, E[pA(x)] ' cwx−3/2e−w2x/2, with

cw = π3/2 csc2(πw)Γ(w+1)2

√
2Γ(2w)

. For w > 1 however the decay at large x is dominated by the term n = 1 in the discrete

series in (F9) and E[pA(x)] ∼ e
−x

2 (2w−1) for w > 1, i.e. a much slower decay than e
−x

2 w2
.

Remark: Limit w = −(A + 1
2 ) → 0. In the limit w → 0, it is easy to check, upon rescaling q → wq and x → y/w2

in (F5) that as w → 0+ one has E[pA(x)]dx → P (y)dy where P (y) is the probability given in the main text (of
moments given by (31)). In that limit the large x tail obtained above matches the tail of P (y) at large y, since

cw ∼
√

2
π /w for w → 0. The −3/2 exponent, ubiquitous in this types of problems [55, 57], is known to originate from

quasi-degenerate extrema of the Brownian [84].

2. m-point correlations

To compute the m point correlations with m ! 2 one uses the Liouville quantum mechanics. One introduces the
Liouville Hamiltonian Hp on the real axis U ∈ R, and its eigenfunctions ψk(U) which are real and indexed by k ! 0

Hp = −
1

2

d2

dU2
+ peU , Hpψk(U) =

k2

8
ψk(U), ψk(U) =

1

π

√
k sinh(πk)Kik(2

√
2peU/2). (F17)

These eigenfunctions form a continuum orthonormal basis (we use the conventions in [55] with β = σ = 1 and
α = p). It allows to compute our observables of interest. The first one is expressed as follows, using the path integral
representation for the Brownian motion with drift, U(x) = B(x) − wx, with U0 = U(0) = 0 and free U(L) = UL,
followed by the Feynman-Kac formula

φµ=2w(p, L) = E[e−pZw
L ] = e− w2L

2

∫ +∞

−∞
dULe−wUL〈UL|e−LHp |U0 = 0〉 (F18)

=

∫ +∞

0
dk

∫ +∞

−∞
dULψk(UL)ψ∗

k(0)e−wUL− L
8 (k2+4w2)

where the dependence in the drift −w is made explicit through a trivial shift. In the last equation we have used the
spectral decomposition of Hp in terms of its eigenvectors, 〈U |k〉 = ψk(U) introduced above. For w < 0 one can use
the identity

∫ +∞

−∞
dUe−wUKik(2

√
2peU/2) =

(2p)w

2

∣∣∣∣Γ
(

−w +
ik

2

)∣∣∣∣
2

(F19)

1

Z +1

�1
dUL

Z U(L)=UL

U(0)=0
DU(x)e�

R L
0 dx 1

2 (
dU
dx )2+peU(x)

(1)

⌘ 2

Z +1

0
dye2B(y)�2µy

(2)

dx(t)

dt
= F (x(t)) + ⌘(t) (3)

h⌘(t)⌘(t0)i = �(t� t0) (4)

F (x) = �dB(x)

dx
+ µ (5)

@tP =
1

2
@2
xP � @x(F (x)P ) (6)

P (0, t) ' 2

log
2 t

(7)

P (0, t) ' cµt
�µ

(8)

⌧(x) =

Z +1

0
dtP (x, x, t) = 2

Z +1

x
dy e�2

R y
x F (y)dy

(9)

p(�) / �u�v�1e��
(10)

H̄(x) ' Lf(
x

L
,
L

Lv
) (11)

Lv = 1/(v + 1/2) (12)

(e2v̂x̃ � 1)(coth(v̂)� 1)

4v̂
� x̃

2
coth(v̂) (13)

f(x̃, v̂) = (14)

u = v < 0 (15)

@xH̄(x)|x=0 = u (16)

@xH̄(x)|x=L = �v (17)

= E(logZ(x)� logZ(0)) (18)

H̄(x) (19)

E(H(x)�H(0)) (20)

hH(x)�H(0)i (21)

M(x̃) (22)

X̃(x) � 0 (23)

X̃(1)  0 (24)

X̃(0)� X̃(1) � 0 (25)

X̃(1) � 0 (26)

X̃(0) = 0 (27)
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b ⌧ 1 (33)

z (34)

z0 (35)

|x� y| ⌧ t2/3 (36)

|x� y| = O(1) (37)

x/t ! 0 (38)

x ⌧ t2/3 (39)

x = O(1) (40)

Z(x, t)

Z(0, t)
= eh(x,t)�h(0,t) ! eB(x)

(41)
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Z(0, t)
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1

Zw
L =

Z L

0
eB(x)�wx

(1)

U(x) ⌘ B(x)� wx (2)

@xH(x)|x=0 = u (3)

@xH(x)|x=L = v (4)

H(x) = logZ(x)� logZ(0) (5)

v < 0 (6)

e�
R L
0 dx( dX(x)

dx +v)2 ⇥ Z�(u+v)
L (7)

ZL =

Z L

0
dxe�2X(x)

(8)

X(x) ⇡ 1p
2
B(x)� vx (9)

Z1 =

Z 1

0
dxe�

p
2B(x)+2vx

(10)

E(Z�(u+v)
1 ) < +1 (11)

u > v (12)

(13)

x⇤
(14)

H(x) (15)

u+ v > 0 (16)

(u, v) (17)

= A+
1

2
(18)

A > 0 (19)

A < 0 (20)

hxi ' 1

2✏2
(21)

hx2ic ' 1

✏3
(22)

hxik ' ck✏
�2k

(23)

✏ = A+
1

2
(24)

hx2ic = �(�2)
k (k)

(�2✏) (25)

(26)

1

h(0, t)� h(0, 0) ' v1t+ (�t)1/3�BR (1)

Zw
L =

Z L

0
dx eB(x)�wx

(2)

U(x) ⌘ B(x)� wx (3)

@xH(x)|x=0 = u (4)

@xH(x)|x=L = v (5)

H(x) = logZ(x)� logZ(0) (6)

v < 0 (7)

e�
R L
0 dx( dX(x)

dx +v)2 ⇥ Z�(u+v)
L (8)

ZL =

Z L

0
dxe�2X(x)

(9)

X(x) ⇡ 1p
2
B(x)� vx (10)

Z1 =

Z 1

0
dxe�

p
2B(x)+2vx

(11)

E(Z�(u+v)
1 ) < +1 (12)

u > v (13)

(14)

x⇤
(15)

H(x) (16)

u+ v > 0 (17)

(u, v) (18)

= A+
1

2
(19)

A > 0 (20)

A < 0 (21)
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2✏2
(22)
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✏3
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hxik ' ck✏
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✏ = A+
1

2
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(27)
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The integral in (F12) cannot be simplified directly using (F11), but we may use that

(F12) = lim
ε→0

1

Γ(2w)

∫ i∞

−i∞

dz

2iπ

Γ(w + z)2Γ(w − z)2Γ(ε− w − z)Γ(ε− w + z)

Γ(2z)Γ(−2z)
. (F13)

When 0 < w < 1, this integral above is analytic in ε ∈ (0, +∞), and the expression for 0 < ε < w can be obtained by
an analytic continuation from the expression when ε > w, which is given by (F11). More precisely, for 0 < ε < w,

1

Γ(2w)

∫ i∞

−i∞

dz

2iπ

Γ(w + z)2Γ(w − z)2Γ(ε− w − z)Γ(ε− w + z)

Γ(2z)Γ(−2z)
=

1

Γ(2w)

(
2Γ(2w)Γ(ε)2 + Rε−w − R−ε+w

)
(F14)

where R±ε∓w are residues of the integrand at z = ±ε∓ w, which can be computed as

Rε−w = −Rw−ε = −
Γ(2w − ε)2Γ(ε)2

Γ(2w − 2ε)
. (F15)

Finally, taking the limit ε → 0, we obtain
∫ +∞

0
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)
= 2ψ′(2w). (F16)

Remark: Value of E[pA(0)]. Letting x = 0 in (F6) and using the identity (F11) yields E[pA(0)] = w. This result

has a simple origin: when x = 0 pA(0) =
(∫∞

0 eB(x)−wxdx
)−1 ∼ Γ(2w, 1/2) and E[Γ(2w, 1/2)] = w.

Remark: Decay for large x. Let us start with 0 < w < 1. Saddle point analysis and rescaling in formula (F6)
gives that at large x the decay is exponential with a −3/2 power law prefactor, E[pA(x)] ' cwx−3/2e−w2x/2, with

cw = π3/2 csc2(πw)Γ(w+1)2
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. For w > 1 however the decay at large x is dominated by the term n = 1 in the discrete

series in (F9) and E[pA(x)] ∼ e
−x

2 (2w−1) for w > 1, i.e. a much slower decay than e
−x

2 w2
.

Remark: Limit w = −(A + 1
2 ) → 0. In the limit w → 0, it is easy to check, upon rescaling q → wq and x → y/w2

in (F5) that as w → 0+ one has E[pA(x)]dx → P (y)dy where P (y) is the probability given in the main text (of
moments given by (31)). In that limit the large x tail obtained above matches the tail of P (y) at large y, since

cw ∼
√

2
π /w for w → 0. The −3/2 exponent, ubiquitous in this types of problems [55, 57], is known to originate from

quasi-degenerate extrema of the Brownian [84].

2. m-point correlations

To compute the m point correlations with m ! 2 one uses the Liouville quantum mechanics. One introduces the
Liouville Hamiltonian Hp on the real axis U ∈ R, and its eigenfunctions ψk(U) which are real and indexed by k ! 0

Hp = −
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These eigenfunctions form a continuum orthonormal basis (we use the conventions in [55] with β = σ = 1 and
α = p). It allows to compute our observables of interest. The first one is expressed as follows, using the path integral
representation for the Brownian motion with drift, U(x) = B(x) − wx, with U0 = U(0) = 0 and free U(L) = UL,
followed by the Feynman-Kac formula

φµ=2w(p, L) = E[e−pZw
L ] = e− w2L

2

∫ +∞
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where the dependence in the drift −w is made explicit through a trivial shift. In the last equation we have used the
spectral decomposition of Hp in terms of its eigenvectors, 〈U |k〉 = ψk(U) introduced above. For w < 0 one can use
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The integral in (F12) cannot be simplified directly using (F11), but we may use that
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Remark: Value of E[pA(0)]. Letting x = 0 in (F6) and using the identity (F11) yields E[pA(0)] = w. This result

has a simple origin: when x = 0 pA(0) =
(∫∞

0 eB(x)−wxdx
)−1 ∼ Γ(2w, 1/2) and E[Γ(2w, 1/2)] = w.

Remark: Decay for large x. Let us start with 0 < w < 1. Saddle point analysis and rescaling in formula (F6)
gives that at large x the decay is exponential with a −3/2 power law prefactor, E[pA(x)] ' cwx−3/2e−w2x/2, with
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. For w > 1 however the decay at large x is dominated by the term n = 1 in the discrete

series in (F9) and E[pA(x)] ∼ e
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2 (2w−1) for w > 1, i.e. a much slower decay than e
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.

Remark: Limit w = −(A + 1
2 ) → 0. In the limit w → 0, it is easy to check, upon rescaling q → wq and x → y/w2

in (F5) that as w → 0+ one has E[pA(x)]dx → P (y)dy where P (y) is the probability given in the main text (of
moments given by (31)). In that limit the large x tail obtained above matches the tail of P (y) at large y, since

cw ∼
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2
π /w for w → 0. The −3/2 exponent, ubiquitous in this types of problems [55, 57], is known to originate from

quasi-degenerate extrema of the Brownian [84].
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These eigenfunctions form a continuum orthonormal basis (we use the conventions in [55] with β = σ = 1 and
α = p). It allows to compute our observables of interest. The first one is expressed as follows, using the path integral
representation for the Brownian motion with drift, U(x) = B(x) − wx, with U0 = U(0) = 0 and free U(L) = UL,
followed by the Feynman-Kac formula
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where the dependence in the drift −w is made explicit through a trivial shift. In the last equation we have used the
spectral decomposition of Hp in terms of its eigenvectors, 〈U |k〉 = ψk(U) introduced above. For w < 0 one can use
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Remark: Decay for large x. Let us start with 0 < w < 1. Saddle point analysis and rescaling in formula (F6)
gives that at large x the decay is exponential with a −3/2 power law prefactor, E[pA(x)] ' cwx−3/2e−w2x/2, with
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.

Remark: Limit w = −(A + 1
2 ) → 0. In the limit w → 0, it is easy to check, upon rescaling q → wq and x → y/w2

in (F5) that as w → 0+ one has E[pA(x)]dx → P (y)dy where P (y) is the probability given in the main text (of
moments given by (31)). In that limit the large x tail obtained above matches the tail of P (y) at large y, since
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π /w for w → 0. The −3/2 exponent, ubiquitous in this types of problems [55, 57], is known to originate from
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These eigenfunctions form a continuum orthonormal basis (we use the conventions in [55] with β = σ = 1 and
α = p). It allows to compute our observables of interest. The first one is expressed as follows, using the path integral
representation for the Brownian motion with drift, U(x) = B(x) − wx, with U0 = U(0) = 0 and free U(L) = UL,
followed by the Feynman-Kac formula
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where the dependence in the drift −w is made explicit through a trivial shift. In the last equation we have used the
spectral decomposition of Hp in terms of its eigenvectors, 〈U |k〉 = ψk(U) introduced above. For w < 0 one can use
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Remark: Decay for large x. Let us start with 0 < w < 1. Saddle point analysis and rescaling in formula (F6)
gives that at large x the decay is exponential with a −3/2 power law prefactor, E[pA(x)] ' cwx−3/2e−w2x/2, with
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.
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2 ) → 0. In the limit w → 0, it is easy to check, upon rescaling q → wq and x → y/w2

in (F5) that as w → 0+ one has E[pA(x)]dx → P (y)dy where P (y) is the probability given in the main text (of
moments given by (31)). In that limit the large x tail obtained above matches the tail of P (y) at large y, since

cw ∼
√

2
π /w for w → 0. The −3/2 exponent, ubiquitous in this types of problems [55, 57], is known to originate from
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These eigenfunctions form a continuum orthonormal basis (we use the conventions in [55] with β = σ = 1 and
α = p). It allows to compute our observables of interest. The first one is expressed as follows, using the path integral
representation for the Brownian motion with drift, U(x) = B(x) − wx, with U0 = U(0) = 0 and free U(L) = UL,
followed by the Feynman-Kac formula
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where the dependence in the drift −w is made explicit through a trivial shift. In the last equation we have used the
spectral decomposition of Hp in terms of its eigenvectors, 〈U |k〉 = ψk(U) introduced above. For w < 0 one can use
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When 0 < w < 1, this integral above is analytic in ε ∈ (0, +∞), and the expression for 0 < ε < w can be obtained by
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Remark: Value of E[pA(0)]. Letting x = 0 in (F6) and using the identity (F11) yields E[pA(0)] = w. This result

has a simple origin: when x = 0 pA(0) =
(∫∞

0 eB(x)−wxdx
)−1 ∼ Γ(2w, 1/2) and E[Γ(2w, 1/2)] = w.

Remark: Decay for large x. Let us start with 0 < w < 1. Saddle point analysis and rescaling in formula (F6)
gives that at large x the decay is exponential with a −3/2 power law prefactor, E[pA(x)] ' cwx−3/2e−w2x/2, with

cw = π3/2 csc2(πw)Γ(w+1)2

√
2Γ(2w)

. For w > 1 however the decay at large x is dominated by the term n = 1 in the discrete

series in (F9) and E[pA(x)] ∼ e
−x

2 (2w−1) for w > 1, i.e. a much slower decay than e
−x

2 w2
.

Remark: Limit w = −(A + 1
2 ) → 0. In the limit w → 0, it is easy to check, upon rescaling q → wq and x → y/w2

in (F5) that as w → 0+ one has E[pA(x)]dx → P (y)dy where P (y) is the probability given in the main text (of
moments given by (31)). In that limit the large x tail obtained above matches the tail of P (y) at large y, since

cw ∼
√

2
π /w for w → 0. The −3/2 exponent, ubiquitous in this types of problems [55, 57], is known to originate from

quasi-degenerate extrema of the Brownian [84].

2. m-point correlations

To compute the m point correlations with m ! 2 one uses the Liouville quantum mechanics. One introduces the
Liouville Hamiltonian Hp on the real axis U ∈ R, and its eigenfunctions ψk(U) which are real and indexed by k ! 0
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These eigenfunctions form a continuum orthonormal basis (we use the conventions in [55] with β = σ = 1 and
α = p). It allows to compute our observables of interest. The first one is expressed as follows, using the path integral
representation for the Brownian motion with drift, U(x) = B(x) − wx, with U0 = U(0) = 0 and free U(L) = UL,
followed by the Feynman-Kac formula
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where the dependence in the drift −w is made explicit through a trivial shift. In the last equation we have used the
spectral decomposition of Hp in terms of its eigenvectors, 〈U |k〉 = ψk(U) introduced above. For w < 0 one can use
the identity
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ASEP

ASEP (asymmetric simple exclusion process) is a continuous Markov
process on {0, 1}Z, whose transition rates depend on an asymmetry
parameter q.

�5 �4 �3 �2 �1 0 1 2 3 4 5 6

1 q 1 1q

I For any % 2 [0, 1], the measure Ber(%)⌦Z is invariant.

I Define a height function H(t, x) so that
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1 if site x is occupied.

�1 if site x is empty.

and H(t, 0) is the number of particles which have crossed the origin.
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FIGURE 1.1. The half line and open ASEP (left and right respectively)
drawn in terms of particles and height functions (bottom and top respec-
tively). In open ASEP, particles inside jump left and right (i.e. according
to clocks of exponential distribution with this rate) at rates q and p; par-
ticles are inserted (provided the destination is empty) from the left (resp.
right) at rate α (resp. δ ); particles are removed (provided the removal
site is occupied) from the left (resp. right) at rate γ (resp. β ). In half line
ASEP, there is only a boundary on the left and the right goes on infinitely.

theory and delicate method of images estimates). In identifying the limiting mar-
tingale problem, Bertini and Giacomin discovered a key identity (Proposition 4.8

and Lemma A.1 in [7]) for the quadratic martingale which identifies the white
noise. In our case of bounded intervals, that identity does not hold. Instead we find

(via a new method using Green’s functions) an approximate version which suffices
– see Lemma 5.8 and Proposition 5.1.

Presently the other above mentioned KPZ equation convergence methods have
not been developed into the context we consider here. These other methods are less

reliant upon the exact structure of the underlying particle system, so it would be
nice to see them developed so as to prove universality of the type of convergence

we have shown here for the particular model of open ASEP. The energy solutions
method only applies in stationarity (of for initial data with finite entropy with re-

spect to the stationary measure) and relies upon certain inputs from hydrodynamic
theory which may be more complicated in this setting since the open ASEP gen-
erally lacks product invariant measures. However, in a special one-parameter case
(see Remark 2.9) the invariant measure reduce to product Bernoulli. Upon sending

this present paper out for comments, we learned that [41] are completing a work in
which they develop the energy solutions approach to study the KPZ limit of open

ASEP in the special subcase when the invariant measure is product Bernoulli, and
the effective density is exactly 1/2. This is a special point in the two-dimensional

family of parameters we consider here. For generic choices of our parameters, the
invariant measure is not of product form.

1.1 Existing open ASEP results

Before defining the open / half line ASEP and stating our main convergence

theorem, let us try to put our work into the context of known results. Much of this
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ASEP

ASEP (asymmetric simple exclusion process) is a continuous Markov
process on {0, 1}Z, whose transition rates depend on an asymmetry
parameter q.

�5 �4 �3 �2 �1 0 1 2 3 4 5 6

1 q 1 1q
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and H(t, 0) is the number of particles which have crossed the origin.

weak universality 
weak asymmetry limit 

convergence to the KPZ equation 

2

t ! +1 (43)

Z(x, t)

Z(y, t)
= eh(x,t)�h(y,t) ! eB(x)�B(y)

(44)

Z(x, t)

Z(y, t)
= eh(x,t)�h(y,t) ! eB(x)�B(y)�a(x�y)

(45)

�at (46)

t ! +1 (47)

Z(x, t|y, 0) = (48)

Z x(t)=x

x(0)=y
Dx(⌧) (49)

e�
R t
0 d⌧ 1

4 (
dx(⌧)
d⌧ )2

(50)

e�
R t
0 d⌧ 1

4 (
dx(⌧)
d⌧ )2�

p
2 ⇠(x(⌧),⌧)

(51)

V (x, t)V (x0, t0) = c̄ (52)

�(t� t0)�(x� x0
) (53)

h(i, ⌧)� h(i� 1, ⌧) =

(
1 site i occupied

�1 site i empty
(54)

asymmetric exclusion process 

1

Z (1)

x ! +1 (2)

Z +1

�1
dUL

Z U(L)=UL

U(0)=0
DU(x)e�

R L
0 dx 1

2 (
dU
dx +w)2+peU(x)

(3)

⌘ 2

Z +1

0
dye2B(y)�2µy

(4)

dx(t)

dt
= F (x(t)) + ⌘(t) (5)

h⌘(t)⌘(t0)i = �(t� t0) (6)

F (x) = �dB(x)

dx
+ µ (7)

@tP =
1

2
@2
xP � @x(F (x)P ) (8)

P (0, t) ' 2

log
2 t

(9)

P (0, t) ' cµt
�µ

(10)

⌧(x) =

Z +1

0
dtP (x, x, t) = 2

Z +1

x
dy e�2

R y
x F (y)dy

(11)

p(�) / �u�v�1e��
(12)

H̄(x) ' Lf(
x

L
,
L

Lv
) (13)

Lv = 1/(v + 1/2) (14)

(e2v̂x̃ � 1)(coth(v̂)� 1)

4v̂
� x̃

2
coth(v̂) (15)

f(x̃, v̂) = (16)

u = v < 0 (17)

@xH̄(x)|x=0 = u (18)

@xH̄(x)|x=L = �v (19)

= E(logZ(x)� logZ(0)) (20)

H̄(x) (21)

E(H(x)�H(0)) (22)

hH(x)�H(0)i (23)

M(x̃) (24)

X̃(x) � 0 (25)

X̃(1)  0 (26)

X̃(0)� X̃(1) � 0 (27)

X̃(1) � 0 (28)

X̃(0) = 0 (29)

X̃(1) = 0 (30)

@xh|x=0 = u (31)

@xh|x=L = �v (32)

v = �u (33)

H(x)�H(0) = B(x) + ux (34)

b ⌧ 1 (35)

z (36)

z0 (37)

|x� y| ⌧ t2/3 (38)

|x� y| = O(1) (39)

x/t ! 0 (40)

x ⌧ t2/3 (41)

x = O(1) (42)

Z(x, t)

Z(0, t)
= eh(x,t)�h(0,t) ! eB(x)

(43)

on 

OPENASEP IN WEAK-ASYMMETRIC REGIME 3

· · ·

· · ·

α

γ

α

γ

β

δ

γα
γα

δβ

q p q p

p
q

q p

FIGURE 1.1. The half line and open ASEP (left and right respectively)
drawn in terms of particles and height functions (bottom and top respec-
tively). In open ASEP, particles inside jump left and right (i.e. according
to clocks of exponential distribution with this rate) at rates q and p; par-
ticles are inserted (provided the destination is empty) from the left (resp.
right) at rate α (resp. δ ); particles are removed (provided the removal
site is occupied) from the left (resp. right) at rate γ (resp. β ). In half line
ASEP, there is only a boundary on the left and the right goes on infinitely.

theory and delicate method of images estimates). In identifying the limiting mar-
tingale problem, Bertini and Giacomin discovered a key identity (Proposition 4.8

and Lemma A.1 in [7]) for the quadratic martingale which identifies the white
noise. In our case of bounded intervals, that identity does not hold. Instead we find

(via a new method using Green’s functions) an approximate version which suffices
– see Lemma 5.8 and Proposition 5.1.

Presently the other above mentioned KPZ equation convergence methods have
not been developed into the context we consider here. These other methods are less

reliant upon the exact structure of the underlying particle system, so it would be
nice to see them developed so as to prove universality of the type of convergence

we have shown here for the particular model of open ASEP. The energy solutions
method only applies in stationarity (of for initial data with finite entropy with re-

spect to the stationary measure) and relies upon certain inputs from hydrodynamic
theory which may be more complicated in this setting since the open ASEP gen-
erally lacks product invariant measures. However, in a special one-parameter case
(see Remark 2.9) the invariant measure reduce to product Bernoulli. Upon sending

this present paper out for comments, we learned that [41] are completing a work in
which they develop the energy solutions approach to study the KPZ limit of open

ASEP in the special subcase when the invariant measure is product Bernoulli, and
the effective density is exactly 1/2. This is a special point in the two-dimensional

family of parameters we consider here. For generic choices of our parameters, the
invariant measure is not of product form.

1.1 Existing open ASEP results

Before defining the open / half line ASEP and stating our main convergence

theorem, let us try to put our work into the context of known results. Much of this
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ASEP height function converges to a solution of the KPZ equation  

open ASEP 
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FIGURE 1.1. The half line and open ASEP (left and right respectively)
drawn in terms of particles and height functions (bottom and top respec-
tively). In open ASEP, particles inside jump left and right (i.e. according
to clocks of exponential distribution with this rate) at rates q and p; par-
ticles are inserted (provided the destination is empty) from the left (resp.
right) at rate α (resp. δ ); particles are removed (provided the removal
site is occupied) from the left (resp. right) at rate γ (resp. β ). In half line
ASEP, there is only a boundary on the left and the right goes on infinitely.

theory and delicate method of images estimates). In identifying the limiting mar-
tingale problem, Bertini and Giacomin discovered a key identity (Proposition 4.8
and Lemma A.1 in [7]) for the quadratic martingale which identifies the white
noise. In our case of bounded intervals, that identity does not hold. Instead we find
(via a new method using Green’s functions) an approximate version which suffices
– see Lemma 5.8 and Proposition 5.1.

Presently the other above mentioned KPZ equation convergence methods have
not been developed into the context we consider here. These other methods are less
reliant upon the exact structure of the underlying particle system, so it would be
nice to see them developed so as to prove universality of the type of convergence
we have shown here for the particular model of open ASEP. The energy solutions
method only applies in stationarity (of for initial data with finite entropy with re-
spect to the stationary measure) and relies upon certain inputs from hydrodynamic
theory which may be more complicated in this setting since the open ASEP gen-
erally lacks product invariant measures. However, in a special one-parameter case
(see Remark 2.9) the invariant measure reduce to product Bernoulli. Upon sending
this present paper out for comments, we learned that [41] are completing a work in
which they develop the energy solutions approach to study the KPZ limit of open
ASEP in the special subcase when the invariant measure is product Bernoulli, and
the effective density is exactly 1/2. This is a special point in the two-dimensional
family of parameters we consider here. For generic choices of our parameters, the
invariant measure is not of product form.

1.1 Existing open ASEP results

Before defining the open / half line ASEP and stating our main convergence
theorem, let us try to put our work into the context of known results. Much of this
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invariant measure  
stationary measure  for the KPZ equation  since h(x,t) grows 
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Fig. 1. Tracy-Widom distribution function P⇤(f)

2. More on the KPZ equation

2.1. The KPZ equation with various initial conditions

In the previous section we have seen that the statistical mechanics of a directed polymer
in a random potential, which is an optimisation problem, is related to the Kardar-Parisi-
Zhang (KPZ) equation12 which describes the stochastic growth of an interface. This
connection holds in any dimension, i.e. directed polymers in D = d+ 1 dimension, can
be mapped to the growth of a d dimensional interface. Much analytical progress was
achieved for one dimensional interfaces, i.e. d = 1, and we will continue to focus on this
case. Let us define h(x, t) the height at time t and position x 2 R of an interface (for
instance separating two phases of a liquid crystal as in the experiments35). By a choice
of units of x, t, h the KPZ equation can always be written as a

@th(x, t) = @2
xh(x, t) + (@xh(x, t))

2 +
p
2 ⌘(x, t) (1.22)

where ⌘(x, t) is the noise which drives the growth. Under the Cole-Hopf transformation

h(x, t) = logZ(x, t) (1.23)

it is mapped to the so-called stochastic heat equation (SHE)

@tZ(x, t) = @2
xZ(x, t) +

p
2 ⌘(x, t)Z(x, t) (1.24)

where here the noise acts multiplicatively. As explained in the previous section Z(x, t)
can be seen as the canonical partition function of a continuum directed polymer in
dimension D = 1 + 1, with one endpoint at (x, t), and ⌘(x, t) is proportional to the
random potential. Although other types of noises have been studied36 , we focus here on
the case of a standard space-time Gaussian white noise, ⌘(x, t)⌘(x0, t0) = �(x�x0)�(t�t0),
for which exact results can be obtained. Eq. (1.24) is then understood in Ito sense, and
Z(x, t) thus satisfies the standard heat equation.

aCompared to the previous section we define h = ��F and �V = �
p
2c̄⌘ hence �2u = 2c̄, and we set

� = 1/2, hence  = c̄, and finally c̄ = 1.
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behavior. Interestingly, the single space point finite time solutions of the KPZ equa-
tion described here, obtained with the replica Bethe ansatz method, have by now been
confirmed by rigorous methods.

2.5. Two-time correlations and memory

The joint distribution of the KPZ height at two di↵erent times, e.g. of h(0, t1) and
h(0, t2), with both t1, t2 large with a fixed ratio u = t2/t1 > 1, is believed to be
universal, but is notably di�cult to calculate using the replica Bethe ansatz.64 A so-
lution for the tail (when only one of the heights, h(0, t1), is large), was obtained65 for
droplet initial conditions, and found in good agreement with experiments.66 The com-
plete solution was obtained67 by a di↵erent method from a discrete polymer model,
assuming universality. An interesting quantity is the universal dimensionless ratio
R = limu!+1 limt1!+1 Cov(h(0, t1), h(0, ut1))/Var(h(0, t1)) which quantifies ergod-
icity breaking and persitent memory at infinitely separated times. It was obtained ana-
lytically for droplet initial conditions in,68 with R = 0.623 in agreement with numerics
and experiments.37,66

2.6. Polymer in a half-space and KPZ equation on the half-line

Consider now a directed polymer of trajectory (�(⌧), ⌧) constrained to remain in the
half-space �(⌧) � 0, with endpoint at �(t) = x � 0. It is described by a partition
sum Z(x, t), which still satisfies the SHE (1.24) on the half-line x > 0. The Cole-Hopf
map h(x, t) = logZ(x, t) then defines the KPZ equation on the half-line. Consider
first the case of ”absorbing” boundary conditions Z(0, t) = 0, which corresponds to an
infinite hard wall at x = 0 (the polymer paths cannot touch the wall). The integer
moments ZN (x, t) can still be expressed using the delta Bose gas model (1.17) for
x > 0 with Dirichlet boundary conditions. For these boundary conditions there is
again a replica Bethe ansatz solution. The calculation can be performed to the end
and for any t in the case of the ”droplet” initial condition, i.e. when the polymer
starts and ends near the wall. One finds69 that the height defined (in that case) as
h(0, t) := log(Z(✏, t|✏, 0)/✏2)|✏=0+ obeys again the large time behavior (1.27), with now

Prob(⇠ < s) =
p

Det(I � PsK) , K(!,!0) = KAi(!,!
0)� 1

2
Ai(!)

Z +1

0
duAi(!0+u)

(1.35)
This is nothing but the Tracy Widom distribution of the Gaussian symplectic ensemble
(GSE), the last of the three classical Wigner-Dyson ensembles, i.e. ⇠ = �4 with Prob(⇠ <
s) = F4(s) =

1
2 (F1(s) +

F2(s)
F1(s)

) (using the definition of F4 in70).

The half-space polymer model can be extended71 to a ”soft wall” of parameter A,
with the boundary condition @xZ(x, t)|x=0 = AZ(0, t). The wall is repulsive for A > 0
(A = +1 being the infinite hard wall) and attractive for A < 0. Indeed, for A < 0
the delta Bose gas with N = 1 has a bound state to the wall, which corresponds to
the particular solution Z(x, t) = eAx+A2t. The replica Bethe ansatz can still be used
for any N and indicates that for the quenched problem, i.e. for logZ(x, t) and N ! 0,
there is a phase transition:71 for A < �1/2 the polymer is bound to the wall, while
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Fig. 1. Tracy-Widom distribution function P⇤(f)
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can be seen as the canonical partition function of a continuum directed polymer in
dimension D = 1 + 1, with one endpoint at (x, t), and ⌘(x, t) is proportional to the
random potential. Although other types of noises have been studied36 , we focus here on
the case of a standard space-time Gaussian white noise, ⌘(x, t)⌘(x0, t0) = �(x�x0)�(t�t0),
for which exact results can be obtained. Eq. (1.24) is then understood in Ito sense, and
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FIG. 1. (a) Directed polymer path in 1 + 1 dimensions in
a half-space, pinned at the boundary wall at the point (0, 0),
with free endpoint (x, t) (point to line problem) in presence of
a bulk white noise random potential

√
2ξ(x, t). We will discuss

the fluctuations of the position of the polymer endpoint. By
reversing time, this corresponds to the line to point partition
function Zf

A(y = 0, t) in (3), which maps to the KPZ field
at time t with flat IC. (b) We will also consider the position
of the midpoint of a DP with both endpoints pinned at the
boundary.

conditions. Some details are provided in the Appendix
A. We also obtain the large time asymptotics, the details
being provided in Appendix B. In Section IV we study
the stationary measure of the KPZ equation on the half-
line and apply it to obtain a detailed description of the
statistics of the endpoint in the polymer problem. The
connection with the replica method is given in Appendix
E and the calculations of the mean endpoint probability
and its correlations using Liouville quantum mechanics
are described in Appendix F. In Section V we generalize
the identity in distribution obtained in Section III, re-
lating solutions of half-space KPZ equation to solutions
with the full-space KPZ equation with different initial
data, some of the details are presented in Appendix C.
The matching with full space KPZ equation distributions
uses the statistical tilt symmetry recalled in Appendix D.
In Section VI we point out the features which we believe
are universal near the unbinding transition and in rela-
tion to the conjectured half-space KPZ fixed point.

II. HALF-SPACE KPZ EQUATION

Let us recall the KPZ equation for the height h(x, t)
field of an interface

∂th(x, t) = ν∂2
xh +

λ

2
(∂xh)2 +

√
Dξ(x, t) (1)

where ξ(x, t) is a space-time white noise. We use space-
time units so that ν = 1 and λ = D = 2. Here we study
the problem in a half-line x ! 0 with boundary conditions

∂xh = A depending on a parameter A. From the Cole-
Hopf mapping it can be equivalently defined as h(x, t) =
log ZA(x, t) where ZA(x, t) satisfies the stochastic heat
equation (SHE)

∂tZA(x, t) = ∂2
xZA(x, t) +

√
2ZA(x, t)ξ(x, t), x ! 0, (2)

with boundary condition ∂xZA(x, t) = AZA(x, t) at x =
0 and as yet unspecified initial condition at t = 0.

Let us denote by ZA(x, t|y, 0) the partition function
of a continuous DP of length t in a white noise random
potential in dimension d = 1 + 1 (at unit temperature),
in the half-space x ! 0, with endpoints at (y, 0) and
(x, t), see Fig. 1. In particular ZA(x, t|y, 0) satisfies the
equation (2) with initial condition at t = 0 given by a
delta mass at the point y.

III. FLAT INITIAL CONDITION

A. Finite-time solution

In this Section, we are interested in the solution of the
KPZ equation (1) with a flat initial condition h(x, 0) = 0.
This is equivalent to studying (2) with ZA(x, 0) = 1, i.e.
a polymer with one fixed endpoint at (y, t) and one free
endpoint, of partition function

Zf
A(y, t) =

∫ ∞

0
ZA(y, t|x, 0)dx. (3)

the KPZ field being retrieved as h(y, t) = log Zf
A(y, t),

where the superscript f stands for flat IC.
Consider now the case where the fixed endpoint is at

the position of the wall y = 0. We will calculate the
moments of Zf

A(0, t) which will allow us to obtain an
expression for the Laplace transform of its distribution.
From (3) and by symmetry, we can write the n-th integer
moment of the partition sum as

E

[
Zf

A(0, t)n
]

= n!

∫

x1!...!xn!0
E

[
n∏

i=1

ZA(xi, t|0, 0)

]

.

(4)
where here and below, E denote expectation with respect
to the noise ξ. As shown in [38] the moments appearing in
the RHS can be expressed as a multiple contour integral.
We have that, for general endpoint positions x1 ! . . . !
xn ! 0,

E

[
n∏

i=1

ZA(xi, t|0, 0)

]

= 2n

∫

r1+iR

dz1

2iπ
· · ·
∫

rn+iR

dzn

2iπ

n∏

i=1

zi

zi + A
etz2

i −xizi
∏

1"a<b"n

za − zb

za − zb − 1

za + zb

za + zb − 1
, (5)

where the contours are chosen so that r1 > r2 +1 > · · · >
rn +n−1 > max{n−1−A, n−1}, i.e. all contours are to
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Fig. 1. Tracy-Widom distribution function P⇤(f)

2. More on the KPZ equation

2.1. The KPZ equation with various initial conditions

In the previous section we have seen that the statistical mechanics of a directed polymer
in a random potential, which is an optimisation problem, is related to the Kardar-Parisi-
Zhang (KPZ) equation12 which describes the stochastic growth of an interface. This
connection holds in any dimension, i.e. directed polymers in D = d+ 1 dimension, can
be mapped to the growth of a d dimensional interface. Much analytical progress was
achieved for one dimensional interfaces, i.e. d = 1, and we will continue to focus on this
case. Let us define h(x, t) the height at time t and position x 2 R of an interface (for
instance separating two phases of a liquid crystal as in the experiments35). By a choice
of units of x, t, h the KPZ equation can always be written as a

@th(x, t) = @2
xh(x, t) + (@xh(x, t))

2 +
p
2 ⌘(x, t) (1.22)

where ⌘(x, t) is the noise which drives the growth. Under the Cole-Hopf transformation

h(x, t) = logZ(x, t) (1.23)

it is mapped to the so-called stochastic heat equation (SHE)

@tZ(x, t) = @2
xZ(x, t) +

p
2 ⌘(x, t)Z(x, t) (1.24)

where here the noise acts multiplicatively. As explained in the previous section Z(x, t)
can be seen as the canonical partition function of a continuum directed polymer in
dimension D = 1 + 1, with one endpoint at (x, t), and ⌘(x, t) is proportional to the
random potential. Although other types of noises have been studied36 , we focus here on
the case of a standard space-time Gaussian white noise, ⌘(x, t)⌘(x0, t0) = �(x�x0)�(t�t0),
for which exact results can be obtained. Eq. (1.24) is then understood in Ito sense, and
Z(x, t) thus satisfies the standard heat equation.

aCompared to the previous section we define h = ��F and �V = �
p
2c̄⌘ hence �2u = 2c̄, and we set

� = 1/2, hence  = c̄, and finally c̄ = 1.
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behavior. Interestingly, the single space point finite time solutions of the KPZ equa-
tion described here, obtained with the replica Bethe ansatz method, have by now been
confirmed by rigorous methods.

2.5. Two-time correlations and memory

The joint distribution of the KPZ height at two di↵erent times, e.g. of h(0, t1) and
h(0, t2), with both t1, t2 large with a fixed ratio u = t2/t1 > 1, is believed to be
universal, but is notably di�cult to calculate using the replica Bethe ansatz.64 A so-
lution for the tail (when only one of the heights, h(0, t1), is large), was obtained65 for
droplet initial conditions, and found in good agreement with experiments.66 The com-
plete solution was obtained67 by a di↵erent method from a discrete polymer model,
assuming universality. An interesting quantity is the universal dimensionless ratio
R = limu!+1 limt1!+1 Cov(h(0, t1), h(0, ut1))/Var(h(0, t1)) which quantifies ergod-
icity breaking and persitent memory at infinitely separated times. It was obtained ana-
lytically for droplet initial conditions in,68 with R = 0.623 in agreement with numerics
and experiments.37,66

2.6. Polymer in a half-space and KPZ equation on the half-line

Consider now a directed polymer of trajectory (�(⌧), ⌧) constrained to remain in the
half-space �(⌧) � 0, with endpoint at �(t) = x � 0. It is described by a partition
sum Z(x, t), which still satisfies the SHE (1.24) on the half-line x > 0. The Cole-Hopf
map h(x, t) = logZ(x, t) then defines the KPZ equation on the half-line. Consider
first the case of ”absorbing” boundary conditions Z(0, t) = 0, which corresponds to an
infinite hard wall at x = 0 (the polymer paths cannot touch the wall). The integer
moments ZN (x, t) can still be expressed using the delta Bose gas model (1.17) for
x > 0 with Dirichlet boundary conditions. For these boundary conditions there is
again a replica Bethe ansatz solution. The calculation can be performed to the end
and for any t in the case of the ”droplet” initial condition, i.e. when the polymer
starts and ends near the wall. One finds69 that the height defined (in that case) as
h(0, t) := log(Z(✏, t|✏, 0)/✏2)|✏=0+ obeys again the large time behavior (1.27), with now

Prob(⇠ < s) =
p

Det(I � PsK) , K(!,!0) = KAi(!,!
0)� 1

2
Ai(!)

Z +1

0
duAi(!0+u)

(1.35)
This is nothing but the Tracy Widom distribution of the Gaussian symplectic ensemble
(GSE), the last of the three classical Wigner-Dyson ensembles, i.e. ⇠ = �4 with Prob(⇠ <
s) = F4(s) =

1
2 (F1(s) +

F2(s)
F1(s)

) (using the definition of F4 in70).

The half-space polymer model can be extended71 to a ”soft wall” of parameter A,
with the boundary condition @xZ(x, t)|x=0 = AZ(0, t). The wall is repulsive for A > 0
(A = +1 being the infinite hard wall) and attractive for A < 0. Indeed, for A < 0
the delta Bose gas with N = 1 has a bound state to the wall, which corresponds to
the particular solution Z(x, t) = eAx+A2t. The replica Bethe ansatz can still be used
for any N and indicates that for the quenched problem, i.e. for logZ(x, t) and N ! 0,
there is a phase transition:71 for A < �1/2 the polymer is bound to the wall, while
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Fig. 1. Tracy-Widom distribution function P⇤(f)

2. More on the KPZ equation

2.1. The KPZ equation with various initial conditions

In the previous section we have seen that the statistical mechanics of a directed polymer
in a random potential, which is an optimisation problem, is related to the Kardar-Parisi-
Zhang (KPZ) equation12 which describes the stochastic growth of an interface. This
connection holds in any dimension, i.e. directed polymers in D = d+ 1 dimension, can
be mapped to the growth of a d dimensional interface. Much analytical progress was
achieved for one dimensional interfaces, i.e. d = 1, and we will continue to focus on this
case. Let us define h(x, t) the height at time t and position x 2 R of an interface (for
instance separating two phases of a liquid crystal as in the experiments35). By a choice
of units of x, t, h the KPZ equation can always be written as a

@th(x, t) = @2
xh(x, t) + (@xh(x, t))

2 +
p
2 ⌘(x, t) (1.22)

where ⌘(x, t) is the noise which drives the growth. Under the Cole-Hopf transformation

h(x, t) = logZ(x, t) (1.23)

it is mapped to the so-called stochastic heat equation (SHE)

@tZ(x, t) = @2
xZ(x, t) +

p
2 ⌘(x, t)Z(x, t) (1.24)

where here the noise acts multiplicatively. As explained in the previous section Z(x, t)
can be seen as the canonical partition function of a continuum directed polymer in
dimension D = 1 + 1, with one endpoint at (x, t), and ⌘(x, t) is proportional to the
random potential. Although other types of noises have been studied36 , we focus here on
the case of a standard space-time Gaussian white noise, ⌘(x, t)⌘(x0, t0) = �(x�x0)�(t�t0),
for which exact results can be obtained. Eq. (1.24) is then understood in Ito sense, and
Z(x, t) thus satisfies the standard heat equation.

aCompared to the previous section we define h = ��F and �V = �
p
2c̄⌘ hence �2u = 2c̄, and we set

� = 1/2, hence  = c̄, and finally c̄ = 1.

Kardar 1985

binding transition 

August 17, 2022 11:18 ws-rv10x7-10x7 Book Title Ledouv2 page 10

10 Pierre Le Doussal

behavior. Interestingly, the single space point finite time solutions of the KPZ equa-
tion described here, obtained with the replica Bethe ansatz method, have by now been
confirmed by rigorous methods.

2.5. Two-time correlations and memory

The joint distribution of the KPZ height at two di↵erent times, e.g. of h(0, t1) and
h(0, t2), with both t1, t2 large with a fixed ratio u = t2/t1 > 1, is believed to be
universal, but is notably di�cult to calculate using the replica Bethe ansatz.64 A so-
lution for the tail (when only one of the heights, h(0, t1), is large), was obtained65 for
droplet initial conditions, and found in good agreement with experiments.66 The com-
plete solution was obtained67 by a di↵erent method from a discrete polymer model,
assuming universality. An interesting quantity is the universal dimensionless ratio
R = limu!+1 limt1!+1 Cov(h(0, t1), h(0, ut1))/Var(h(0, t1)) which quantifies ergod-
icity breaking and persitent memory at infinitely separated times. It was obtained ana-
lytically for droplet initial conditions in,68 with R = 0.623 in agreement with numerics
and experiments.37,66

2.6. Polymer in a half-space and KPZ equation on the half-line

Consider now a directed polymer of trajectory (�(⌧), ⌧) constrained to remain in the
half-space �(⌧) � 0, with endpoint at �(t) = x � 0. It is described by a partition
sum Z(x, t), which still satisfies the SHE (1.24) on the half-line x > 0. The Cole-Hopf
map h(x, t) = logZ(x, t) then defines the KPZ equation on the half-line. Consider
first the case of ”absorbing” boundary conditions Z(0, t) = 0, which corresponds to an
infinite hard wall at x = 0 (the polymer paths cannot touch the wall). The integer
moments ZN (x, t) can still be expressed using the delta Bose gas model (1.17) for
x > 0 with Dirichlet boundary conditions. For these boundary conditions there is
again a replica Bethe ansatz solution. The calculation can be performed to the end
and for any t in the case of the ”droplet” initial condition, i.e. when the polymer
starts and ends near the wall. One finds69 that the height defined (in that case) as
h(0, t) := log(Z(✏, t|✏, 0)/✏2)|✏=0+ obeys again the large time behavior (1.27), with now

Prob(⇠ < s) =
p

Det(I � PsK) , K(!,!0) = KAi(!,!
0)� 1

2
Ai(!)

Z +1

0
duAi(!0+u)

(1.35)
This is nothing but the Tracy Widom distribution of the Gaussian symplectic ensemble
(GSE), the last of the three classical Wigner-Dyson ensembles, i.e. ⇠ = �4 with Prob(⇠ <
s) = F4(s) =

1
2 (F1(s) +

F2(s)
F1(s)

) (using the definition of F4 in70).

The half-space polymer model can be extended71 to a ”soft wall” of parameter A,
with the boundary condition @xZ(x, t)|x=0 = AZ(0, t). The wall is repulsive for A > 0
(A = +1 being the infinite hard wall) and attractive for A < 0. Indeed, for A < 0
the delta Bose gas with N = 1 has a bound state to the wall, which corresponds to
the particular solution Z(x, t) = eAx+A2t. The replica Bethe ansatz can still be used
for any N and indicates that for the quenched problem, i.e. for logZ(x, t) and N ! 0,
there is a phase transition:71 for A < �1/2 the polymer is bound to the wall, whilepolymer bound to wall 

polymer unbound  
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for A � �1/2 it wanders in the whole half-space. The structure of the replica bound
states for generic A becomes quite complicated.72 Nevertheless it is possible to obtain
a solution for any A. For droplet initial conditions72–75 it is found that for A � �1/2
Eq. (1.27) holds, where the scaled height fluctuations ⇠ are still GSE Tracy Widom
for A > �1/2, while at the transition, for A = 1/2, they are GOE Tracy Widom.
For A < �1/2, in the bound phase, one has h(0, t) = v01t + |2A + 1|!t1/2 where !
has a Gaussian distribution. The free energy per unit length of the polymer shows an
anomalous behavior �F/t = v01 � v1 = (A + 1

2 )
2. For flat initial conditions76 the

phase diagram is the same, however the height fluctuations at x = 0 are now GUE-TW
in the unbound phase A > �1/2, and of BBP type at the transition. Remarkably, a
similar transition scenario was obtained well before, by totally di↵erent methods, in the
study of symmetrized random permutations,77 which can indeed be seen as a discrete
version of a polymer problem. This is yet another manifestation of the universality
of the height distributions obtained at large time for the KPZ equation, here on the
half-line. A promising method to observe them in future experiments was proposed.78

2.7. Stationary measures for the KPZ equation

The KPZ equation describes a growth process and is intrinsically non-equilibrium. Nev-
ertheless, while the height at one point grows linearly in time with non trivial t1/3 fluc-
tuations as in (1.27), the height di↵erences between any two points, h(x, t) � h(y, t),
reaches a stationary distribution at large time. It was noticed long ago3,12,79,80 that the
KPZ equation on the full line admits the Brownian motion B(x) as a stationary measure,
i.e. for any given t, h(x, t) � h(0, t) ⌘ B(x), i.e. the two processes in x have the same
law. This was proved in.81,82 With periodic boundary conditions (on the circle) the
stationary measure is a Brownian bridge.83 In the case of the half-line and the interval,
the stationary measure is more complicated, not translationally invariant, generically
non Gaussian, and was obtained only recently. In fact there is a two-parameter family
of such measures. One case is simpler though, and can be inferred using replica from
the ground state of the delta Bose gas. Going back to the previous paragraph and
the half-line with a soft wall at x = 0, one shows84 that in the bound phase, i.e. for
A < �1/2, a stationary measure is in law a Brownian motion with drift

Z(x, t)

Z(0, t)
= eh(x,t)�h(0,t) ⌘ eB(x)+(A+ 1

2 )x (1.36)

for any given t. On the other hand in the bound phase one expects that the large time
behavior is dominated by the ground state  0 of the delta Bose gas. The latter has a
simple expression in this geometry71,72 and one thus infers that (for 0  x1  · · ·  xN )

Z(x1, t) . . . Z(xN , t) ' Z(0, t)N ⇥ 0(~x) ,  0(~x) = e
PN

j=1(A�j+1)xj (1.37)

This expression contains a bit more information than the stationary measure (1.36)
since it also depends on the correlations between logZ(0, t) and the ratios Z(x,t)

Z(0,t) . One
can study the probability distribution of the endpoint �(t) = x of a polymer, p(x, t) =
eh(x,t)�h(0,t)/[

R1
0 dyeh(y,t)�h(0,t)], which becomes stationary for a very long polymer.

Remarquably, one finds85 that (1.36) and (1.37) lead to the same results for the cumu-
lants of p(x), e.g. the noise average (thermal cumulants) hxkic = �(�2)k (k)(�2A� 1)

2

t ! +1 (42)

Z(x, t)

Z(y, t)
= eh(x,t)�h(y,t) ! eB(x)�B(y)

(43)

Z(x, t)

Z(y, t)
= eh(x,t)�h(y,t) ! eB(x)�B(y)�a(x�y)

(44)

�at (45)

t ! +1 (46)

Z(x, t|y, 0) = (47)

Z x(t)=x

x(0)=y
Dx(⌧) (48)

e�
R t
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4 (
dx(⌧)
d⌧ )2
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e�
R t
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p
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FIG. 1. (a) Directed polymer path in 1 + 1 dimensions in
a half-space, pinned at the boundary wall at the point (0, 0),
with free endpoint (x, t) (point to line problem) in presence of
a bulk white noise random potential

√
2ξ(x, t). We will discuss

the fluctuations of the position of the polymer endpoint. By
reversing time, this corresponds to the line to point partition
function Zf

A(y = 0, t) in (3), which maps to the KPZ field
at time t with flat IC. (b) We will also consider the position
of the midpoint of a DP with both endpoints pinned at the
boundary.

conditions. Some details are provided in the Appendix
A. We also obtain the large time asymptotics, the details
being provided in Appendix B. In Section IV we study
the stationary measure of the KPZ equation on the half-
line and apply it to obtain a detailed description of the
statistics of the endpoint in the polymer problem. The
connection with the replica method is given in Appendix
E and the calculations of the mean endpoint probability
and its correlations using Liouville quantum mechanics
are described in Appendix F. In Section V we generalize
the identity in distribution obtained in Section III, re-
lating solutions of half-space KPZ equation to solutions
with the full-space KPZ equation with different initial
data, some of the details are presented in Appendix C.
The matching with full space KPZ equation distributions
uses the statistical tilt symmetry recalled in Appendix D.
In Section VI we point out the features which we believe
are universal near the unbinding transition and in rela-
tion to the conjectured half-space KPZ fixed point.

II. HALF-SPACE KPZ EQUATION

Let us recall the KPZ equation for the height h(x, t)
field of an interface

∂th(x, t) = ν∂2
xh +

λ

2
(∂xh)2 +

√
Dξ(x, t) (1)

where ξ(x, t) is a space-time white noise. We use space-
time units so that ν = 1 and λ = D = 2. Here we study
the problem in a half-line x ! 0 with boundary conditions

∂xh = A depending on a parameter A. From the Cole-
Hopf mapping it can be equivalently defined as h(x, t) =
log ZA(x, t) where ZA(x, t) satisfies the stochastic heat
equation (SHE)

∂tZA(x, t) = ∂2
xZA(x, t) +

√
2ZA(x, t)ξ(x, t), x ! 0, (2)

with boundary condition ∂xZA(x, t) = AZA(x, t) at x =
0 and as yet unspecified initial condition at t = 0.

Let us denote by ZA(x, t|y, 0) the partition function
of a continuous DP of length t in a white noise random
potential in dimension d = 1 + 1 (at unit temperature),
in the half-space x ! 0, with endpoints at (y, 0) and
(x, t), see Fig. 1. In particular ZA(x, t|y, 0) satisfies the
equation (2) with initial condition at t = 0 given by a
delta mass at the point y.

III. FLAT INITIAL CONDITION

A. Finite-time solution

In this Section, we are interested in the solution of the
KPZ equation (1) with a flat initial condition h(x, 0) = 0.
This is equivalent to studying (2) with ZA(x, 0) = 1, i.e.
a polymer with one fixed endpoint at (y, t) and one free
endpoint, of partition function

Zf
A(y, t) =

∫ ∞

0
ZA(y, t|x, 0)dx. (3)

the KPZ field being retrieved as h(y, t) = log Zf
A(y, t),

where the superscript f stands for flat IC.
Consider now the case where the fixed endpoint is at

the position of the wall y = 0. We will calculate the
moments of Zf

A(0, t) which will allow us to obtain an
expression for the Laplace transform of its distribution.
From (3) and by symmetry, we can write the n-th integer
moment of the partition sum as

E

[
Zf

A(0, t)n
]

= n!

∫

x1!...!xn!0
E

[
n∏

i=1

ZA(xi, t|0, 0)

]

.

(4)
where here and below, E denote expectation with respect
to the noise ξ. As shown in [38] the moments appearing in
the RHS can be expressed as a multiple contour integral.
We have that, for general endpoint positions x1 ! . . . !
xn ! 0,

E

[
n∏

i=1

ZA(xi, t|0, 0)

]

= 2n

∫

r1+iR

dz1

2iπ
· · ·
∫

rn+iR

dzn

2iπ

n∏

i=1

zi

zi + A
etz2

i −xizi
∏

1"a<b"n

za − zb

za − zb − 1

za + zb

za + zb − 1
, (5)

where the contours are chosen so that r1 > r2 +1 > · · · >
rn +n−1 > max{n−1−A, n−1}, i.e. all contours are to
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Fig. 1. Tracy-Widom distribution function P⇤(f)

2. More on the KPZ equation

2.1. The KPZ equation with various initial conditions

In the previous section we have seen that the statistical mechanics of a directed polymer
in a random potential, which is an optimisation problem, is related to the Kardar-Parisi-
Zhang (KPZ) equation12 which describes the stochastic growth of an interface. This
connection holds in any dimension, i.e. directed polymers in D = d+ 1 dimension, can
be mapped to the growth of a d dimensional interface. Much analytical progress was
achieved for one dimensional interfaces, i.e. d = 1, and we will continue to focus on this
case. Let us define h(x, t) the height at time t and position x 2 R of an interface (for
instance separating two phases of a liquid crystal as in the experiments35). By a choice
of units of x, t, h the KPZ equation can always be written as a

@th(x, t) = @2
xh(x, t) + (@xh(x, t))

2 +
p
2 ⌘(x, t) (1.22)

where ⌘(x, t) is the noise which drives the growth. Under the Cole-Hopf transformation

h(x, t) = logZ(x, t) (1.23)

it is mapped to the so-called stochastic heat equation (SHE)

@tZ(x, t) = @2
xZ(x, t) +

p
2 ⌘(x, t)Z(x, t) (1.24)

where here the noise acts multiplicatively. As explained in the previous section Z(x, t)
can be seen as the canonical partition function of a continuum directed polymer in
dimension D = 1 + 1, with one endpoint at (x, t), and ⌘(x, t) is proportional to the
random potential. Although other types of noises have been studied36 , we focus here on
the case of a standard space-time Gaussian white noise, ⌘(x, t)⌘(x0, t0) = �(x�x0)�(t�t0),
for which exact results can be obtained. Eq. (1.24) is then understood in Ito sense, and
Z(x, t) thus satisfies the standard heat equation.

aCompared to the previous section we define h = ��F and �V = �
p
2c̄⌘ hence �2u = 2c̄, and we set

� = 1/2, hence  = c̄, and finally c̄ = 1.
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behavior. Interestingly, the single space point finite time solutions of the KPZ equa-
tion described here, obtained with the replica Bethe ansatz method, have by now been
confirmed by rigorous methods.

2.5. Two-time correlations and memory

The joint distribution of the KPZ height at two di↵erent times, e.g. of h(0, t1) and
h(0, t2), with both t1, t2 large with a fixed ratio u = t2/t1 > 1, is believed to be
universal, but is notably di�cult to calculate using the replica Bethe ansatz.64 A so-
lution for the tail (when only one of the heights, h(0, t1), is large), was obtained65 for
droplet initial conditions, and found in good agreement with experiments.66 The com-
plete solution was obtained67 by a di↵erent method from a discrete polymer model,
assuming universality. An interesting quantity is the universal dimensionless ratio
R = limu!+1 limt1!+1 Cov(h(0, t1), h(0, ut1))/Var(h(0, t1)) which quantifies ergod-
icity breaking and persitent memory at infinitely separated times. It was obtained ana-
lytically for droplet initial conditions in,68 with R = 0.623 in agreement with numerics
and experiments.37,66

2.6. Polymer in a half-space and KPZ equation on the half-line

Consider now a directed polymer of trajectory (�(⌧), ⌧) constrained to remain in the
half-space �(⌧) � 0, with endpoint at �(t) = x � 0. It is described by a partition
sum Z(x, t), which still satisfies the SHE (1.24) on the half-line x > 0. The Cole-Hopf
map h(x, t) = logZ(x, t) then defines the KPZ equation on the half-line. Consider
first the case of ”absorbing” boundary conditions Z(0, t) = 0, which corresponds to an
infinite hard wall at x = 0 (the polymer paths cannot touch the wall). The integer
moments ZN (x, t) can still be expressed using the delta Bose gas model (1.17) for
x > 0 with Dirichlet boundary conditions. For these boundary conditions there is
again a replica Bethe ansatz solution. The calculation can be performed to the end
and for any t in the case of the ”droplet” initial condition, i.e. when the polymer
starts and ends near the wall. One finds69 that the height defined (in that case) as
h(0, t) := log(Z(✏, t|✏, 0)/✏2)|✏=0+ obeys again the large time behavior (1.27), with now

Prob(⇠ < s) =
p

Det(I � PsK) , K(!,!0) = KAi(!,!
0)� 1

2
Ai(!)

Z +1

0
duAi(!0+u)

(1.35)
This is nothing but the Tracy Widom distribution of the Gaussian symplectic ensemble
(GSE), the last of the three classical Wigner-Dyson ensembles, i.e. ⇠ = �4 with Prob(⇠ <
s) = F4(s) =

1
2 (F1(s) +

F2(s)
F1(s)

) (using the definition of F4 in70).

The half-space polymer model can be extended71 to a ”soft wall” of parameter A,
with the boundary condition @xZ(x, t)|x=0 = AZ(0, t). The wall is repulsive for A > 0
(A = +1 being the infinite hard wall) and attractive for A < 0. Indeed, for A < 0
the delta Bose gas with N = 1 has a bound state to the wall, which corresponds to
the particular solution Z(x, t) = eAx+A2t. The replica Bethe ansatz can still be used
for any N and indicates that for the quenched problem, i.e. for logZ(x, t) and N ! 0,
there is a phase transition:71 for A < �1/2 the polymer is bound to the wall, while
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Fig. 1. Tracy-Widom distribution function P⇤(f)

2. More on the KPZ equation

2.1. The KPZ equation with various initial conditions

In the previous section we have seen that the statistical mechanics of a directed polymer
in a random potential, which is an optimisation problem, is related to the Kardar-Parisi-
Zhang (KPZ) equation12 which describes the stochastic growth of an interface. This
connection holds in any dimension, i.e. directed polymers in D = d+ 1 dimension, can
be mapped to the growth of a d dimensional interface. Much analytical progress was
achieved for one dimensional interfaces, i.e. d = 1, and we will continue to focus on this
case. Let us define h(x, t) the height at time t and position x 2 R of an interface (for
instance separating two phases of a liquid crystal as in the experiments35). By a choice
of units of x, t, h the KPZ equation can always be written as a

@th(x, t) = @2
xh(x, t) + (@xh(x, t))

2 +
p
2 ⌘(x, t) (1.22)

where ⌘(x, t) is the noise which drives the growth. Under the Cole-Hopf transformation

h(x, t) = logZ(x, t) (1.23)

it is mapped to the so-called stochastic heat equation (SHE)

@tZ(x, t) = @2
xZ(x, t) +

p
2 ⌘(x, t)Z(x, t) (1.24)

where here the noise acts multiplicatively. As explained in the previous section Z(x, t)
can be seen as the canonical partition function of a continuum directed polymer in
dimension D = 1 + 1, with one endpoint at (x, t), and ⌘(x, t) is proportional to the
random potential. Although other types of noises have been studied36 , we focus here on
the case of a standard space-time Gaussian white noise, ⌘(x, t)⌘(x0, t0) = �(x�x0)�(t�t0),
for which exact results can be obtained. Eq. (1.24) is then understood in Ito sense, and
Z(x, t) thus satisfies the standard heat equation.

aCompared to the previous section we define h = ��F and �V = �
p
2c̄⌘ hence �2u = 2c̄, and we set

� = 1/2, hence  = c̄, and finally c̄ = 1.

Kardar 1985
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behavior. Interestingly, the single space point finite time solutions of the KPZ equa-
tion described here, obtained with the replica Bethe ansatz method, have by now been
confirmed by rigorous methods.

2.5. Two-time correlations and memory

The joint distribution of the KPZ height at two di↵erent times, e.g. of h(0, t1) and
h(0, t2), with both t1, t2 large with a fixed ratio u = t2/t1 > 1, is believed to be
universal, but is notably di�cult to calculate using the replica Bethe ansatz.64 A so-
lution for the tail (when only one of the heights, h(0, t1), is large), was obtained65 for
droplet initial conditions, and found in good agreement with experiments.66 The com-
plete solution was obtained67 by a di↵erent method from a discrete polymer model,
assuming universality. An interesting quantity is the universal dimensionless ratio
R = limu!+1 limt1!+1 Cov(h(0, t1), h(0, ut1))/Var(h(0, t1)) which quantifies ergod-
icity breaking and persitent memory at infinitely separated times. It was obtained ana-
lytically for droplet initial conditions in,68 with R = 0.623 in agreement with numerics
and experiments.37,66

2.6. Polymer in a half-space and KPZ equation on the half-line

Consider now a directed polymer of trajectory (�(⌧), ⌧) constrained to remain in the
half-space �(⌧) � 0, with endpoint at �(t) = x � 0. It is described by a partition
sum Z(x, t), which still satisfies the SHE (1.24) on the half-line x > 0. The Cole-Hopf
map h(x, t) = logZ(x, t) then defines the KPZ equation on the half-line. Consider
first the case of ”absorbing” boundary conditions Z(0, t) = 0, which corresponds to an
infinite hard wall at x = 0 (the polymer paths cannot touch the wall). The integer
moments ZN (x, t) can still be expressed using the delta Bose gas model (1.17) for
x > 0 with Dirichlet boundary conditions. For these boundary conditions there is
again a replica Bethe ansatz solution. The calculation can be performed to the end
and for any t in the case of the ”droplet” initial condition, i.e. when the polymer
starts and ends near the wall. One finds69 that the height defined (in that case) as
h(0, t) := log(Z(✏, t|✏, 0)/✏2)|✏=0+ obeys again the large time behavior (1.27), with now

Prob(⇠ < s) =
p

Det(I � PsK) , K(!,!0) = KAi(!,!
0)� 1

2
Ai(!)

Z +1

0
duAi(!0+u)

(1.35)
This is nothing but the Tracy Widom distribution of the Gaussian symplectic ensemble
(GSE), the last of the three classical Wigner-Dyson ensembles, i.e. ⇠ = �4 with Prob(⇠ <
s) = F4(s) =

1
2 (F1(s) +

F2(s)
F1(s)

) (using the definition of F4 in70).

The half-space polymer model can be extended71 to a ”soft wall” of parameter A,
with the boundary condition @xZ(x, t)|x=0 = AZ(0, t). The wall is repulsive for A > 0
(A = +1 being the infinite hard wall) and attractive for A < 0. Indeed, for A < 0
the delta Bose gas with N = 1 has a bound state to the wall, which corresponds to
the particular solution Z(x, t) = eAx+A2t. The replica Bethe ansatz can still be used
for any N and indicates that for the quenched problem, i.e. for logZ(x, t) and N ! 0,
there is a phase transition:71 for A < �1/2 the polymer is bound to the wall, whilepolymer bound to wall 

polymer unbound  
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for A � �1/2 it wanders in the whole half-space. The structure of the replica bound
states for generic A becomes quite complicated.72 Nevertheless it is possible to obtain
a solution for any A. For droplet initial conditions72–75 it is found that for A � �1/2
Eq. (1.27) holds, where the scaled height fluctuations ⇠ are still GSE Tracy Widom
for A > �1/2, while at the transition, for A = 1/2, they are GOE Tracy Widom.
For A < �1/2, in the bound phase, one has h(0, t) = v01t + |2A + 1|!t1/2 where !
has a Gaussian distribution. The free energy per unit length of the polymer shows an
anomalous behavior �F/t = v01 � v1 = (A + 1

2 )
2. For flat initial conditions76 the

phase diagram is the same, however the height fluctuations at x = 0 are now GUE-TW
in the unbound phase A > �1/2, and of BBP type at the transition. Remarkably, a
similar transition scenario was obtained well before, by totally di↵erent methods, in the
study of symmetrized random permutations,77 which can indeed be seen as a discrete
version of a polymer problem. This is yet another manifestation of the universality
of the height distributions obtained at large time for the KPZ equation, here on the
half-line. A promising method to observe them in future experiments was proposed.78

2.7. Stationary measures for the KPZ equation

The KPZ equation describes a growth process and is intrinsically non-equilibrium. Nev-
ertheless, while the height at one point grows linearly in time with non trivial t1/3 fluc-
tuations as in (1.27), the height di↵erences between any two points, h(x, t) � h(y, t),
reaches a stationary distribution at large time. It was noticed long ago3,12,79,80 that the
KPZ equation on the full line admits the Brownian motion B(x) as a stationary measure,
i.e. for any given t, h(x, t) � h(0, t) ⌘ B(x), i.e. the two processes in x have the same
law. This was proved in.81,82 With periodic boundary conditions (on the circle) the
stationary measure is a Brownian bridge.83 In the case of the half-line and the interval,
the stationary measure is more complicated, not translationally invariant, generically
non Gaussian, and was obtained only recently. In fact there is a two-parameter family
of such measures. One case is simpler though, and can be inferred using replica from
the ground state of the delta Bose gas. Going back to the previous paragraph and
the half-line with a soft wall at x = 0, one shows84 that in the bound phase, i.e. for
A < �1/2, a stationary measure is in law a Brownian motion with drift

Z(x, t)

Z(0, t)
= eh(x,t)�h(0,t) ⌘ eB(x)+(A+ 1

2 )x (1.36)

for any given t. On the other hand in the bound phase one expects that the large time
behavior is dominated by the ground state  0 of the delta Bose gas. The latter has a
simple expression in this geometry71,72 and one thus infers that (for 0  x1  · · ·  xN )

Z(x1, t) . . . Z(xN , t) ' Z(0, t)N ⇥ 0(~x) ,  0(~x) = e
PN

j=1(A�j+1)xj (1.37)

This expression contains a bit more information than the stationary measure (1.36)
since it also depends on the correlations between logZ(0, t) and the ratios Z(x,t)

Z(0,t) . One
can study the probability distribution of the endpoint �(t) = x of a polymer, p(x, t) =
eh(x,t)�h(0,t)/[

R1
0 dyeh(y,t)�h(0,t)], which becomes stationary for a very long polymer.

Remarquably, one finds85 that (1.36) and (1.37) lead to the same results for the cumu-
lants of p(x), e.g. the noise average (thermal cumulants) hxkic = �(�2)k (k)(�2A� 1)

2

t ! +1 (42)

Z(x, t)
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FIG. 1. (a) Directed polymer path in 1 + 1 dimensions in
a half-space, pinned at the boundary wall at the point (0, 0),
with free endpoint (x, t) (point to line problem) in presence of
a bulk white noise random potential

√
2ξ(x, t). We will discuss

the fluctuations of the position of the polymer endpoint. By
reversing time, this corresponds to the line to point partition
function Zf

A(y = 0, t) in (3), which maps to the KPZ field
at time t with flat IC. (b) We will also consider the position
of the midpoint of a DP with both endpoints pinned at the
boundary.

conditions. Some details are provided in the Appendix
A. We also obtain the large time asymptotics, the details
being provided in Appendix B. In Section IV we study
the stationary measure of the KPZ equation on the half-
line and apply it to obtain a detailed description of the
statistics of the endpoint in the polymer problem. The
connection with the replica method is given in Appendix
E and the calculations of the mean endpoint probability
and its correlations using Liouville quantum mechanics
are described in Appendix F. In Section V we generalize
the identity in distribution obtained in Section III, re-
lating solutions of half-space KPZ equation to solutions
with the full-space KPZ equation with different initial
data, some of the details are presented in Appendix C.
The matching with full space KPZ equation distributions
uses the statistical tilt symmetry recalled in Appendix D.
In Section VI we point out the features which we believe
are universal near the unbinding transition and in rela-
tion to the conjectured half-space KPZ fixed point.

II. HALF-SPACE KPZ EQUATION

Let us recall the KPZ equation for the height h(x, t)
field of an interface

∂th(x, t) = ν∂2
xh +

λ

2
(∂xh)2 +

√
Dξ(x, t) (1)

where ξ(x, t) is a space-time white noise. We use space-
time units so that ν = 1 and λ = D = 2. Here we study
the problem in a half-line x ! 0 with boundary conditions

∂xh = A depending on a parameter A. From the Cole-
Hopf mapping it can be equivalently defined as h(x, t) =
log ZA(x, t) where ZA(x, t) satisfies the stochastic heat
equation (SHE)

∂tZA(x, t) = ∂2
xZA(x, t) +

√
2ZA(x, t)ξ(x, t), x ! 0, (2)

with boundary condition ∂xZA(x, t) = AZA(x, t) at x =
0 and as yet unspecified initial condition at t = 0.

Let us denote by ZA(x, t|y, 0) the partition function
of a continuous DP of length t in a white noise random
potential in dimension d = 1 + 1 (at unit temperature),
in the half-space x ! 0, with endpoints at (y, 0) and
(x, t), see Fig. 1. In particular ZA(x, t|y, 0) satisfies the
equation (2) with initial condition at t = 0 given by a
delta mass at the point y.

III. FLAT INITIAL CONDITION

A. Finite-time solution

In this Section, we are interested in the solution of the
KPZ equation (1) with a flat initial condition h(x, 0) = 0.
This is equivalent to studying (2) with ZA(x, 0) = 1, i.e.
a polymer with one fixed endpoint at (y, t) and one free
endpoint, of partition function

Zf
A(y, t) =

∫ ∞

0
ZA(y, t|x, 0)dx. (3)

the KPZ field being retrieved as h(y, t) = log Zf
A(y, t),

where the superscript f stands for flat IC.
Consider now the case where the fixed endpoint is at

the position of the wall y = 0. We will calculate the
moments of Zf

A(0, t) which will allow us to obtain an
expression for the Laplace transform of its distribution.
From (3) and by symmetry, we can write the n-th integer
moment of the partition sum as

E

[
Zf

A(0, t)n
]

= n!

∫

x1!...!xn!0
E

[
n∏

i=1

ZA(xi, t|0, 0)

]

.

(4)
where here and below, E denote expectation with respect
to the noise ξ. As shown in [38] the moments appearing in
the RHS can be expressed as a multiple contour integral.
We have that, for general endpoint positions x1 ! . . . !
xn ! 0,

E

[
n∏

i=1

ZA(xi, t|0, 0)

]

= 2n

∫

r1+iR

dz1

2iπ
· · ·
∫

rn+iR

dzn

2iπ

n∏

i=1

zi

zi + A
etz2

i −xizi
∏

1"a<b"n

za − zb

za − zb − 1

za + zb

za + zb − 1
, (5)

where the contours are chosen so that r1 > r2 +1 > · · · >
rn +n−1 > max{n−1−A, n−1}, i.e. all contours are to
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Fig. 1. Tracy-Widom distribution function P⇤(f)

2. More on the KPZ equation

2.1. The KPZ equation with various initial conditions

In the previous section we have seen that the statistical mechanics of a directed polymer
in a random potential, which is an optimisation problem, is related to the Kardar-Parisi-
Zhang (KPZ) equation12 which describes the stochastic growth of an interface. This
connection holds in any dimension, i.e. directed polymers in D = d+ 1 dimension, can
be mapped to the growth of a d dimensional interface. Much analytical progress was
achieved for one dimensional interfaces, i.e. d = 1, and we will continue to focus on this
case. Let us define h(x, t) the height at time t and position x 2 R of an interface (for
instance separating two phases of a liquid crystal as in the experiments35). By a choice
of units of x, t, h the KPZ equation can always be written as a

@th(x, t) = @2
xh(x, t) + (@xh(x, t))

2 +
p
2 ⌘(x, t) (1.22)

where ⌘(x, t) is the noise which drives the growth. Under the Cole-Hopf transformation

h(x, t) = logZ(x, t) (1.23)

it is mapped to the so-called stochastic heat equation (SHE)

@tZ(x, t) = @2
xZ(x, t) +

p
2 ⌘(x, t)Z(x, t) (1.24)

where here the noise acts multiplicatively. As explained in the previous section Z(x, t)
can be seen as the canonical partition function of a continuum directed polymer in
dimension D = 1 + 1, with one endpoint at (x, t), and ⌘(x, t) is proportional to the
random potential. Although other types of noises have been studied36 , we focus here on
the case of a standard space-time Gaussian white noise, ⌘(x, t)⌘(x0, t0) = �(x�x0)�(t�t0),
for which exact results can be obtained. Eq. (1.24) is then understood in Ito sense, and
Z(x, t) thus satisfies the standard heat equation.

aCompared to the previous section we define h = ��F and �V = �
p
2c̄⌘ hence �2u = 2c̄, and we set

� = 1/2, hence  = c̄, and finally c̄ = 1.
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behavior. Interestingly, the single space point finite time solutions of the KPZ equa-
tion described here, obtained with the replica Bethe ansatz method, have by now been
confirmed by rigorous methods.

2.5. Two-time correlations and memory

The joint distribution of the KPZ height at two di↵erent times, e.g. of h(0, t1) and
h(0, t2), with both t1, t2 large with a fixed ratio u = t2/t1 > 1, is believed to be
universal, but is notably di�cult to calculate using the replica Bethe ansatz.64 A so-
lution for the tail (when only one of the heights, h(0, t1), is large), was obtained65 for
droplet initial conditions, and found in good agreement with experiments.66 The com-
plete solution was obtained67 by a di↵erent method from a discrete polymer model,
assuming universality. An interesting quantity is the universal dimensionless ratio
R = limu!+1 limt1!+1 Cov(h(0, t1), h(0, ut1))/Var(h(0, t1)) which quantifies ergod-
icity breaking and persitent memory at infinitely separated times. It was obtained ana-
lytically for droplet initial conditions in,68 with R = 0.623 in agreement with numerics
and experiments.37,66

2.6. Polymer in a half-space and KPZ equation on the half-line

Consider now a directed polymer of trajectory (�(⌧), ⌧) constrained to remain in the
half-space �(⌧) � 0, with endpoint at �(t) = x � 0. It is described by a partition
sum Z(x, t), which still satisfies the SHE (1.24) on the half-line x > 0. The Cole-Hopf
map h(x, t) = logZ(x, t) then defines the KPZ equation on the half-line. Consider
first the case of ”absorbing” boundary conditions Z(0, t) = 0, which corresponds to an
infinite hard wall at x = 0 (the polymer paths cannot touch the wall). The integer
moments ZN (x, t) can still be expressed using the delta Bose gas model (1.17) for
x > 0 with Dirichlet boundary conditions. For these boundary conditions there is
again a replica Bethe ansatz solution. The calculation can be performed to the end
and for any t in the case of the ”droplet” initial condition, i.e. when the polymer
starts and ends near the wall. One finds69 that the height defined (in that case) as
h(0, t) := log(Z(✏, t|✏, 0)/✏2)|✏=0+ obeys again the large time behavior (1.27), with now

Prob(⇠ < s) =
p

Det(I � PsK) , K(!,!0) = KAi(!,!
0)� 1

2
Ai(!)

Z +1

0
duAi(!0+u)

(1.35)
This is nothing but the Tracy Widom distribution of the Gaussian symplectic ensemble
(GSE), the last of the three classical Wigner-Dyson ensembles, i.e. ⇠ = �4 with Prob(⇠ <
s) = F4(s) =

1
2 (F1(s) +

F2(s)
F1(s)

) (using the definition of F4 in70).

The half-space polymer model can be extended71 to a ”soft wall” of parameter A,
with the boundary condition @xZ(x, t)|x=0 = AZ(0, t). The wall is repulsive for A > 0
(A = +1 being the infinite hard wall) and attractive for A < 0. Indeed, for A < 0
the delta Bose gas with N = 1 has a bound state to the wall, which corresponds to
the particular solution Z(x, t) = eAx+A2t. The replica Bethe ansatz can still be used
for any N and indicates that for the quenched problem, i.e. for logZ(x, t) and N ! 0,
there is a phase transition:71 for A < �1/2 the polymer is bound to the wall, while
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behavior. Interestingly, the single space point finite time solutions of the KPZ equa-
tion described here, obtained with the replica Bethe ansatz method, have by now been
confirmed by rigorous methods.

2.5. Two-time correlations and memory

The joint distribution of the KPZ height at two di↵erent times, e.g. of h(0, t1) and
h(0, t2), with both t1, t2 large with a fixed ratio u = t2/t1 > 1, is believed to be
universal, but is notably di�cult to calculate using the replica Bethe ansatz.64 A so-
lution for the tail (when only one of the heights, h(0, t1), is large), was obtained65 for
droplet initial conditions, and found in good agreement with experiments.66 The com-
plete solution was obtained67 by a di↵erent method from a discrete polymer model,
assuming universality. An interesting quantity is the universal dimensionless ratio
R = limu!+1 limt1!+1 Cov(h(0, t1), h(0, ut1))/Var(h(0, t1)) which quantifies ergod-
icity breaking and persitent memory at infinitely separated times. It was obtained ana-
lytically for droplet initial conditions in,68 with R = 0.623 in agreement with numerics
and experiments.37,66

2.6. Polymer in a half-space and KPZ equation on the half-line

Consider now a directed polymer of trajectory (�(⌧), ⌧) constrained to remain in the
half-space �(⌧) � 0, with endpoint at �(t) = x � 0. It is described by a partition
sum Z(x, t), which still satisfies the SHE (1.24) on the half-line x > 0. The Cole-Hopf
map h(x, t) = logZ(x, t) then defines the KPZ equation on the half-line. Consider
first the case of ”absorbing” boundary conditions Z(0, t) = 0, which corresponds to an
infinite hard wall at x = 0 (the polymer paths cannot touch the wall). The integer
moments ZN (x, t) can still be expressed using the delta Bose gas model (1.17) for
x > 0 with Dirichlet boundary conditions. For these boundary conditions there is
again a replica Bethe ansatz solution. The calculation can be performed to the end
and for any t in the case of the ”droplet” initial condition, i.e. when the polymer
starts and ends near the wall. One finds69 that the height defined (in that case) as
h(0, t) := log(Z(✏, t|✏, 0)/✏2)|✏=0+ obeys again the large time behavior (1.27), with now

Prob(⇠ < s) =
p

Det(I � PsK) , K(!,!0) = KAi(!,!
0)� 1

2
Ai(!)

Z +1

0
duAi(!0+u)

(1.35)
This is nothing but the Tracy Widom distribution of the Gaussian symplectic ensemble
(GSE), the last of the three classical Wigner-Dyson ensembles, i.e. ⇠ = �4 with Prob(⇠ <
s) = F4(s) =

1
2 (F1(s) +

F2(s)
F1(s)

) (using the definition of F4 in70).

The half-space polymer model can be extended71 to a ”soft wall” of parameter A,
with the boundary condition @xZ(x, t)|x=0 = AZ(0, t). The wall is repulsive for A > 0
(A = +1 being the infinite hard wall) and attractive for A < 0. Indeed, for A < 0
the delta Bose gas with N = 1 has a bound state to the wall, which corresponds to
the particular solution Z(x, t) = eAx+A2t. The replica Bethe ansatz can still be used
for any N and indicates that for the quenched problem, i.e. for logZ(x, t) and N ! 0,
there is a phase transition:71 for A < �1/2 the polymer is bound to the wall, whilepolymer bound to wall 
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for A � �1/2 it wanders in the whole half-space. The structure of the replica bound
states for generic A becomes quite complicated.72 Nevertheless it is possible to obtain
a solution for any A. For droplet initial conditions72–75 it is found that for A � �1/2
Eq. (1.27) holds, where the scaled height fluctuations ⇠ are still GSE Tracy Widom
for A > �1/2, while at the transition, for A = 1/2, they are GOE Tracy Widom.
For A < �1/2, in the bound phase, one has h(0, t) = v01t + |2A + 1|!t1/2 where !
has a Gaussian distribution. The free energy per unit length of the polymer shows an
anomalous behavior �F/t = v01 � v1 = (A + 1

2 )
2. For flat initial conditions76 the

phase diagram is the same, however the height fluctuations at x = 0 are now GUE-TW
in the unbound phase A > �1/2, and of BBP type at the transition. Remarkably, a
similar transition scenario was obtained well before, by totally di↵erent methods, in the
study of symmetrized random permutations,77 which can indeed be seen as a discrete
version of a polymer problem. This is yet another manifestation of the universality
of the height distributions obtained at large time for the KPZ equation, here on the
half-line. A promising method to observe them in future experiments was proposed.78

2.7. Stationary measures for the KPZ equation

The KPZ equation describes a growth process and is intrinsically non-equilibrium. Nev-
ertheless, while the height at one point grows linearly in time with non trivial t1/3 fluc-
tuations as in (1.27), the height di↵erences between any two points, h(x, t) � h(y, t),
reaches a stationary distribution at large time. It was noticed long ago3,12,79,80 that the
KPZ equation on the full line admits the Brownian motion B(x) as a stationary measure,
i.e. for any given t, h(x, t) � h(0, t) ⌘ B(x), i.e. the two processes in x have the same
law. This was proved in.81,82 With periodic boundary conditions (on the circle) the
stationary measure is a Brownian bridge.83 In the case of the half-line and the interval,
the stationary measure is more complicated, not translationally invariant, generically
non Gaussian, and was obtained only recently. In fact there is a two-parameter family
of such measures. One case is simpler though, and can be inferred using replica from
the ground state of the delta Bose gas. Going back to the previous paragraph and
the half-line with a soft wall at x = 0, one shows84 that in the bound phase, i.e. for
A < �1/2, a stationary measure is in law a Brownian motion with drift

Z(x, t)

Z(0, t)
= eh(x,t)�h(0,t) ⌘ eB(x)+(A+ 1

2 )x (1.36)

for any given t. On the other hand in the bound phase one expects that the large time
behavior is dominated by the ground state  0 of the delta Bose gas. The latter has a
simple expression in this geometry71,72 and one thus infers that (for 0  x1  · · ·  xN )
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PN

j=1(A�j+1)xj (1.37)

This expression contains a bit more information than the stationary measure (1.36)
since it also depends on the correlations between logZ(0, t) and the ratios Z(x,t)

Z(0,t) . One
can study the probability distribution of the endpoint �(t) = x of a polymer, p(x, t) =
eh(x,t)�h(0,t)/[

R1
0 dyeh(y,t)�h(0,t)], which becomes stationary for a very long polymer.

Remarquably, one finds85 that (1.36) and (1.37) lead to the same results for the cumu-
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FIG. 1. (a) Directed polymer path in 1 + 1 dimensions in
a half-space, pinned at the boundary wall at the point (0, 0),
with free endpoint (x, t) (point to line problem) in presence of
a bulk white noise random potential

√
2ξ(x, t). We will discuss

the fluctuations of the position of the polymer endpoint. By
reversing time, this corresponds to the line to point partition
function Zf

A(y = 0, t) in (3), which maps to the KPZ field
at time t with flat IC. (b) We will also consider the position
of the midpoint of a DP with both endpoints pinned at the
boundary.

conditions. Some details are provided in the Appendix
A. We also obtain the large time asymptotics, the details
being provided in Appendix B. In Section IV we study
the stationary measure of the KPZ equation on the half-
line and apply it to obtain a detailed description of the
statistics of the endpoint in the polymer problem. The
connection with the replica method is given in Appendix
E and the calculations of the mean endpoint probability
and its correlations using Liouville quantum mechanics
are described in Appendix F. In Section V we generalize
the identity in distribution obtained in Section III, re-
lating solutions of half-space KPZ equation to solutions
with the full-space KPZ equation with different initial
data, some of the details are presented in Appendix C.
The matching with full space KPZ equation distributions
uses the statistical tilt symmetry recalled in Appendix D.
In Section VI we point out the features which we believe
are universal near the unbinding transition and in rela-
tion to the conjectured half-space KPZ fixed point.

II. HALF-SPACE KPZ EQUATION

Let us recall the KPZ equation for the height h(x, t)
field of an interface

∂th(x, t) = ν∂2
xh +

λ

2
(∂xh)2 +

√
Dξ(x, t) (1)

where ξ(x, t) is a space-time white noise. We use space-
time units so that ν = 1 and λ = D = 2. Here we study
the problem in a half-line x ! 0 with boundary conditions

∂xh = A depending on a parameter A. From the Cole-
Hopf mapping it can be equivalently defined as h(x, t) =
log ZA(x, t) where ZA(x, t) satisfies the stochastic heat
equation (SHE)

∂tZA(x, t) = ∂2
xZA(x, t) +

√
2ZA(x, t)ξ(x, t), x ! 0, (2)

with boundary condition ∂xZA(x, t) = AZA(x, t) at x =
0 and as yet unspecified initial condition at t = 0.

Let us denote by ZA(x, t|y, 0) the partition function
of a continuous DP of length t in a white noise random
potential in dimension d = 1 + 1 (at unit temperature),
in the half-space x ! 0, with endpoints at (y, 0) and
(x, t), see Fig. 1. In particular ZA(x, t|y, 0) satisfies the
equation (2) with initial condition at t = 0 given by a
delta mass at the point y.

III. FLAT INITIAL CONDITION

A. Finite-time solution

In this Section, we are interested in the solution of the
KPZ equation (1) with a flat initial condition h(x, 0) = 0.
This is equivalent to studying (2) with ZA(x, 0) = 1, i.e.
a polymer with one fixed endpoint at (y, t) and one free
endpoint, of partition function

Zf
A(y, t) =

∫ ∞

0
ZA(y, t|x, 0)dx. (3)

the KPZ field being retrieved as h(y, t) = log Zf
A(y, t),

where the superscript f stands for flat IC.
Consider now the case where the fixed endpoint is at

the position of the wall y = 0. We will calculate the
moments of Zf

A(0, t) which will allow us to obtain an
expression for the Laplace transform of its distribution.
From (3) and by symmetry, we can write the n-th integer
moment of the partition sum as

E

[
Zf

A(0, t)n
]

= n!

∫

x1!...!xn!0
E

[
n∏

i=1

ZA(xi, t|0, 0)

]

.

(4)
where here and below, E denote expectation with respect
to the noise ξ. As shown in [38] the moments appearing in
the RHS can be expressed as a multiple contour integral.
We have that, for general endpoint positions x1 ! . . . !
xn ! 0,

E

[
n∏

i=1

ZA(xi, t|0, 0)

]

= 2n

∫

r1+iR

dz1

2iπ
· · ·
∫

rn+iR

dzn

2iπ

n∏

i=1

zi

zi + A
etz2

i −xizi
∏

1"a<b"n

za − zb

za − zb − 1

za + zb

za + zb − 1
, (5)

where the contours are chosen so that r1 > r2 +1 > · · · >
rn +n−1 > max{n−1−A, n−1}, i.e. all contours are to

1
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corresponds to the KPZ equation limit1 of formulas with
a similar structure obtained in [20] of formulas with a simi-
lar structure obtained in [20] for the stationary measure of
ASEP. However, obtaining a characterization of the pro-
cess allowing to study properties of the stationary measure
remains a challenge. This amounts to invert the compli-
cated Laplace transforms in [18].

In this Letter we obtain a simple formula for the station-
ary measure of the KPZ equation on an interval of any size
L, with general Neumann type boundary conditions. Our
result is particularly convenient to study various limits as
L → +∞. In particular we recover the phase diagram for
stationary measures of the KPZ fixed point on an interval,
we obtain new crossover regimes near the critical point,
and we study the stationary measures of the KPZ equa-
tion on a half-line and their large scale limits. We unveil
and exploit a surprising connection to Liouville quantum
mechanics (LQM), i.e. the Schrodinger equation in an
exponential potential. The LQM, which is the 1D limit
of the 2D Liouville field theory, notably allows to study
the statistics of exponential functionals of the Brownian
motion, see [21] for a short review. As such, it appears
in several areas of physics such as diffusion in 1D ran-
dom media [21–27], multifractal eigenfunctions of random
Schrodinger and Dirac operators [21, 28–31], diffusion in
the hyperbolic plane [32–34], and more recently, and strik-
ingly, in quantum chaos and its relation to gravity [35,36].
LQM was recently used to obtain multipoint observables
for the stationary KPZ equation in a half-space (see Supp.
Mat. in [17]).

Model. – The KPZ equation for the height field
h(x, t) reads

∂th(x, t) = ν∂2
xh +

λ

2
(∂xh)2 +

√
Dξ(x, t) (1)

where ξ(x, t) is a standard space-time white noise. We use
space-time units so that ν = 1 and λ = D = 2 2. Here
we study the problem on the interval so that (1) holds
for 0 < x < L. The solution is defined from the Cole-
Hopf mapping h(x, t) = log Z(x, t), where Z(x, t) equals
the partition sum of a continuum directed polymer with
endpoint at (x, t) in a random potential −

√
2ξ(x, t). It

satisfies the stochastic heat equation (SHE)

∂tZ(x, t) = ∂2
xZ(x, t) +

√
2Z(x, t)ξ(x, t), x ∈ [0, L] (2)

in the Ito sense, with Robin boundary conditions

∂xZ(x, t)|x=0 = AZ(0, t), ∂xZ(x, t)|x=L = −BZ(L, t),
(3)

and it will be convenient to define boundary parameters
u = A + 1/2 and v = B + 1/2. Although Z(x, t), t > 0,

1The limit from ASEP to KPZ was previously investigated in
[19]. Remark 2.11 therein explains how to rescale ASEP boundary
parameters to obtain the boundary conditions for the KPZ equation.

2The units chosen in [18] amount to rescaling our time as t → 2t,
immaterial in the steady state.

is not differentiable, the standard way to understand (3)
is to impose these conditions on the heat kernel [19], or
through a path integral as in [37, 38]. For the DP, A > 0
corresponds to a repulsive wall and A < 0 an attractive
one, and similarly for B at x = L.

Main result. – Our main result is the prediction that
the KPZ random height profile in the stationary state,
denoted {H(x)}x∈[0,L], can be written as the sum of two
independent random fields

H(x) − H(0) =
1√
2

W (x) + X(x) (4)

where W (x) is a one sided Brownian motion (i.e. with
W (0) = 0 and W (L) free) and the probability distribution
of the process X(x) is given by the path integral measure

DX

Zu,v
e

−
∫

L

0
dx( dX(x)

dx
)2

e−2vX(L)

(∫ L

0
dx e−2X(x)

)−(u+v)

(5)
with X(0) = 0 and X(L) free, and Zu,v a normalization
such that Z0,0 = 1. For the choice v = −u, H(x) + vx is
thus simply a standard Brownian motion. The Brownian
motion with drift u is also stationary for the half-space
KPZ equation [16], and on the segment it arises only when
the two boundary conditions are compatible.

In mathematical terms, X is a continuous stochastic
process on [0, L] whose measure PX is absolutely contin-
uous with respect to that of a Brownian motion with dif-
fusion coefficient 1/2, denoted PB, with Radon-Nikodym
derivative dPX

dPB
= 1

Zu,v
e−Eu,v(X) where

Eu,v(X) =

u log

(∫ L

0
dxe−2X(x)

)

+ v log

(∫ L

0
dxe2X(L)−2X(x)

)

.

(6)

This is a mere reformulation of (5) in a more symmetric
form so that it becomes apparent that the process is left
invariant after reversing space and exchanging u, v. This
reformulation simply means that for any continuous and
bounded functional F of the process X = {X(x)}x∈[0,L],

EX [F (X)] =
1

Zu,v
EB

[
F (B) e−Eu,v(B)

]
, (7)

where in the R.H.S., B = {B(x)}x∈[0,L] is a Brownian mo-
tion with diffusion coefficient 1/2. Surprisingly the mea-
sure defined here in (5) as the steady state of the KPZ
equation has been already introduced and studied in a
work of Hariya and Yor in a different context [39]. We
will use some of their results below.

Liouville quantum mechanics. – The Liouville
Hamiltonian Ĥ on the real axis U ∈ R is defined as

Ĥ = −
1

4

d2

dU2
+ e−2U (8)

p-2
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corresponds to the KPZ equation limit1 of formulas with
a similar structure obtained in [20] of formulas with a simi-
lar structure obtained in [20] for the stationary measure of
ASEP. However, obtaining a characterization of the pro-
cess allowing to study properties of the stationary measure
remains a challenge. This amounts to invert the compli-
cated Laplace transforms in [18].

In this Letter we obtain a simple formula for the station-
ary measure of the KPZ equation on an interval of any size
L, with general Neumann type boundary conditions. Our
result is particularly convenient to study various limits as
L → +∞. In particular we recover the phase diagram for
stationary measures of the KPZ fixed point on an interval,
we obtain new crossover regimes near the critical point,
and we study the stationary measures of the KPZ equa-
tion on a half-line and their large scale limits. We unveil
and exploit a surprising connection to Liouville quantum
mechanics (LQM), i.e. the Schrodinger equation in an
exponential potential. The LQM, which is the 1D limit
of the 2D Liouville field theory, notably allows to study
the statistics of exponential functionals of the Brownian
motion, see [21] for a short review. As such, it appears
in several areas of physics such as diffusion in 1D ran-
dom media [21–27], multifractal eigenfunctions of random
Schrodinger and Dirac operators [21, 28–31], diffusion in
the hyperbolic plane [32–34], and more recently, and strik-
ingly, in quantum chaos and its relation to gravity [35,36].
LQM was recently used to obtain multipoint observables
for the stationary KPZ equation in a half-space (see Supp.
Mat. in [17]).

Model. – The KPZ equation for the height field
h(x, t) reads

∂th(x, t) = ν∂2
xh +

λ

2
(∂xh)2 +

√
Dξ(x, t) (1)

where ξ(x, t) is a standard space-time white noise. We use
space-time units so that ν = 1 and λ = D = 2 2. Here
we study the problem on the interval so that (1) holds
for 0 < x < L. The solution is defined from the Cole-
Hopf mapping h(x, t) = log Z(x, t), where Z(x, t) equals
the partition sum of a continuum directed polymer with
endpoint at (x, t) in a random potential −

√
2ξ(x, t). It

satisfies the stochastic heat equation (SHE)

∂tZ(x, t) = ∂2
xZ(x, t) +

√
2Z(x, t)ξ(x, t), x ∈ [0, L] (2)

in the Ito sense, with Robin boundary conditions

∂xZ(x, t)|x=0 = AZ(0, t), ∂xZ(x, t)|x=L = −BZ(L, t),
(3)

and it will be convenient to define boundary parameters
u = A + 1/2 and v = B + 1/2. Although Z(x, t), t > 0,

1The limit from ASEP to KPZ was previously investigated in
[19]. Remark 2.11 therein explains how to rescale ASEP boundary
parameters to obtain the boundary conditions for the KPZ equation.

2The units chosen in [18] amount to rescaling our time as t → 2t,
immaterial in the steady state.

is not differentiable, the standard way to understand (3)
is to impose these conditions on the heat kernel [19], or
through a path integral as in [37, 38]. For the DP, A > 0
corresponds to a repulsive wall and A < 0 an attractive
one, and similarly for B at x = L.

Main result. – Our main result is the prediction that
the KPZ random height profile in the stationary state,
denoted {H(x)}x∈[0,L], can be written as the sum of two
independent random fields

H(x) − H(0) =
1√
2

W (x) + X(x) (4)

where W (x) is a one sided Brownian motion (i.e. with
W (0) = 0 and W (L) free) and the probability distribution
of the process X(x) is given by the path integral measure

DX

Zu,v
e

−
∫

L

0
dx( dX(x)

dx
)2

e−2vX(L)

(∫ L

0
dx e−2X(x)

)−(u+v)

(5)
with X(0) = 0 and X(L) free, and Zu,v a normalization
such that Z0,0 = 1. For the choice v = −u, H(x) + vx is
thus simply a standard Brownian motion. The Brownian
motion with drift u is also stationary for the half-space
KPZ equation [16], and on the segment it arises only when
the two boundary conditions are compatible.

In mathematical terms, X is a continuous stochastic
process on [0, L] whose measure PX is absolutely contin-
uous with respect to that of a Brownian motion with dif-
fusion coefficient 1/2, denoted PB, with Radon-Nikodym
derivative dPX

dPB
= 1

Zu,v
e−Eu,v(X) where

Eu,v(X) =

u log

(∫ L

0
dxe−2X(x)

)

+ v log

(∫ L

0
dxe2X(L)−2X(x)

)

.

(6)

This is a mere reformulation of (5) in a more symmetric
form so that it becomes apparent that the process is left
invariant after reversing space and exchanging u, v. This
reformulation simply means that for any continuous and
bounded functional F of the process X = {X(x)}x∈[0,L],

EX [F (X)] =
1

Zu,v
EB

[
F (B) e−Eu,v(B)

]
, (7)

where in the R.H.S., B = {B(x)}x∈[0,L] is a Brownian mo-
tion with diffusion coefficient 1/2. Surprisingly the mea-
sure defined here in (5) as the steady state of the KPZ
equation has been already introduced and studied in a
work of Hariya and Yor in a different context [39]. We
will use some of their results below.

Liouville quantum mechanics. – The Liouville
Hamiltonian Ĥ on the real axis U ∈ R is defined as

Ĥ = −
1

4

d2

dU2
+ e−2U (8)
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corresponds to the KPZ equation limit1 of formulas with
a similar structure obtained in [20] of formulas with a simi-
lar structure obtained in [20] for the stationary measure of
ASEP. However, obtaining a characterization of the pro-
cess allowing to study properties of the stationary measure
remains a challenge. This amounts to invert the compli-
cated Laplace transforms in [18].

In this Letter we obtain a simple formula for the station-
ary measure of the KPZ equation on an interval of any size
L, with general Neumann type boundary conditions. Our
result is particularly convenient to study various limits as
L → +∞. In particular we recover the phase diagram for
stationary measures of the KPZ fixed point on an interval,
we obtain new crossover regimes near the critical point,
and we study the stationary measures of the KPZ equa-
tion on a half-line and their large scale limits. We unveil
and exploit a surprising connection to Liouville quantum
mechanics (LQM), i.e. the Schrodinger equation in an
exponential potential. The LQM, which is the 1D limit
of the 2D Liouville field theory, notably allows to study
the statistics of exponential functionals of the Brownian
motion, see [21] for a short review. As such, it appears
in several areas of physics such as diffusion in 1D ran-
dom media [21–27], multifractal eigenfunctions of random
Schrodinger and Dirac operators [21, 28–31], diffusion in
the hyperbolic plane [32–34], and more recently, and strik-
ingly, in quantum chaos and its relation to gravity [35,36].
LQM was recently used to obtain multipoint observables
for the stationary KPZ equation in a half-space (see Supp.
Mat. in [17]).

Model. – The KPZ equation for the height field
h(x, t) reads

∂th(x, t) = ν∂2
xh +

λ

2
(∂xh)2 +

√
Dξ(x, t) (1)

where ξ(x, t) is a standard space-time white noise. We use
space-time units so that ν = 1 and λ = D = 2 2. Here
we study the problem on the interval so that (1) holds
for 0 < x < L. The solution is defined from the Cole-
Hopf mapping h(x, t) = log Z(x, t), where Z(x, t) equals
the partition sum of a continuum directed polymer with
endpoint at (x, t) in a random potential −

√
2ξ(x, t). It

satisfies the stochastic heat equation (SHE)

∂tZ(x, t) = ∂2
xZ(x, t) +

√
2Z(x, t)ξ(x, t), x ∈ [0, L] (2)

in the Ito sense, with Robin boundary conditions

∂xZ(x, t)|x=0 = AZ(0, t), ∂xZ(x, t)|x=L = −BZ(L, t),
(3)

and it will be convenient to define boundary parameters
u = A + 1/2 and v = B + 1/2. Although Z(x, t), t > 0,

1The limit from ASEP to KPZ was previously investigated in
[19]. Remark 2.11 therein explains how to rescale ASEP boundary
parameters to obtain the boundary conditions for the KPZ equation.

2The units chosen in [18] amount to rescaling our time as t → 2t,
immaterial in the steady state.
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thus simply a standard Brownian motion. The Brownian
motion with drift u is also stationary for the half-space
KPZ equation [16], and on the segment it arises only when
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In mathematical terms, X is a continuous stochastic
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derivative dPX
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EX [F (X)] =
1

Zu,v
EB

[
F (B) e−Eu,v(B)

]
, (7)
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sure defined here in (5) as the steady state of the KPZ
equation has been already introduced and studied in a
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corresponds to the KPZ equation limit1 of formulas with
a similar structure obtained in [20] of formulas with a simi-
lar structure obtained in [20] for the stationary measure of
ASEP. However, obtaining a characterization of the pro-
cess allowing to study properties of the stationary measure
remains a challenge. This amounts to invert the compli-
cated Laplace transforms in [18].

In this Letter we obtain a simple formula for the station-
ary measure of the KPZ equation on an interval of any size
L, with general Neumann type boundary conditions. Our
result is particularly convenient to study various limits as
L → +∞. In particular we recover the phase diagram for
stationary measures of the KPZ fixed point on an interval,
we obtain new crossover regimes near the critical point,
and we study the stationary measures of the KPZ equa-
tion on a half-line and their large scale limits. We unveil
and exploit a surprising connection to Liouville quantum
mechanics (LQM), i.e. the Schrodinger equation in an
exponential potential. The LQM, which is the 1D limit
of the 2D Liouville field theory, notably allows to study
the statistics of exponential functionals of the Brownian
motion, see [21] for a short review. As such, it appears
in several areas of physics such as diffusion in 1D ran-
dom media [21–27], multifractal eigenfunctions of random
Schrodinger and Dirac operators [21, 28–31], diffusion in
the hyperbolic plane [32–34], and more recently, and strik-
ingly, in quantum chaos and its relation to gravity [35,36].
LQM was recently used to obtain multipoint observables
for the stationary KPZ equation in a half-space (see Supp.
Mat. in [17]).

Model. – The KPZ equation for the height field
h(x, t) reads

∂th(x, t) = ν∂2
xh +

λ

2
(∂xh)2 +

√
Dξ(x, t) (1)

where ξ(x, t) is a standard space-time white noise. We use
space-time units so that ν = 1 and λ = D = 2 2. Here
we study the problem on the interval so that (1) holds
for 0 < x < L. The solution is defined from the Cole-
Hopf mapping h(x, t) = log Z(x, t), where Z(x, t) equals
the partition sum of a continuum directed polymer with
endpoint at (x, t) in a random potential −

√
2ξ(x, t). It

satisfies the stochastic heat equation (SHE)

∂tZ(x, t) = ∂2
xZ(x, t) +

√
2Z(x, t)ξ(x, t), x ∈ [0, L] (2)

in the Ito sense, with Robin boundary conditions

∂xZ(x, t)|x=0 = AZ(0, t), ∂xZ(x, t)|x=L = −BZ(L, t),
(3)

and it will be convenient to define boundary parameters
u = A + 1/2 and v = B + 1/2. Although Z(x, t), t > 0,

1The limit from ASEP to KPZ was previously investigated in
[19]. Remark 2.11 therein explains how to rescale ASEP boundary
parameters to obtain the boundary conditions for the KPZ equation.

2The units chosen in [18] amount to rescaling our time as t → 2t,
immaterial in the steady state.

is not differentiable, the standard way to understand (3)
is to impose these conditions on the heat kernel [19], or
through a path integral as in [37, 38]. For the DP, A > 0
corresponds to a repulsive wall and A < 0 an attractive
one, and similarly for B at x = L.

Main result. – Our main result is the prediction that
the KPZ random height profile in the stationary state,
denoted {H(x)}x∈[0,L], can be written as the sum of two
independent random fields

H(x) − H(0) =
1√
2

W (x) + X(x) (4)

where W (x) is a one sided Brownian motion (i.e. with
W (0) = 0 and W (L) free) and the probability distribution
of the process X(x) is given by the path integral measure
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(∫ L
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)−(u+v)

(5)
with X(0) = 0 and X(L) free, and Zu,v a normalization
such that Z0,0 = 1. For the choice v = −u, H(x) + vx is
thus simply a standard Brownian motion. The Brownian
motion with drift u is also stationary for the half-space
KPZ equation [16], and on the segment it arises only when
the two boundary conditions are compatible.

In mathematical terms, X is a continuous stochastic
process on [0, L] whose measure PX is absolutely contin-
uous with respect to that of a Brownian motion with dif-
fusion coefficient 1/2, denoted PB, with Radon-Nikodym
derivative dPX

dPB
= 1
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Eu,v(X) =

u log

(∫ L

0
dxe−2X(x)

)
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.
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This is a mere reformulation of (5) in a more symmetric
form so that it becomes apparent that the process is left
invariant after reversing space and exchanging u, v. This
reformulation simply means that for any continuous and
bounded functional F of the process X = {X(x)}x∈[0,L],
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where in the R.H.S., B = {B(x)}x∈[0,L] is a Brownian mo-
tion with diffusion coefficient 1/2. Surprisingly the mea-
sure defined here in (5) as the steady state of the KPZ
equation has been already introduced and studied in a
work of Hariya and Yor in a different context [39]. We
will use some of their results below.

Liouville quantum mechanics. – The Liouville
Hamiltonian Ĥ on the real axis U ∈ R is defined as

Ĥ = −
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+ e−2U (8)
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L, with general Neumann type boundary conditions. Our
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L → +∞. In particular we recover the phase diagram for
stationary measures of the KPZ fixed point on an interval,
we obtain new crossover regimes near the critical point,
and we study the stationary measures of the KPZ equa-
tion on a half-line and their large scale limits. We unveil
and exploit a surprising connection to Liouville quantum
mechanics (LQM), i.e. the Schrodinger equation in an
exponential potential. The LQM, which is the 1D limit
of the 2D Liouville field theory, notably allows to study
the statistics of exponential functionals of the Brownian
motion, see [21] for a short review. As such, it appears
in several areas of physics such as diffusion in 1D ran-
dom media [21–27], multifractal eigenfunctions of random
Schrodinger and Dirac operators [21, 28–31], diffusion in
the hyperbolic plane [32–34], and more recently, and strik-
ingly, in quantum chaos and its relation to gravity [35,36].
LQM was recently used to obtain multipoint observables
for the stationary KPZ equation in a half-space (see Supp.
Mat. in [17]).

Model. – The KPZ equation for the height field
h(x, t) reads

∂th(x, t) = ν∂2
xh +

λ

2
(∂xh)2 +

√
Dξ(x, t) (1)

where ξ(x, t) is a standard space-time white noise. We use
space-time units so that ν = 1 and λ = D = 2 2. Here
we study the problem on the interval so that (1) holds
for 0 < x < L. The solution is defined from the Cole-
Hopf mapping h(x, t) = log Z(x, t), where Z(x, t) equals
the partition sum of a continuum directed polymer with
endpoint at (x, t) in a random potential −

√
2ξ(x, t). It

satisfies the stochastic heat equation (SHE)

∂tZ(x, t) = ∂2
xZ(x, t) +

√
2Z(x, t)ξ(x, t), x ∈ [0, L] (2)

in the Ito sense, with Robin boundary conditions

∂xZ(x, t)|x=0 = AZ(0, t), ∂xZ(x, t)|x=L = −BZ(L, t),
(3)

and it will be convenient to define boundary parameters
u = A + 1/2 and v = B + 1/2. Although Z(x, t), t > 0,

1The limit from ASEP to KPZ was previously investigated in
[19]. Remark 2.11 therein explains how to rescale ASEP boundary
parameters to obtain the boundary conditions for the KPZ equation.

2The units chosen in [18] amount to rescaling our time as t → 2t,
immaterial in the steady state.

is not differentiable, the standard way to understand (3)
is to impose these conditions on the heat kernel [19], or
through a path integral as in [37, 38]. For the DP, A > 0
corresponds to a repulsive wall and A < 0 an attractive
one, and similarly for B at x = L.

Main result. – Our main result is the prediction that
the KPZ random height profile in the stationary state,
denoted {H(x)}x∈[0,L], can be written as the sum of two
independent random fields

H(x) − H(0) =
1√
2

W (x) + X(x) (4)

where W (x) is a one sided Brownian motion (i.e. with
W (0) = 0 and W (L) free) and the probability distribution
of the process X(x) is given by the path integral measure

DX

Zu,v
e

−
∫

L

0
dx( dX(x)

dx
)2

e−2vX(L)

(∫ L

0
dx e−2X(x)

)−(u+v)

(5)
with X(0) = 0 and X(L) free, and Zu,v a normalization
such that Z0,0 = 1. For the choice v = −u, H(x) + vx is
thus simply a standard Brownian motion. The Brownian
motion with drift u is also stationary for the half-space
KPZ equation [16], and on the segment it arises only when
the two boundary conditions are compatible.

In mathematical terms, X is a continuous stochastic
process on [0, L] whose measure PX is absolutely contin-
uous with respect to that of a Brownian motion with dif-
fusion coefficient 1/2, denoted PB, with Radon-Nikodym
derivative dPX

dPB
= 1

Zu,v
e−Eu,v(X) where

Eu,v(X) =

u log

(∫ L

0
dxe−2X(x)

)

+ v log

(∫ L

0
dxe2X(L)−2X(x)

)

.

(6)

This is a mere reformulation of (5) in a more symmetric
form so that it becomes apparent that the process is left
invariant after reversing space and exchanging u, v. This
reformulation simply means that for any continuous and
bounded functional F of the process X = {X(x)}x∈[0,L],

EX [F (X)] =
1

Zu,v
EB

[
F (B) e−Eu,v(B)

]
, (7)

where in the R.H.S., B = {B(x)}x∈[0,L] is a Brownian mo-
tion with diffusion coefficient 1/2. Surprisingly the mea-
sure defined here in (5) as the steady state of the KPZ
equation has been already introduced and studied in a
work of Hariya and Yor in a different context [39]. We
will use some of their results below.

Liouville quantum mechanics. – The Liouville
Hamiltonian Ĥ on the real axis U ∈ R is defined as

Ĥ = −
1

4

d2

dU2
+ e−2U (8)
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sure defined here in (5) as the steady state of the KPZ
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where W (x) is a one-sided standard Brownian motion (i.e. with W (0) = 0 and W (L) free) and
the probability distribution of the process X(x) is given by the path integral measure
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with X(0) = 0 and X(L) free, and Zu,v a normalization such that Z0,0 = 1. In mathematical
terms, X is a continuous stochastic process on [0, L] whose measure is absolutely continuous
with respect to that of a Brownian motion with di�usion coe�cient 1/2 starting at X(0) = 0,
with Radon-Nikodym derivative
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0
dxe

2X(L)≠2X(x)
B≠v

. (5)

This equivalent form makes apparent that the process is invariant after reversing space and
exchanging u, v.

The distribution of H given above was obtained via a Laplace inversion of an explicit formula
for the multipoint distribution of the field H, obtained in [5]. Although [5] restricted to u+v > 0,
and the Laplace transform formula therein makes sense only in that case, the measure (4) makes
sense for any value of u, v œ R. This led us to conjecture in [7] that (3) is the stationary measure
for all values of u and v. When u + v > 0, another equivalent description of the law of H was
obtained slightly earlier in [6], also based on [5], in terms of a Doob-like transform of a process
with an explicit transition kernel. Although the Laplace inversions in [6] and [7] were performed
independently, they are quite similar for the following reason: When u + v > 0, the process X

can be written as X(x) = U(x)≠U(0), where the distribution of U is given by the path integral
measure [7]

DU

ÂZu,v

exp
A

≠2uU(0) ≠ 2vU(L) ≠
⁄ L

0
dx

C3
dU(x)

dx

42
+ e

≠2U(x)
DB

, (6)

where the endpoints U(0) and U(L) are now both free. Hence, U(x) obeys Liouville quantum
mechanics on x œ [0, L] with some specific boundary weights for U(0) and U(L). The path
integral (6) was obtained as an intermediate step in [7] and one deduces (4) from (6) by simply
integrating over U(0), the “zero mode” of the Liouville action – a standard procedure in the
Liouville theory [8, 9]. On the other hand, the Green’s function associated with the Liouville
Hamiltonian ≠1

4
d2

dU2 + e
≠2U is what is called the Yakubovich heat kernel in the reference [6],

where the process U (denoted Y in [6]) is defined through its Markovian transition densities.
Using the Feynman-Kac theorem (see [6, Eq. (3.4)] or [7, Eq. (16)]), this shows that the
descriptions appearing in [6] and [7] are equivalent, at least for u, v > 0. The equivalence was
proved to hold further for any u, v such that u+v > 0 in [10]. Let us also mention that defining
the process U(x) through a Markov process having an explicit transition kernel rather than
through a path integral also has certain advantages, for instance to compute observables of the
process [7, Supplementary Material] or to justify rigorously certain limits [10]. However, in this
paper, we will focus on the path integral (or Brownian reweighting) point of view.

1.2 Aim of this paper. There does not exist any general method to compute stationary
measures of non-linear non-equilibrium stochastic PDEs such as the KPZ equation. We are
not even aware of any method to directly check that (3), (4) is stationary on the interval
with the boundary conditions (2). However, it is well-known that the KPZ equation can be
approximated by various discrete integrable models, whose stationary measure is sometimes

2

first form

second form

where W (x) is a one-sided standard Brownian motion (i.e. with W (0) = 0 and W (L) free) and
the probability distribution of the process X(x) is given by the path integral measure

DX

Zu,v
e

≠
s L

0 dx
!

dX(x)
dx

"2

e
≠2vX(L)

A⁄ L

0
dx e

≠2X(x)
B≠(u+v)

(4)

with X(0) = 0 and X(L) free, and Zu,v a normalization such that Z0,0 = 1. In mathematical
terms, X is a continuous stochastic process on [0, L] whose measure is absolutely continuous
with respect to that of a Brownian motion with di�usion coe�cient 1/2 starting at X(0) = 0,
with Radon-Nikodym derivative

1
Zu,v

A⁄ L

0
dxe

≠2X(x)
B≠u A⁄ L

0
dxe

2X(L)≠2X(x)
B≠v

. (5)

This equivalent form makes apparent that the process is invariant after reversing space and
exchanging u, v.

The distribution of H given above was obtained via a Laplace inversion of an explicit formula
for the multipoint distribution of the field H, obtained in [5]. Although [5] restricted to u+v > 0,
and the Laplace transform formula therein makes sense only in that case, the measure (4) makes
sense for any value of u, v œ R. This led us to conjecture in [7] that (3) is the stationary measure
for all values of u and v. When u + v > 0, another equivalent description of the law of H was
obtained slightly earlier in [6], also based on [5], in terms of a Doob-like transform of a process
with an explicit transition kernel. Although the Laplace inversions in [6] and [7] were performed
independently, they are quite similar for the following reason: When u + v > 0, the process X

can be written as X(x) = U(x)≠U(0), where the distribution of U is given by the path integral
measure [7]

DU

ÂZu,v

exp
A

≠2uU(0) ≠ 2vU(L) ≠
⁄ L

0
dx

C3
dU(x)

dx

42
+ e

≠2U(x)
DB

, (6)

where the endpoints U(0) and U(L) are now both free. Hence, U(x) obeys Liouville quantum
mechanics on x œ [0, L] with some specific boundary weights for U(0) and U(L). The path
integral (6) was obtained as an intermediate step in [7] and one deduces (4) from (6) by simply
integrating over U(0), the “zero mode” of the Liouville action – a standard procedure in the
Liouville theory [8, 9]. On the other hand, the Green’s function associated with the Liouville
Hamiltonian ≠1

4
d2

dU2 + e
≠2U is what is called the Yakubovich heat kernel in the reference [6],

where the process U (denoted Y in [6]) is defined through its Markovian transition densities.
Using the Feynman-Kac theorem (see [6, Eq. (3.4)] or [7, Eq. (16)]), this shows that the
descriptions appearing in [6] and [7] are equivalent, at least for u, v > 0. The equivalence was
proved to hold further for any u, v such that u+v > 0 in [10]. Let us also mention that defining
the process U(x) through a Markov process having an explicit transition kernel rather than
through a path integral also has certain advantages, for instance to compute observables of the
process [7, Supplementary Material] or to justify rigorously certain limits [10]. However, in this
paper, we will focus on the path integral (or Brownian reweighting) point of view.

1.2 Aim of this paper. There does not exist any general method to compute stationary
measures of non-linear non-equilibrium stochastic PDEs such as the KPZ equation. We are
not even aware of any method to directly check that (3), (4) is stationary on the interval
with the boundary conditions (2). However, it is well-known that the KPZ equation can be
approximated by various discrete integrable models, whose stationary measure is sometimes

2

first obtained from second by integration over zero mode U(0) 

1

u+ v > 0 (1)

(u, v) (2)

= A+
1

2
(3)

A > 0 (4)

A < 0 (5)

hxi ' 1

2✏2
(6)

hx2ic ' 1

✏3
(7)

hxik ' ck✏
�2k

(8)

✏ = A+
1

2
(9)

hx2ic = �(�2)
k (k)

(�2✏) (10)

(11)

any (u,v)    

1

X(0) = 0 (1)

h(0, t)� h(0, 0) ' v1t+ (�t)1/3�BR (2)

Zw
L =

Z L

0
dx eB(x)�wx

(3)

U(x) ⌘ B(x)� wx (4)

@xH(x)|x=0 = u (5)

@xH(x)|x=L = v (6)

H(x) = logZ(x)� logZ(0) (7)

v < 0 (8)

e�
R L
0 dx( dX(x)

dx +v)2 ⇥ Z�(u+v)
L (9)

ZL =

Z L

0
dxe�2X(x)

(10)

X(x) ⇡ 1p
2
B(x)� vx (11)

Z1 =

Z 1

0
dxe�

p
2B(x)+2vx

(12)

E(Z�(u+v)
1 ) < +1 (13)

u > v (14)

(15)

µ � 0 (16)

x⇤
(17)

H(x) (18)

u+ v > 0 (19)

(u, v) (20)

= A+
1

2
(21)

A > 0 (22)

A < 0 (23)

hxi ' 1

2✏2
(24)

hx2ic ' 1

✏3
(25)

hxik ' ck✏
�2k

(26)

✏ = A+
1

2
(27)

hxkic = �(�2)
k (k)

(�2✏) (28)

(29)

G. Barraquand and P. Le Doussal

corresponds to the KPZ equation limit1 of formulas with
a similar structure obtained in [20] of formulas with a simi-
lar structure obtained in [20] for the stationary measure of
ASEP. However, obtaining a characterization of the pro-
cess allowing to study properties of the stationary measure
remains a challenge. This amounts to invert the compli-
cated Laplace transforms in [18].

In this Letter we obtain a simple formula for the station-
ary measure of the KPZ equation on an interval of any size
L, with general Neumann type boundary conditions. Our
result is particularly convenient to study various limits as
L → +∞. In particular we recover the phase diagram for
stationary measures of the KPZ fixed point on an interval,
we obtain new crossover regimes near the critical point,
and we study the stationary measures of the KPZ equa-
tion on a half-line and their large scale limits. We unveil
and exploit a surprising connection to Liouville quantum
mechanics (LQM), i.e. the Schrodinger equation in an
exponential potential. The LQM, which is the 1D limit
of the 2D Liouville field theory, notably allows to study
the statistics of exponential functionals of the Brownian
motion, see [21] for a short review. As such, it appears
in several areas of physics such as diffusion in 1D ran-
dom media [21–27], multifractal eigenfunctions of random
Schrodinger and Dirac operators [21, 28–31], diffusion in
the hyperbolic plane [32–34], and more recently, and strik-
ingly, in quantum chaos and its relation to gravity [35,36].
LQM was recently used to obtain multipoint observables
for the stationary KPZ equation in a half-space (see Supp.
Mat. in [17]).

Model. – The KPZ equation for the height field
h(x, t) reads

∂th(x, t) = ν∂2
xh +

λ

2
(∂xh)2 +

√
Dξ(x, t) (1)

where ξ(x, t) is a standard space-time white noise. We use
space-time units so that ν = 1 and λ = D = 2 2. Here
we study the problem on the interval so that (1) holds
for 0 < x < L. The solution is defined from the Cole-
Hopf mapping h(x, t) = log Z(x, t), where Z(x, t) equals
the partition sum of a continuum directed polymer with
endpoint at (x, t) in a random potential −

√
2ξ(x, t). It

satisfies the stochastic heat equation (SHE)

∂tZ(x, t) = ∂2
xZ(x, t) +

√
2Z(x, t)ξ(x, t), x ∈ [0, L] (2)

in the Ito sense, with Robin boundary conditions

∂xZ(x, t)|x=0 = AZ(0, t), ∂xZ(x, t)|x=L = −BZ(L, t),
(3)

and it will be convenient to define boundary parameters
u = A + 1/2 and v = B + 1/2. Although Z(x, t), t > 0,

1The limit from ASEP to KPZ was previously investigated in
[19]. Remark 2.11 therein explains how to rescale ASEP boundary
parameters to obtain the boundary conditions for the KPZ equation.

2The units chosen in [18] amount to rescaling our time as t → 2t,
immaterial in the steady state.

is not differentiable, the standard way to understand (3)
is to impose these conditions on the heat kernel [19], or
through a path integral as in [37, 38]. For the DP, A > 0
corresponds to a repulsive wall and A < 0 an attractive
one, and similarly for B at x = L.

Main result. – Our main result is the prediction that
the KPZ random height profile in the stationary state,
denoted {H(x)}x∈[0,L], can be written as the sum of two
independent random fields

H(x) − H(0) =
1√
2

W (x) + X(x) (4)

where W (x) is a one sided Brownian motion (i.e. with
W (0) = 0 and W (L) free) and the probability distribution
of the process X(x) is given by the path integral measure

DX

Zu,v
e

−
∫

L

0
dx( dX(x)

dx
)2

e−2vX(L)

(∫ L

0
dx e−2X(x)

)−(u+v)

(5)
with X(0) = 0 and X(L) free, and Zu,v a normalization
such that Z0,0 = 1. For the choice v = −u, H(x) + vx is
thus simply a standard Brownian motion. The Brownian
motion with drift u is also stationary for the half-space
KPZ equation [16], and on the segment it arises only when
the two boundary conditions are compatible.

In mathematical terms, X is a continuous stochastic
process on [0, L] whose measure PX is absolutely contin-
uous with respect to that of a Brownian motion with dif-
fusion coefficient 1/2, denoted PB, with Radon-Nikodym
derivative dPX

dPB
= 1

Zu,v
e−Eu,v(X) where

Eu,v(X) =

u log

(∫ L

0
dxe−2X(x)

)

+ v log

(∫ L

0
dxe2X(L)−2X(x)

)

.

(6)

This is a mere reformulation of (5) in a more symmetric
form so that it becomes apparent that the process is left
invariant after reversing space and exchanging u, v. This
reformulation simply means that for any continuous and
bounded functional F of the process X = {X(x)}x∈[0,L],

EX [F (X)] =
1

Zu,v
EB

[
F (B) e−Eu,v(B)

]
, (7)

where in the R.H.S., B = {B(x)}x∈[0,L] is a Brownian mo-
tion with diffusion coefficient 1/2. Surprisingly the mea-
sure defined here in (5) as the steady state of the KPZ
equation has been already introduced and studied in a
work of Hariya and Yor in a different context [39]. We
will use some of their results below.

Liouville quantum mechanics. – The Liouville
Hamiltonian Ĥ on the real axis U ∈ R is defined as

Ĥ = −
1

4

d2

dU2
+ e−2U (8)
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FIGURE 1.1. The half line and open ASEP (left and right respectively)
drawn in terms of particles and height functions (bottom and top respec-
tively). In open ASEP, particles inside jump left and right (i.e. according
to clocks of exponential distribution with this rate) at rates q and p; par-
ticles are inserted (provided the destination is empty) from the left (resp.
right) at rate α (resp. δ ); particles are removed (provided the removal
site is occupied) from the left (resp. right) at rate γ (resp. β ). In half line
ASEP, there is only a boundary on the left and the right goes on infinitely.

theory and delicate method of images estimates). In identifying the limiting mar-
tingale problem, Bertini and Giacomin discovered a key identity (Proposition 4.8
and Lemma A.1 in [7]) for the quadratic martingale which identifies the white
noise. In our case of bounded intervals, that identity does not hold. Instead we find
(via a new method using Green’s functions) an approximate version which suffices
– see Lemma 5.8 and Proposition 5.1.

Presently the other above mentioned KPZ equation convergence methods have
not been developed into the context we consider here. These other methods are less
reliant upon the exact structure of the underlying particle system, so it would be
nice to see them developed so as to prove universality of the type of convergence
we have shown here for the particular model of open ASEP. The energy solutions
method only applies in stationarity (of for initial data with finite entropy with re-
spect to the stationary measure) and relies upon certain inputs from hydrodynamic
theory which may be more complicated in this setting since the open ASEP gen-
erally lacks product invariant measures. However, in a special one-parameter case
(see Remark 2.9) the invariant measure reduce to product Bernoulli. Upon sending
this present paper out for comments, we learned that [41] are completing a work in
which they develop the energy solutions approach to study the KPZ limit of open
ASEP in the special subcase when the invariant measure is product Bernoulli, and
the effective density is exactly 1/2. This is a special point in the two-dimensional
family of parameters we consider here. For generic choices of our parameters, the
invariant measure is not of product form.

1.1 Existing open ASEP results

Before defining the open / half line ASEP and stating our main convergence
theorem, let us try to put our work into the context of known results. Much of this

the behaviour of the reservoir could be replaced by a fictitious site 0, occupied with probability
Ía, communicating with the rest of the system as in the bulk. Similarly, at the right boundary,
the injection rate is ” = Íbq, while the ejection rate is — = p(1≠Íb), with a similar interpretation
involving a fictitious site ¸ + 1.

2.2 Matrix product ansatz. The stationary probability measure P (·), where · = (·i)16i6¸,
is given by the matrix product ansatz [11]

P (·) = 1
Z¸(q)ÈW |

Ÿ̧

i=1
(D·i + E(1 ≠ ·i))|V Í, Z¸(q) = ÈW |(D + E)¸|V Í. (9)

For stationarity to hold, the matrices D and E, as well as the ket |V Í and bra ÈW | must
satisfy the following algebraic relations [11]:

pDE ≠ qED = D + E, (10a)
(—D ≠ ”E) |V Í = |V Í , (10b)

ÈW | (–E ≠ “D) = ÈW | . (10c)

The normalization constant is then related to the current in the stationary state j = Z¸≠1(q)/Z¸(q).
There are various representations of these relations [11, 22, 23, 24, 25, 16, 13] and here we use

the one given in [16] – see Appendix A for details about this representation, which we now recall.
First of all, one sets p = 1, without loss of generality. Furthermore, the representation found
in [16] is valid for any values of –, —, “, ”, and is parameterized by the two density parameters
Ía, Íb, as well as two extra parameters d and e defined in [16] (see Appendix A). Imposing the
condition (7) corresponds to letting e = d = q, which simplifies slightly the representation. We
will choose D and E as the infinite matrices

D =

Q

cccca

[1]q [1]q 0 0 0 · · ·
0 [2]q [2]q 0 0 · · ·
0 0 [3]q [3]q 0 · · ·
...

... 0 . . . . . . . . .

R

ddddb
, E =

Q

cccca

[1]q 0 0 0 · · ·
[2]q [2]q 0 0 · · ·
0 [3]q [3]q 0

0 0 . . . . . . . . .

R

ddddb
(11)

where we use the notation
[n]q = 1 ≠ q

n

1 ≠ q
. (12)

Let us denote by {|nÍ}n>1 the vectors of the associated basis. One can alternatively write the
matrices D and E as

D =
+Œÿ

n=1
[n]q |nÍ (Èn| + Èn + 1|), E =

+Œÿ

n=1
([n]q |nÍ + [n + 1]q |n + 1Í)) Èn| . (13)

In this basis the vectors |V Í and ÈW | are given by

ÈW | =
ÿ

n>1

31 ≠ Ía

Ía

4n

Èn| , |V Í =
ÿ

n>1

3
Íb

1 ≠ Íb

4n

[n]q |nÍ . (14)

Remark 2.1. It is very useful for the following to note that one can rewrite D, E as D = � ÂD,
E = � ÂE where � is the diagonal matrix

� =
+Œÿ

n=1
[nq] |nÍ Èn| , ÂD =

+Œÿ

n=1
|nÍ (Èn| + Èn + 1|), ÂE =

+Œÿ

n=1
(|nÍ + |n + 1Í)) Èn| , (15)

that is all the entries [n]q in (11) are replaced by 1. The matrices ÂD, ÂE are the same matrices
as in the case of TASEP [17] (see also [11]), which corresponds to q = 0.
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FIGURE 1.1. The half line and open ASEP (left and right respectively)
drawn in terms of particles and height functions (bottom and top respec-
tively). In open ASEP, particles inside jump left and right (i.e. according
to clocks of exponential distribution with this rate) at rates q and p; par-
ticles are inserted (provided the destination is empty) from the left (resp.
right) at rate α (resp. δ ); particles are removed (provided the removal
site is occupied) from the left (resp. right) at rate γ (resp. β ). In half line
ASEP, there is only a boundary on the left and the right goes on infinitely.

theory and delicate method of images estimates). In identifying the limiting mar-
tingale problem, Bertini and Giacomin discovered a key identity (Proposition 4.8
and Lemma A.1 in [7]) for the quadratic martingale which identifies the white
noise. In our case of bounded intervals, that identity does not hold. Instead we find
(via a new method using Green’s functions) an approximate version which suffices
– see Lemma 5.8 and Proposition 5.1.

Presently the other above mentioned KPZ equation convergence methods have
not been developed into the context we consider here. These other methods are less
reliant upon the exact structure of the underlying particle system, so it would be
nice to see them developed so as to prove universality of the type of convergence
we have shown here for the particular model of open ASEP. The energy solutions
method only applies in stationarity (of for initial data with finite entropy with re-
spect to the stationary measure) and relies upon certain inputs from hydrodynamic
theory which may be more complicated in this setting since the open ASEP gen-
erally lacks product invariant measures. However, in a special one-parameter case
(see Remark 2.9) the invariant measure reduce to product Bernoulli. Upon sending
this present paper out for comments, we learned that [41] are completing a work in
which they develop the energy solutions approach to study the KPZ limit of open
ASEP in the special subcase when the invariant measure is product Bernoulli, and
the effective density is exactly 1/2. This is a special point in the two-dimensional
family of parameters we consider here. For generic choices of our parameters, the
invariant measure is not of product form.

1.1 Existing open ASEP results

Before defining the open / half line ASEP and stating our main convergence
theorem, let us try to put our work into the context of known results. Much of this

the behaviour of the reservoir could be replaced by a fictitious site 0, occupied with probability
Ía, communicating with the rest of the system as in the bulk. Similarly, at the right boundary,
the injection rate is ” = Íbq, while the ejection rate is — = p(1≠Íb), with a similar interpretation
involving a fictitious site ¸ + 1.

2.2 Matrix product ansatz. The stationary probability measure P (·), where · = (·i)16i6¸,
is given by the matrix product ansatz [11]

P (·) = 1
Z¸(q)ÈW |

Ÿ̧

i=1
(D·i + E(1 ≠ ·i))|V Í, Z¸(q) = ÈW |(D + E)¸|V Í. (9)

For stationarity to hold, the matrices D and E, as well as the ket |V Í and bra ÈW | must
satisfy the following algebraic relations [11]:

pDE ≠ qED = D + E, (10a)
(—D ≠ ”E) |V Í = |V Í , (10b)

ÈW | (–E ≠ “D) = ÈW | . (10c)

The normalization constant is then related to the current in the stationary state j = Z¸≠1(q)/Z¸(q).
There are various representations of these relations [11, 22, 23, 24, 25, 16, 13] and here we use

the one given in [16] – see Appendix A for details about this representation, which we now recall.
First of all, one sets p = 1, without loss of generality. Furthermore, the representation found
in [16] is valid for any values of –, —, “, ”, and is parameterized by the two density parameters
Ía, Íb, as well as two extra parameters d and e defined in [16] (see Appendix A). Imposing the
condition (7) corresponds to letting e = d = q, which simplifies slightly the representation. We
will choose D and E as the infinite matrices

D =

Q

cccca

[1]q [1]q 0 0 0 · · ·
0 [2]q [2]q 0 0 · · ·
0 0 [3]q [3]q 0 · · ·
...

... 0 . . . . . . . . .

R

ddddb
, E =

Q

cccca

[1]q 0 0 0 · · ·
[2]q [2]q 0 0 · · ·
0 [3]q [3]q 0

0 0 . . . . . . . . .

R

ddddb
(11)

where we use the notation
[n]q = 1 ≠ q

n

1 ≠ q
. (12)

Let us denote by {|nÍ}n>1 the vectors of the associated basis. One can alternatively write the
matrices D and E as

D =
+Œÿ

n=1
[n]q |nÍ (Èn| + Èn + 1|), E =

+Œÿ

n=1
([n]q |nÍ + [n + 1]q |n + 1Í)) Èn| . (13)

In this basis the vectors |V Í and ÈW | are given by

ÈW | =
ÿ

n>1

31 ≠ Ía

Ía

4n

Èn| , |V Í =
ÿ

n>1

3
Íb

1 ≠ Íb

4n

[n]q |nÍ . (14)

Remark 2.1. It is very useful for the following to note that one can rewrite D, E as D = � ÂD,
E = � ÂE where � is the diagonal matrix

� =
+Œÿ

n=1
[nq] |nÍ Èn| , ÂD =

+Œÿ

n=1
|nÍ (Èn| + Èn + 1|), ÂE =

+Œÿ

n=1
(|nÍ + |n + 1Í)) Èn| , (15)

that is all the entries [n]q in (11) are replaced by 1. The matrices ÂD, ÂE are the same matrices
as in the case of TASEP [17] (see also [11]), which corresponds to q = 0.
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FIGURE 1.1. The half line and open ASEP (left and right respectively)
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tively). In open ASEP, particles inside jump left and right (i.e. according
to clocks of exponential distribution with this rate) at rates q and p; par-
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site is occupied) from the left (resp. right) at rate γ (resp. β ). In half line
ASEP, there is only a boundary on the left and the right goes on infinitely.

theory and delicate method of images estimates). In identifying the limiting mar-
tingale problem, Bertini and Giacomin discovered a key identity (Proposition 4.8
and Lemma A.1 in [7]) for the quadratic martingale which identifies the white
noise. In our case of bounded intervals, that identity does not hold. Instead we find
(via a new method using Green’s functions) an approximate version which suffices
– see Lemma 5.8 and Proposition 5.1.

Presently the other above mentioned KPZ equation convergence methods have
not been developed into the context we consider here. These other methods are less
reliant upon the exact structure of the underlying particle system, so it would be
nice to see them developed so as to prove universality of the type of convergence
we have shown here for the particular model of open ASEP. The energy solutions
method only applies in stationarity (of for initial data with finite entropy with re-
spect to the stationary measure) and relies upon certain inputs from hydrodynamic
theory which may be more complicated in this setting since the open ASEP gen-
erally lacks product invariant measures. However, in a special one-parameter case
(see Remark 2.9) the invariant measure reduce to product Bernoulli. Upon sending
this present paper out for comments, we learned that [41] are completing a work in
which they develop the energy solutions approach to study the KPZ limit of open
ASEP in the special subcase when the invariant measure is product Bernoulli, and
the effective density is exactly 1/2. This is a special point in the two-dimensional
family of parameters we consider here. For generic choices of our parameters, the
invariant measure is not of product form.

1.1 Existing open ASEP results

Before defining the open / half line ASEP and stating our main convergence
theorem, let us try to put our work into the context of known results. Much of this

the behaviour of the reservoir could be replaced by a fictitious site 0, occupied with probability
Ía, communicating with the rest of the system as in the bulk. Similarly, at the right boundary,
the injection rate is ” = Íbq, while the ejection rate is — = p(1≠Íb), with a similar interpretation
involving a fictitious site ¸ + 1.

2.2 Matrix product ansatz. The stationary probability measure P (·), where · = (·i)16i6¸,
is given by the matrix product ansatz [11]

P (·) = 1
Z¸(q)ÈW |

Ÿ̧

i=1
(D·i + E(1 ≠ ·i))|V Í, Z¸(q) = ÈW |(D + E)¸|V Í. (9)

For stationarity to hold, the matrices D and E, as well as the ket |V Í and bra ÈW | must
satisfy the following algebraic relations [11]:

pDE ≠ qED = D + E, (10a)
(—D ≠ ”E) |V Í = |V Í , (10b)

ÈW | (–E ≠ “D) = ÈW | . (10c)

The normalization constant is then related to the current in the stationary state j = Z¸≠1(q)/Z¸(q).
There are various representations of these relations [11, 22, 23, 24, 25, 16, 13] and here we use

the one given in [16] – see Appendix A for details about this representation, which we now recall.
First of all, one sets p = 1, without loss of generality. Furthermore, the representation found
in [16] is valid for any values of –, —, “, ”, and is parameterized by the two density parameters
Ía, Íb, as well as two extra parameters d and e defined in [16] (see Appendix A). Imposing the
condition (7) corresponds to letting e = d = q, which simplifies slightly the representation. We
will choose D and E as the infinite matrices

D =

Q

cccca

[1]q [1]q 0 0 0 · · ·
0 [2]q [2]q 0 0 · · ·
0 0 [3]q [3]q 0 · · ·
...

... 0 . . . . . . . . .

R

ddddb
, E =

Q

cccca

[1]q 0 0 0 · · ·
[2]q [2]q 0 0 · · ·
0 [3]q [3]q 0

0 0 . . . . . . . . .

R

ddddb
(11)

where we use the notation
[n]q = 1 ≠ q

n

1 ≠ q
. (12)

Let us denote by {|nÍ}n>1 the vectors of the associated basis. One can alternatively write the
matrices D and E as

D =
+Œÿ

n=1
[n]q |nÍ (Èn| + Èn + 1|), E =

+Œÿ

n=1
([n]q |nÍ + [n + 1]q |n + 1Í)) Èn| . (13)

In this basis the vectors |V Í and ÈW | are given by

ÈW | =
ÿ

n>1

31 ≠ Ía

Ía

4n

Èn| , |V Í =
ÿ

n>1

3
Íb

1 ≠ Íb

4n

[n]q |nÍ . (14)

Remark 2.1. It is very useful for the following to note that one can rewrite D, E as D = � ÂD,
E = � ÂE where � is the diagonal matrix

� =
+Œÿ

n=1
[nq] |nÍ Èn| , ÂD =

+Œÿ

n=1
|nÍ (Èn| + Èn + 1|), ÂE =

+Œÿ

n=1
(|nÍ + |n + 1Í)) Èn| , (15)

that is all the entries [n]q in (11) are replaced by 1. The matrices ÂD, ÂE are the same matrices
as in the case of TASEP [17] (see also [11]), which corresponds to q = 0.
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drawn in terms of particles and height functions (bottom and top respec-
tively). In open ASEP, particles inside jump left and right (i.e. according
to clocks of exponential distribution with this rate) at rates q and p; par-
ticles are inserted (provided the destination is empty) from the left (resp.
right) at rate α (resp. δ ); particles are removed (provided the removal
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ASEP, there is only a boundary on the left and the right goes on infinitely.

theory and delicate method of images estimates). In identifying the limiting mar-
tingale problem, Bertini and Giacomin discovered a key identity (Proposition 4.8
and Lemma A.1 in [7]) for the quadratic martingale which identifies the white
noise. In our case of bounded intervals, that identity does not hold. Instead we find
(via a new method using Green’s functions) an approximate version which suffices
– see Lemma 5.8 and Proposition 5.1.

Presently the other above mentioned KPZ equation convergence methods have
not been developed into the context we consider here. These other methods are less
reliant upon the exact structure of the underlying particle system, so it would be
nice to see them developed so as to prove universality of the type of convergence
we have shown here for the particular model of open ASEP. The energy solutions
method only applies in stationarity (of for initial data with finite entropy with re-
spect to the stationary measure) and relies upon certain inputs from hydrodynamic
theory which may be more complicated in this setting since the open ASEP gen-
erally lacks product invariant measures. However, in a special one-parameter case
(see Remark 2.9) the invariant measure reduce to product Bernoulli. Upon sending
this present paper out for comments, we learned that [41] are completing a work in
which they develop the energy solutions approach to study the KPZ limit of open
ASEP in the special subcase when the invariant measure is product Bernoulli, and
the effective density is exactly 1/2. This is a special point in the two-dimensional
family of parameters we consider here. For generic choices of our parameters, the
invariant measure is not of product form.

1.1 Existing open ASEP results

Before defining the open / half line ASEP and stating our main convergence
theorem, let us try to put our work into the context of known results. Much of this

the behaviour of the reservoir could be replaced by a fictitious site 0, occupied with probability
Ía, communicating with the rest of the system as in the bulk. Similarly, at the right boundary,
the injection rate is ” = Íbq, while the ejection rate is — = p(1≠Íb), with a similar interpretation
involving a fictitious site ¸ + 1.

2.2 Matrix product ansatz. The stationary probability measure P (·), where · = (·i)16i6¸,
is given by the matrix product ansatz [11]

P (·) = 1
Z¸(q)ÈW |

Ÿ̧

i=1
(D·i + E(1 ≠ ·i))|V Í, Z¸(q) = ÈW |(D + E)¸|V Í. (9)

For stationarity to hold, the matrices D and E, as well as the ket |V Í and bra ÈW | must
satisfy the following algebraic relations [11]:

pDE ≠ qED = D + E, (10a)
(—D ≠ ”E) |V Í = |V Í , (10b)

ÈW | (–E ≠ “D) = ÈW | . (10c)

The normalization constant is then related to the current in the stationary state j = Z¸≠1(q)/Z¸(q).
There are various representations of these relations [11, 22, 23, 24, 25, 16, 13] and here we use

the one given in [16] – see Appendix A for details about this representation, which we now recall.
First of all, one sets p = 1, without loss of generality. Furthermore, the representation found
in [16] is valid for any values of –, —, “, ”, and is parameterized by the two density parameters
Ía, Íb, as well as two extra parameters d and e defined in [16] (see Appendix A). Imposing the
condition (7) corresponds to letting e = d = q, which simplifies slightly the representation. We
will choose D and E as the infinite matrices

D =

Q

cccca

[1]q [1]q 0 0 0 · · ·
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where we use the notation
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. (12)

Let us denote by {|nÍ}n>1 the vectors of the associated basis. One can alternatively write the
matrices D and E as

D =
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Remark 2.1. It is very useful for the following to note that one can rewrite D, E as D = � ÂD,
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that is all the entries [n]q in (11) are replaced by 1. The matrices ÂD, ÂE are the same matrices
as in the case of TASEP [17] (see also [11]), which corresponds to q = 0.
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p(x1) . . . p(xk) (22)

Z(x1, t) . . . Z(xn, t) = Z(0, t)n e
Pn

j=1(A�j+1)xj (23)

p(x) =
eB(x)+(A+ 1

2 )x

R +1
0 dy eB(y)+(A+ 1

2 )y
(24)

Z(x, t)

Z(0, t)
= eB(x)+(A+ 1

2 )x (25)

H(x) = B(x) + (A+
1

2
)x (26)

0  x1  · · ·  xn (27)

 0(~x) = cn,A e
Pn

j=1(A�j+1)xj (28)

A <
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2
(29)
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2
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(32)

x 2 [0, 1] (33)
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Steady state of the KPZ equation on an interval and Liouville quantum mechanics

Its eigenfunctions |k〉, in coordinate basis ψk(U) = 〈U |k〉,
can be chosen real and indexed by k ! 0 with

Ĥψk(U) =
k2

4
ψk(U), ψk(U) = NkKik(2e−U ). (9)

where N2
k = 2

πΓ(ik)Γ(−ik) and Kik is a modified Bessel
function.. They form a continuum orthonormal basis with
〈k|k′〉 = δ(k − k′) with

∫ +∞
0 dk|k〉〈k| = I. We will need

the matrix elements of the operator

e−2αÛ =

∫

R

dUe−2αU |U〉〈U | (10)

which read

〈k|e−2αÛ |k′〉 = NkNk′

∫ +∞

0

r2αdr

r
Kik(2r)Kik′ (2r)

=
NkNk′

8Γ(2α)
Γ4

(
α±

ik

2
±

ik′

2

)
(11)

for any α > 0, where Γ4(α ± x ± y) :=
∏

σ,τ=±1 Γ(a +
σx + τy) is a product of four Gamma functions.

Multipoint Laplace transform. – We now com-
pute, using the LQM, the multi-point Laplace transform
(LT) of the distribution of H(x), as defined in (4), (5). For
the moment, we restrict ourselves to u, v > 0, and we will
discuss the general case later. We consider the increasing
sequence of points

x0 = 0 < x1 < · · · < xm < xm+1 = L (12)

Since W (x) is simply a Brownian independent of X the fol-
lowing multipoint expectation, with parameters &s = {2u >
s1 > · · · > sm > sm+1 = 0}, takes the form

E[e
−
∑

m

j=1
sj(H(xj)−H(xj−1))

] = e
1
4

∑
m+1

j=1
s2

j (xj−xj−1) J(&s)

J(0)
(13)

where J(&s) is the following expectation over the process
X(x), from (5), with X0 = 0

J(&s) =




m+1∏

j=1

∫

R

dXj



 e
−
∑

m

j=1
sj(Xj −Xj−1)−2vXm+1

×
m+1∏

j=1

∫ X(xj)=Xj

X(xj−1)=Xj−1

DXe
−
∫

xj

xj−1
dx( dX(x)

dx
)2

ZL[X ]−(u+v)

(14)

where ZL[X ] :=
∫ L

0 e−2X(x). Now we insert in the inte-
grand the following representation

ZL[X ]−(u+v) =
2

Γ(u + v)

∫

R

dU0 e−2U0(u+v)−e−2U0 ZL[X]

(15)

Performing the change of variable Uj = Xj + U0, and
defining the process U(x) = X(x) + U0, the RHS of (14),
i.e. J(&s), takes the form

2

Γ(u + v)

m+1∏

j=0

∫

R

dUje
−
∑

m

j=1
sj (Uj−Uj−1)−2vUm+1−2uU0

×
m+1∏

j=1

∫ U(xj)=Uj

U(xj−1)=Uj−1

DUe
−
∫

xj

xj−1
dx[( dU(x)

dx
)2+e−2U(x)]

In the last line we recognize the path integral representa-
tion of the imaginary time Green’s function of the Liouville
Hamiltonian Ĥ in (8). From the Feynman-Kac formula

∫ U(b)=U ′

U(a)=U
DUe

−
∫

b

a
dx
[

( dU(x)
dx

)2+e−2U(x)
]

= 〈U ′|e−(b−a)Ĥ |U〉

Hence we can rewrite J(&s) = 2
Γ(u+v) J̃(&s) with

J̃(&s) =




m+1∏

j=0

∫
dUj



 e−2vUm+1−(2u−s1)U0

m∏

j=1

e−(sj−sj+1)Uj

m+1∏

j=1

〈Uj |e−(xj−xj−1)Ĥ |Uj−1〉. (16)

Inserting the spectral decomposition

e−(xj−xj−1)Ĥ =

∫ +∞

0
dkje− 1

4 (xj−xj−1)k2
j |kj〉〈kj | (17)

and using the definition (10), the RHS of (16) becomes

∫

R2

dU0dUm+1

m+1∏

j=1

∫ +∞

0
dkje−2vUm+1−(2u−s1)U0 〈Um+1|km+1〉

× 〈k1|U0〉
m∏

j=1

〈kj+1|e−(sj−sj+1)Û |kj〉e−
∑

m+1

j=1
(xj−xj−1)

k2
j

4

(18)

Now we use that for w > 0

∫

R

dUe−2wU〈U |k〉 = Nk

∫

R

dUe−2wUKik(2e−U )

=
Nk

4

∣∣∣∣Γ
(

w +
ik

2

)∣∣∣∣
2

, (19)

and 〈U |k〉 = 〈k|U〉 to integrate (18) w.r.t. U0 and
Um+1. We can then substitute the matrix elements

〈kj+1|e−(sj−sj+1)Û |kj〉 by their explicit expressions from
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(11). This leads to

J̃(!s) =

1

2

m+1∏

j=1

∫ +∞

0

dkj

4π|Γ(ikj)|2
m∏

j=1

Γ4

(
sj −sj+1

2 ± ikj

2 ± ikj+1

2

)

Γ(sj − sj+1)

×
∣∣∣Γ
(
u − s1

2 + ik1
2

)
Γ
(

v + ikm+1

2

)∣∣∣
2
e
∑

m+1

j=1

−k2
j

4 (xj−xj−1)
.

(20)

Comparison with the result of Corwin-Knizel. –

Now, we explain why our formula for the stationary
measure in (4) and (5) is equivalent to the Laplace trans-
form formula of Corwin-Knizel [18] for L = 1. Again, we
assume that u, v > 0 with u < 1 (though [18] provides
formulas for the whole range u + v > 0). The Laplace
transform of the stationary height H(x) is expressed in
[18] in terms of a Markov process {Ts}s∈[0,2u) with values
on R+, called the continuous dual Hahn process (CDHP)
The transition probability for Tsj

= tj given Tsj+1 = tj+1,
with sj > sj+1, is given by

psj+1,sj
(tj+1, tj) =

1

8π

×
|Γ(u − sj

2 + i
2

√
tj)|2Γ4( sj−sj+1

2 ± i
2

√
tj+1 ± i

2

√
tj)

|Γ(u − sj+1

2 + i
2

√
tj+1)|2Γ(sj − sj+1)

√
tj |Γ(i

√
tj)|2

and the marginal PDF of Ts = t at time s is given by

ps(t) =

(v + u)(v + u + 1)

8π

|Γ(v + s
2 + i

√
t

2 )Γ(u − s
2 + i

√
t

2 )|2
√

t|Γ(i
√

t)|2
(21)

Then the Laplace transform is obtained, for 2u > s1 >
s2 > · · · > sm+1 = 0, as

E

[
e

−
∑

m

j=1
sj (H(xj)−H(xj−1)

]
= e

1
4

∑
m+1

j=1
s2

j (xj−xj−1) I(!s)

I0

(22)
with (upon some rewriting of formula (1.12) in [18])

I(!s) =




m+1∏

j=1

∫ +∞

0
dtj



 p0(tm+1)
m∏

j=1

psj+1,sj
(tj+1, tj)

× e
− 1

4

∑
m+1

j=1
tj(xj−xj−1)

(23)

and I0 = I(0) =
∫

dte− 1
4 tp0(t). It is now a simple exercise

to check, using the change of variables tj = k2
j , that the

above formula implies that

I(!s) = 2(u + v)(u + v + 1)J̃(!s) = Γ(u + v + 2)J(!s) (24)

Since the prefactor cancels in the ratio, the multipoint
Laplace transform (13) of our formula (4), (5) written

more explicitly in (20), coincides with the result of [18]
in the domain u, v > 0 and for L = 1.

We may now extend the result of Corwin-Knizel in two
directions. First, we may assume that L is arbitrary, and
reproduce the analysis of [18] with points xi as in (12)
using the same scalings as in [18] starting from the ASEP
model on NL sites and arriving at the same formula (22).
This shows why (4),(5) are correct for any L > 0 and not
only L = 1 as considered in [18]. Then, we may extend
the range of parameters u, v. We expect that the distribu-
tion of stationary measures depend analytically on u, v for
finite L. However, performing a direct analytic continua-
tion on (22) is intricate and would involve many residues.
This is why it is useful to rewrite, through LQM, the re-
sults of Corwin-Knizel as in (4), (5) which depends on the
parameters in an analytic way for all u, v.

Thus, from now on we will assume that our result for
the stationary probability (5), (4) holds for any u, v, and
explore the consequences.

Remark: Eq. (22) relates the Laplace transform of
the KPZ height field under the stationary measure to the
Laplace transform of another Markov process, the CDHP,
where the role of time/space parameters and Laplace
transform parameters are exchanged. The CDHP can be
interpreted as living in the Fourier space dual to the real
U space of LQM. A similar duality holds for Brownian
excursions [40] and can be obtained as a limit of (22) as
L → +∞, as we shall see in the sequel. Note also that an
analog of (22) has been established for ASEP [20], and it
would be interesting to study the connection to discrete
variants of LQM [41]. It would be also very interesting to
know if such dualities extend to other solvable models in
the KPZ class.

Limits and consequences. – To study the various
limits, we define the scaled processes H̃(x̃), W̃ (x̃) and
X̃(x̃), with x̃ = x/L ∈ [0, 1] as

H(x) =
√

LH̃(x̃), W (x) =
√

LW̃ (x̃), X(x) =
√

LX̃(x̃)
(25)

so that one has

H̃(x̃) =
1√
2

W̃ (x̃) + X̃(x̃) (26)

Clearly W̃ (x̃) is also a standard one-sided Brownian mo-
tion. In order to impose Neumann type boundary con-
ditions on H̃(x̃) (with slopes ũ, −ṽ respectively at each
boundary) we scale boundary parameters as

u = ũ/
√

L, v = ṽ/
√

L. (27)

p-4

Steady state of the KPZ equation on an interval and Liouville quantum mechanics

Its eigenfunctions |k〉, in coordinate basis ψk(U) = 〈U |k〉,
can be chosen real and indexed by k ! 0 with

Ĥψk(U) =
k2

4
ψk(U), ψk(U) = NkKik(2e−U ). (9)

where N2
k = 2

πΓ(ik)Γ(−ik) and Kik is a modified Bessel
function.. They form a continuum orthonormal basis with
〈k|k′〉 = δ(k − k′) with

∫ +∞
0 dk|k〉〈k| = I. We will need

the matrix elements of the operator

e−2αÛ =

∫

R

dUe−2αU |U〉〈U | (10)

which read

〈k|e−2αÛ |k′〉 = NkNk′

∫ +∞

0

r2αdr

r
Kik(2r)Kik′ (2r)

=
NkNk′

8Γ(2α)
Γ4

(
α±

ik

2
±

ik′

2

)
(11)

for any α > 0, where Γ4(α ± x ± y) :=
∏

σ,τ=±1 Γ(a +
σx + τy) is a product of four Gamma functions.

Multipoint Laplace transform. – We now com-
pute, using the LQM, the multi-point Laplace transform
(LT) of the distribution of H(x), as defined in (4), (5). For
the moment, we restrict ourselves to u, v > 0, and we will
discuss the general case later. We consider the increasing
sequence of points

x0 = 0 < x1 < · · · < xm < xm+1 = L (12)

Since W (x) is simply a Brownian independent of X the fol-
lowing multipoint expectation, with parameters &s = {2u >
s1 > · · · > sm > sm+1 = 0}, takes the form

E[e
−
∑

m

j=1
sj(H(xj)−H(xj−1))

] = e
1
4

∑
m+1

j=1
s2

j (xj−xj−1) J(&s)

J(0)
(13)

where J(&s) is the following expectation over the process
X(x), from (5), with X0 = 0

J(&s) =




m+1∏

j=1

∫

R

dXj



 e
−
∑

m

j=1
sj(Xj −Xj−1)−2vXm+1

×
m+1∏

j=1

∫ X(xj)=Xj

X(xj−1)=Xj−1

DXe
−
∫

xj

xj−1
dx( dX(x)

dx
)2

ZL[X ]−(u+v)

(14)

where ZL[X ] :=
∫ L

0 e−2X(x). Now we insert in the inte-
grand the following representation

ZL[X ]−(u+v) =
2

Γ(u + v)

∫

R

dU0 e−2U0(u+v)−e−2U0 ZL[X]

(15)

Performing the change of variable Uj = Xj + U0, and
defining the process U(x) = X(x) + U0, the RHS of (14),
i.e. J(&s), takes the form

2

Γ(u + v)

m+1∏

j=0

∫

R

dUje
−
∑

m

j=1
sj (Uj−Uj−1)−2vUm+1−2uU0

×
m+1∏

j=1

∫ U(xj)=Uj

U(xj−1)=Uj−1

DUe
−
∫

xj

xj−1
dx[( dU(x)

dx
)2+e−2U(x)]

In the last line we recognize the path integral representa-
tion of the imaginary time Green’s function of the Liouville
Hamiltonian Ĥ in (8). From the Feynman-Kac formula

∫ U(b)=U ′

U(a)=U
DUe

−
∫

b

a
dx
[

( dU(x)
dx

)2+e−2U(x)
]

= 〈U ′|e−(b−a)Ĥ |U〉

Hence we can rewrite J(&s) = 2
Γ(u+v) J̃(&s) with

J̃(&s) =




m+1∏

j=0

∫
dUj



 e−2vUm+1−(2u−s1)U0

m∏

j=1

e−(sj−sj+1)Uj

m+1∏

j=1

〈Uj |e−(xj−xj−1)Ĥ |Uj−1〉. (16)

Inserting the spectral decomposition

e−(xj−xj−1)Ĥ =

∫ +∞

0
dkje− 1

4 (xj−xj−1)k2
j |kj〉〈kj | (17)

and using the definition (10), the RHS of (16) becomes

∫

R2

dU0dUm+1

m+1∏

j=1

∫ +∞

0
dkje−2vUm+1−(2u−s1)U0 〈Um+1|km+1〉

× 〈k1|U0〉
m∏

j=1

〈kj+1|e−(sj−sj+1)Û |kj〉e−
∑

m+1

j=1
(xj−xj−1)

k2
j

4

(18)

Now we use that for w > 0

∫

R

dUe−2wU〈U |k〉 = Nk

∫

R

dUe−2wUKik(2e−U )

=
Nk

4

∣∣∣∣Γ
(

w +
ik

2

)∣∣∣∣
2

, (19)

and 〈U |k〉 = 〈k|U〉 to integrate (18) w.r.t. U0 and
Um+1. We can then substitute the matrix elements

〈kj+1|e−(sj−sj+1)Û |kj〉 by their explicit expressions from

p-3

Steady state of the KPZ equation on an interval and Liouville quantum mechanics

Its eigenfunctions |k〉, in coordinate basis ψk(U) = 〈U |k〉,
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∑
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j

4
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Now we use that for w > 0

∫

R
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R

dUe−2wUKik(2e−U )

=
Nk

4

∣∣∣∣Γ
(

w +
ik

2
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2

, (19)

and 〈U |k〉 = 〈k|U〉 to integrate (18) w.r.t. U0 and
Um+1. We can then substitute the matrix elements

〈kj+1|e−(sj−sj+1)Û |kj〉 by their explicit expressions from
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Steady state of the KPZ equation on an interval and Liouville quantum mechanics

Its eigenfunctions |k〉, in coordinate basis ψk(U) = 〈U |k〉,
can be chosen real and indexed by k ! 0 with

Ĥψk(U) =
k2

4
ψk(U), ψk(U) = NkKik(2e−U ). (9)

where N2
k = 2

πΓ(ik)Γ(−ik) and Kik is a modified Bessel
function.. They form a continuum orthonormal basis with
〈k|k′〉 = δ(k − k′) with

∫ +∞
0 dk|k〉〈k| = I. We will need

the matrix elements of the operator

e−2αÛ =

∫

R

dUe−2αU |U〉〈U | (10)

which read
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Kik(2r)Kik′ (2r)
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NkNk′

8Γ(2α)
Γ4
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α±

ik

2
±

ik′

2

)
(11)

for any α > 0, where Γ4(α ± x ± y) :=
∏

σ,τ=±1 Γ(a +
σx + τy) is a product of four Gamma functions.

Multipoint Laplace transform. – We now com-
pute, using the LQM, the multi-point Laplace transform
(LT) of the distribution of H(x), as defined in (4), (5). For
the moment, we restrict ourselves to u, v > 0, and we will
discuss the general case later. We consider the increasing
sequence of points

x0 = 0 < x1 < · · · < xm < xm+1 = L (12)

Since W (x) is simply a Brownian independent of X the fol-
lowing multipoint expectation, with parameters &s = {2u >
s1 > · · · > sm > sm+1 = 0}, takes the form

E[e
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∑

m
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sj(H(xj)−H(xj−1))

] = e
1
4

∑
m+1

j=1
s2

j (xj−xj−1) J(&s)

J(0)
(13)

where J(&s) is the following expectation over the process
X(x), from (5), with X0 = 0
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dXj
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dx
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(14)
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grand the following representation
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Performing the change of variable Uj = Xj + U0, and
defining the process U(x) = X(x) + U0, the RHS of (14),
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In the last line we recognize the path integral representa-
tion of the imaginary time Green’s function of the Liouville
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∑

m+1

j=1
(xj−xj−1)

k2
j

4

(18)

Now we use that for w > 0

∫

R

dUe−2wU〈U |k〉 = Nk

∫

R

dUe−2wUKik(2e−U )

=
Nk

4

∣∣∣∣Γ
(

w +
ik

2

)∣∣∣∣
2

, (19)

and 〈U |k〉 = 〈k|U〉 to integrate (18) w.r.t. U0 and
Um+1. We can then substitute the matrix elements
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(11). This leads to

J̃(!s) =

1

2

m+1∏

j=1

∫ +∞

0

dkj

4π|Γ(ikj)|2
m∏

j=1

Γ4

(
sj −sj+1

2 ± ikj

2 ± ikj+1

2

)

Γ(sj − sj+1)

×
∣∣∣Γ
(
u − s1

2 + ik1
2

)
Γ
(

v + ikm+1

2

)∣∣∣
2
e
∑

m+1

j=1

−k2
j

4 (xj−xj−1)
.

(20)

Comparison with the result of Corwin-Knizel. –

Now, we explain why our formula for the stationary
measure in (4) and (5) is equivalent to the Laplace trans-
form formula of Corwin-Knizel [18] for L = 1. Again, we
assume that u, v > 0 with u < 1 (though [18] provides
formulas for the whole range u + v > 0). The Laplace
transform of the stationary height H(x) is expressed in
[18] in terms of a Markov process {Ts}s∈[0,2u) with values
on R+, called the continuous dual Hahn process (CDHP)
The transition probability for Tsj

= tj given Tsj+1 = tj+1,
with sj > sj+1, is given by

psj+1,sj
(tj+1, tj) =

1

8π

×
|Γ(u − sj

2 + i
2

√
tj)|2Γ4( sj−sj+1

2 ± i
2

√
tj+1 ± i

2

√
tj)

|Γ(u − sj+1

2 + i
2

√
tj+1)|2Γ(sj − sj+1)

√
tj |Γ(i

√
tj)|2

and the marginal PDF of Ts = t at time s is given by

ps(t) =

(v + u)(v + u + 1)

8π

|Γ(v + s
2 + i

√
t

2 )Γ(u − s
2 + i

√
t

2 )|2
√

t|Γ(i
√

t)|2
(21)

Then the Laplace transform is obtained, for 2u > s1 >
s2 > · · · > sm+1 = 0, as

E

[
e

−
∑

m

j=1
sj (H(xj)−H(xj−1)

]
= e

1
4

∑
m+1

j=1
s2

j (xj−xj−1) I(!s)

I0

(22)
with (upon some rewriting of formula (1.12) in [18])

I(!s) =




m+1∏

j=1

∫ +∞

0
dtj



 p0(tm+1)
m∏

j=1

psj+1,sj
(tj+1, tj)

× e
− 1

4

∑
m+1

j=1
tj(xj−xj−1)

(23)

and I0 = I(0) =
∫

dte− 1
4 tp0(t). It is now a simple exercise

to check, using the change of variables tj = k2
j , that the

above formula implies that

I(!s) = 2(u + v)(u + v + 1)J̃(!s) = Γ(u + v + 2)J(!s) (24)

Since the prefactor cancels in the ratio, the multipoint
Laplace transform (13) of our formula (4), (5) written

more explicitly in (20), coincides with the result of [18]
in the domain u, v > 0 and for L = 1.

We may now extend the result of Corwin-Knizel in two
directions. First, we may assume that L is arbitrary, and
reproduce the analysis of [18] with points xi as in (12)
using the same scalings as in [18] starting from the ASEP
model on NL sites and arriving at the same formula (22).
This shows why (4),(5) are correct for any L > 0 and not
only L = 1 as considered in [18]. Then, we may extend
the range of parameters u, v. We expect that the distribu-
tion of stationary measures depend analytically on u, v for
finite L. However, performing a direct analytic continua-
tion on (22) is intricate and would involve many residues.
This is why it is useful to rewrite, through LQM, the re-
sults of Corwin-Knizel as in (4), (5) which depends on the
parameters in an analytic way for all u, v.

Thus, from now on we will assume that our result for
the stationary probability (5), (4) holds for any u, v, and
explore the consequences.

Remark: Eq. (22) relates the Laplace transform of
the KPZ height field under the stationary measure to the
Laplace transform of another Markov process, the CDHP,
where the role of time/space parameters and Laplace
transform parameters are exchanged. The CDHP can be
interpreted as living in the Fourier space dual to the real
U space of LQM. A similar duality holds for Brownian
excursions [40] and can be obtained as a limit of (22) as
L → +∞, as we shall see in the sequel. Note also that an
analog of (22) has been established for ASEP [20], and it
would be interesting to study the connection to discrete
variants of LQM [41]. It would be also very interesting to
know if such dualities extend to other solvable models in
the KPZ class.

Limits and consequences. – To study the various
limits, we define the scaled processes H̃(x̃), W̃ (x̃) and
X̃(x̃), with x̃ = x/L ∈ [0, 1] as

H(x) =
√

LH̃(x̃), W (x) =
√

LW̃ (x̃), X(x) =
√

LX̃(x̃)
(25)

so that one has

H̃(x̃) =
1√
2

W̃ (x̃) + X̃(x̃) (26)

Clearly W̃ (x̃) is also a standard one-sided Brownian mo-
tion. In order to impose Neumann type boundary con-
ditions on H̃(x̃) (with slopes ũ, −ṽ respectively at each
boundary) we scale boundary parameters as

u = ũ/
√

L, v = ṽ/
√

L. (27)
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Then the Laplace transform is obtained, for 2u > s1 >
s2 > · · · > sm+1 = 0, as

E

[
e

−
∑

m

j=1
sj (H(xj)−H(xj−1)

]
= e

1
4

∑
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j=1
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I0

(22)
with (upon some rewriting of formula (1.12) in [18])

I(!s) =
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0
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× e
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∑
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tj(xj−xj−1)

(23)

and I0 = I(0) =
∫

dte− 1
4 tp0(t). It is now a simple exercise

to check, using the change of variables tj = k2
j , that the

above formula implies that

I(!s) = 2(u + v)(u + v + 1)J̃(!s) = Γ(u + v + 2)J(!s) (24)

Since the prefactor cancels in the ratio, the multipoint
Laplace transform (13) of our formula (4), (5) written

more explicitly in (20), coincides with the result of [18]
in the domain u, v > 0 and for L = 1.

We may now extend the result of Corwin-Knizel in two
directions. First, we may assume that L is arbitrary, and
reproduce the analysis of [18] with points xi as in (12)
using the same scalings as in [18] starting from the ASEP
model on NL sites and arriving at the same formula (22).
This shows why (4),(5) are correct for any L > 0 and not
only L = 1 as considered in [18]. Then, we may extend
the range of parameters u, v. We expect that the distribu-
tion of stationary measures depend analytically on u, v for
finite L. However, performing a direct analytic continua-
tion on (22) is intricate and would involve many residues.
This is why it is useful to rewrite, through LQM, the re-
sults of Corwin-Knizel as in (4), (5) which depends on the
parameters in an analytic way for all u, v.

Thus, from now on we will assume that our result for
the stationary probability (5), (4) holds for any u, v, and
explore the consequences.

Remark: Eq. (22) relates the Laplace transform of
the KPZ height field under the stationary measure to the
Laplace transform of another Markov process, the CDHP,
where the role of time/space parameters and Laplace
transform parameters are exchanged. The CDHP can be
interpreted as living in the Fourier space dual to the real
U space of LQM. A similar duality holds for Brownian
excursions [40] and can be obtained as a limit of (22) as
L → +∞, as we shall see in the sequel. Note also that an
analog of (22) has been established for ASEP [20], and it
would be interesting to study the connection to discrete
variants of LQM [41]. It would be also very interesting to
know if such dualities extend to other solvable models in
the KPZ class.

Limits and consequences. – To study the various
limits, we define the scaled processes H̃(x̃), W̃ (x̃) and
X̃(x̃), with x̃ = x/L ∈ [0, 1] as

H(x) =
√

LH̃(x̃), W (x) =
√

LW̃ (x̃), X(x) =
√

LX̃(x̃)
(25)

so that one has

H̃(x̃) =
1√
2

W̃ (x̃) + X̃(x̃) (26)

Clearly W̃ (x̃) is also a standard one-sided Brownian mo-
tion. In order to impose Neumann type boundary con-
ditions on H̃(x̃) (with slopes ũ, −ṽ respectively at each
boundary) we scale boundary parameters as

u = ũ/
√

L, v = ṽ/
√

L. (27)
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Comparison with the result of Corwin-Knizel. –

Now, we explain why our formula for the stationary
measure in (4) and (5) is equivalent to the Laplace trans-
form formula of Corwin-Knizel [18] for L = 1. Again, we
assume that u, v > 0 with u < 1 (though [18] provides
formulas for the whole range u + v > 0). The Laplace
transform of the stationary height H(x) is expressed in
[18] in terms of a Markov process {Ts}s∈[0,2u) with values
on R+, called the continuous dual Hahn process (CDHP)
The transition probability for Tsj

= tj given Tsj+1 = tj+1,
with sj > sj+1, is given by
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and the marginal PDF of Ts = t at time s is given by
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Then the Laplace transform is obtained, for 2u > s1 >
s2 > · · · > sm+1 = 0, as
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]
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with (upon some rewriting of formula (1.12) in [18])
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and I0 = I(0) =
∫

dte− 1
4 tp0(t). It is now a simple exercise

to check, using the change of variables tj = k2
j , that the

above formula implies that

I(!s) = 2(u + v)(u + v + 1)J̃(!s) = Γ(u + v + 2)J(!s) (24)

Since the prefactor cancels in the ratio, the multipoint
Laplace transform (13) of our formula (4), (5) written

more explicitly in (20), coincides with the result of [18]
in the domain u, v > 0 and for L = 1.

We may now extend the result of Corwin-Knizel in two
directions. First, we may assume that L is arbitrary, and
reproduce the analysis of [18] with points xi as in (12)
using the same scalings as in [18] starting from the ASEP
model on NL sites and arriving at the same formula (22).
This shows why (4),(5) are correct for any L > 0 and not
only L = 1 as considered in [18]. Then, we may extend
the range of parameters u, v. We expect that the distribu-
tion of stationary measures depend analytically on u, v for
finite L. However, performing a direct analytic continua-
tion on (22) is intricate and would involve many residues.
This is why it is useful to rewrite, through LQM, the re-
sults of Corwin-Knizel as in (4), (5) which depends on the
parameters in an analytic way for all u, v.

Thus, from now on we will assume that our result for
the stationary probability (5), (4) holds for any u, v, and
explore the consequences.

Remark: Eq. (22) relates the Laplace transform of
the KPZ height field under the stationary measure to the
Laplace transform of another Markov process, the CDHP,
where the role of time/space parameters and Laplace
transform parameters are exchanged. The CDHP can be
interpreted as living in the Fourier space dual to the real
U space of LQM. A similar duality holds for Brownian
excursions [40] and can be obtained as a limit of (22) as
L → +∞, as we shall see in the sequel. Note also that an
analog of (22) has been established for ASEP [20], and it
would be interesting to study the connection to discrete
variants of LQM [41]. It would be also very interesting to
know if such dualities extend to other solvable models in
the KPZ class.

Limits and consequences. – To study the various
limits, we define the scaled processes H̃(x̃), W̃ (x̃) and
X̃(x̃), with x̃ = x/L ∈ [0, 1] as

H(x) =
√

LH̃(x̃), W (x) =
√

LW̃ (x̃), X(x) =
√

LX̃(x̃)
(25)

so that one has

H̃(x̃) =
1√
2

W̃ (x̃) + X̃(x̃) (26)

Clearly W̃ (x̃) is also a standard one-sided Brownian mo-
tion. In order to impose Neumann type boundary con-
ditions on H̃(x̃) (with slopes ũ, −ṽ respectively at each
boundary) we scale boundary parameters as

u = ũ/
√

L, v = ṽ/
√

L. (27)
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Comparison with the result of Corwin-Knizel. –

Now, we explain why our formula for the stationary
measure in (4) and (5) is equivalent to the Laplace trans-
form formula of Corwin-Knizel [18] for L = 1. Again, we
assume that u, v > 0 with u < 1 (though [18] provides
formulas for the whole range u + v > 0). The Laplace
transform of the stationary height H(x) is expressed in
[18] in terms of a Markov process {Ts}s∈[0,2u) with values
on R+, called the continuous dual Hahn process (CDHP)
The transition probability for Tsj

= tj given Tsj+1 = tj+1,
with sj > sj+1, is given by

psj+1,sj
(tj+1, tj) =
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×
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and the marginal PDF of Ts = t at time s is given by
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Then the Laplace transform is obtained, for 2u > s1 >
s2 > · · · > sm+1 = 0, as

E
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sj (H(xj)−H(xj−1)

]
= e
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with (upon some rewriting of formula (1.12) in [18])

I(!s) =
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and I0 = I(0) =
∫

dte− 1
4 tp0(t). It is now a simple exercise

to check, using the change of variables tj = k2
j , that the

above formula implies that

I(!s) = 2(u + v)(u + v + 1)J̃(!s) = Γ(u + v + 2)J(!s) (24)

Since the prefactor cancels in the ratio, the multipoint
Laplace transform (13) of our formula (4), (5) written

more explicitly in (20), coincides with the result of [18]
in the domain u, v > 0 and for L = 1.

We may now extend the result of Corwin-Knizel in two
directions. First, we may assume that L is arbitrary, and
reproduce the analysis of [18] with points xi as in (12)
using the same scalings as in [18] starting from the ASEP
model on NL sites and arriving at the same formula (22).
This shows why (4),(5) are correct for any L > 0 and not
only L = 1 as considered in [18]. Then, we may extend
the range of parameters u, v. We expect that the distribu-
tion of stationary measures depend analytically on u, v for
finite L. However, performing a direct analytic continua-
tion on (22) is intricate and would involve many residues.
This is why it is useful to rewrite, through LQM, the re-
sults of Corwin-Knizel as in (4), (5) which depends on the
parameters in an analytic way for all u, v.

Thus, from now on we will assume that our result for
the stationary probability (5), (4) holds for any u, v, and
explore the consequences.

Remark: Eq. (22) relates the Laplace transform of
the KPZ height field under the stationary measure to the
Laplace transform of another Markov process, the CDHP,
where the role of time/space parameters and Laplace
transform parameters are exchanged. The CDHP can be
interpreted as living in the Fourier space dual to the real
U space of LQM. A similar duality holds for Brownian
excursions [40] and can be obtained as a limit of (22) as
L → +∞, as we shall see in the sequel. Note also that an
analog of (22) has been established for ASEP [20], and it
would be interesting to study the connection to discrete
variants of LQM [41]. It would be also very interesting to
know if such dualities extend to other solvable models in
the KPZ class.

Limits and consequences. – To study the various
limits, we define the scaled processes H̃(x̃), W̃ (x̃) and
X̃(x̃), with x̃ = x/L ∈ [0, 1] as

H(x) =
√

LH̃(x̃), W (x) =
√

LW̃ (x̃), X(x) =
√

LX̃(x̃)
(25)

so that one has

H̃(x̃) =
1√
2

W̃ (x̃) + X̃(x̃) (26)

Clearly W̃ (x̃) is also a standard one-sided Brownian mo-
tion. In order to impose Neumann type boundary con-
ditions on H̃(x̃) (with slopes ũ, −ṽ respectively at each
boundary) we scale boundary parameters as

u = ũ/
√

L, v = ṽ/
√

L. (27)
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Comparison with the result of Corwin-Knizel. –

Now, we explain why our formula for the stationary
measure in (4) and (5) is equivalent to the Laplace trans-
form formula of Corwin-Knizel [18] for L = 1. Again, we
assume that u, v > 0 with u < 1 (though [18] provides
formulas for the whole range u + v > 0). The Laplace
transform of the stationary height H(x) is expressed in
[18] in terms of a Markov process {Ts}s∈[0,2u) with values
on R+, called the continuous dual Hahn process (CDHP)
The transition probability for Tsj

= tj given Tsj+1 = tj+1,
with sj > sj+1, is given by
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Then the Laplace transform is obtained, for 2u > s1 >
s2 > · · · > sm+1 = 0, as
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with (upon some rewriting of formula (1.12) in [18])
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and I0 = I(0) =
∫

dte− 1
4 tp0(t). It is now a simple exercise

to check, using the change of variables tj = k2
j , that the

above formula implies that

I(!s) = 2(u + v)(u + v + 1)J̃(!s) = Γ(u + v + 2)J(!s) (24)

Since the prefactor cancels in the ratio, the multipoint
Laplace transform (13) of our formula (4), (5) written

more explicitly in (20), coincides with the result of [18]
in the domain u, v > 0 and for L = 1.

We may now extend the result of Corwin-Knizel in two
directions. First, we may assume that L is arbitrary, and
reproduce the analysis of [18] with points xi as in (12)
using the same scalings as in [18] starting from the ASEP
model on NL sites and arriving at the same formula (22).
This shows why (4),(5) are correct for any L > 0 and not
only L = 1 as considered in [18]. Then, we may extend
the range of parameters u, v. We expect that the distribu-
tion of stationary measures depend analytically on u, v for
finite L. However, performing a direct analytic continua-
tion on (22) is intricate and would involve many residues.
This is why it is useful to rewrite, through LQM, the re-
sults of Corwin-Knizel as in (4), (5) which depends on the
parameters in an analytic way for all u, v.

Thus, from now on we will assume that our result for
the stationary probability (5), (4) holds for any u, v, and
explore the consequences.

Remark: Eq. (22) relates the Laplace transform of
the KPZ height field under the stationary measure to the
Laplace transform of another Markov process, the CDHP,
where the role of time/space parameters and Laplace
transform parameters are exchanged. The CDHP can be
interpreted as living in the Fourier space dual to the real
U space of LQM. A similar duality holds for Brownian
excursions [40] and can be obtained as a limit of (22) as
L → +∞, as we shall see in the sequel. Note also that an
analog of (22) has been established for ASEP [20], and it
would be interesting to study the connection to discrete
variants of LQM [41]. It would be also very interesting to
know if such dualities extend to other solvable models in
the KPZ class.

Limits and consequences. – To study the various
limits, we define the scaled processes H̃(x̃), W̃ (x̃) and
X̃(x̃), with x̃ = x/L ∈ [0, 1] as

H(x) =
√

LH̃(x̃), W (x) =
√

LW̃ (x̃), X(x) =
√

LX̃(x̃)
(25)

so that one has

H̃(x̃) =
1√
2

W̃ (x̃) + X̃(x̃) (26)

Clearly W̃ (x̃) is also a standard one-sided Brownian mo-
tion. In order to impose Neumann type boundary con-
ditions on H̃(x̃) (with slopes ũ, −ṽ respectively at each
boundary) we scale boundary parameters as

u = ũ/
√

L, v = ṽ/
√

L. (27)
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Comparison with the result of Corwin-Knizel. –

Now, we explain why our formula for the stationary
measure in (4) and (5) is equivalent to the Laplace trans-
form formula of Corwin-Knizel [18] for L = 1. Again, we
assume that u, v > 0 with u < 1 (though [18] provides
formulas for the whole range u + v > 0). The Laplace
transform of the stationary height H(x) is expressed in
[18] in terms of a Markov process {Ts}s∈[0,2u) with values
on R+, called the continuous dual Hahn process (CDHP)
The transition probability for Tsj

= tj given Tsj+1 = tj+1,
with sj > sj+1, is given by
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Then the Laplace transform is obtained, for 2u > s1 >
s2 > · · · > sm+1 = 0, as
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with (upon some rewriting of formula (1.12) in [18])
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and I0 = I(0) =
∫

dte− 1
4 tp0(t). It is now a simple exercise

to check, using the change of variables tj = k2
j , that the

above formula implies that

I(!s) = 2(u + v)(u + v + 1)J̃(!s) = Γ(u + v + 2)J(!s) (24)

Since the prefactor cancels in the ratio, the multipoint
Laplace transform (13) of our formula (4), (5) written

more explicitly in (20), coincides with the result of [18]
in the domain u, v > 0 and for L = 1.

We may now extend the result of Corwin-Knizel in two
directions. First, we may assume that L is arbitrary, and
reproduce the analysis of [18] with points xi as in (12)
using the same scalings as in [18] starting from the ASEP
model on NL sites and arriving at the same formula (22).
This shows why (4),(5) are correct for any L > 0 and not
only L = 1 as considered in [18]. Then, we may extend
the range of parameters u, v. We expect that the distribu-
tion of stationary measures depend analytically on u, v for
finite L. However, performing a direct analytic continua-
tion on (22) is intricate and would involve many residues.
This is why it is useful to rewrite, through LQM, the re-
sults of Corwin-Knizel as in (4), (5) which depends on the
parameters in an analytic way for all u, v.

Thus, from now on we will assume that our result for
the stationary probability (5), (4) holds for any u, v, and
explore the consequences.

Remark: Eq. (22) relates the Laplace transform of
the KPZ height field under the stationary measure to the
Laplace transform of another Markov process, the CDHP,
where the role of time/space parameters and Laplace
transform parameters are exchanged. The CDHP can be
interpreted as living in the Fourier space dual to the real
U space of LQM. A similar duality holds for Brownian
excursions [40] and can be obtained as a limit of (22) as
L → +∞, as we shall see in the sequel. Note also that an
analog of (22) has been established for ASEP [20], and it
would be interesting to study the connection to discrete
variants of LQM [41]. It would be also very interesting to
know if such dualities extend to other solvable models in
the KPZ class.

Limits and consequences. – To study the various
limits, we define the scaled processes H̃(x̃), W̃ (x̃) and
X̃(x̃), with x̃ = x/L ∈ [0, 1] as

H(x) =
√

LH̃(x̃), W (x) =
√

LW̃ (x̃), X(x) =
√

LX̃(x̃)
(25)

so that one has

H̃(x̃) =
1√
2

W̃ (x̃) + X̃(x̃) (26)

Clearly W̃ (x̃) is also a standard one-sided Brownian mo-
tion. In order to impose Neumann type boundary con-
ditions on H̃(x̃) (with slopes ũ, −ṽ respectively at each
boundary) we scale boundary parameters as

u = ũ/
√

L, v = ṽ/
√

L. (27)
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The measure for X̃(x̃) can then be written, up to a nor-

malization, as DX̃e−S[X̃] with the action

S[X̃] =

∫ 1

0
dx̃

(
dX̃(x̃)

dx̃

)2

+
ũ√
L

log

(∫ 1

0
dx̃ e−2

√
LX̃(x̃)

)

+
ṽ√
L

log

(∫ 1

0
dx̃ e2

√
L(X̃(1)−X̃(x̃))

)
(28)

with X̃(0) = 0 and X̃(1) free.

Limit L → 0. In this limit one recovers the Edwards-
Wilkinson model. One sees that in (28) we can expand
up to linear order in X̃ in the logarithmic terms, and one
finds that to leading order in L, i.e. to L0, it becomes a
Gaussian action with a parabolic mean profile. One finds
(see details in [42])

H̃(x̃) − H̃(0) =⇒ ũx̃ −
1

2
(ũ + ṽ)x̃2 + B(x̃) (29)

where B(x̃) is a standard Brownian motion.

Limit L → +∞ (KPZ fixed point). Under the scalings
considered above, X̃ converges to a probability measure
proportional to

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
+ṽ)2

e2(ũ+ṽ) minx̃ X̃(x̃) (30)

with X̃(0) = 0. Hence it is a Brownian on [0, 1] with a
non trivial Radon Nikodym derivative depending on ũ, ṽ
(equivalently a Brownian with drift −ṽ with derivative de-
pending only on ũ+ ṽ). The measure can also be rewritten
in a more symmetric form as

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
)2

e2ũ minx̃{X̃(x̃)}+2ṽ minx̃{X̃(x̃)−X̃(1)}.
(31)

As detailed in [42] the measure (30) can be studied using
a limit of LQM, where the exponential potential is re-
placed by a hard wall. Accordingly all the above Laplace
transform formula (13)-(20), are obtained for the rescaled
process and parameters by simply replacing Γ(z) → 1/z.
The field H̃(x̃) should correspond to stationary measures
of the KPZ fixed point on the interval [0, 1] with boundary
parameters ũ, ṽ, and it is natural to predict that they arise
as scaling limit of stationary measures of all models in the
KPZ class on an interval. This is partially confirmed in
some special cases that we study next, where we recover
results obtained in [14,15] for the large scale limit of ASEP
stationary measures.

Phase diagram. – Now we study the phase diagram
in Fig. 1, obtained in the L → ∞ limit when u, v are fixed
(equivalently when ũ, ṽ go to ±∞).

When ũ, ṽ → +∞ (u, v > 0). In that case the weight
in (31) vanishes unless minx̃ X̃(x̃) = 0 and minx̃(X̃(x̃) −
X̃(1)) = 0, in which case the weight is 1. The second iden-
tity taken at x̃ = 0, together with the first taken at x̃ = 1

v

u

0

0

H̃(x̃) − u
√

Lx̃

⇓
standard Brownian motion

H̃(x̃) + v
√

Lx̃

⇓
standard Brownian motion

H̃(x̃)

⇓
Brownian +

Brownian excursion

Brownian +

Brownian meander

Fig. 1: Phase diagram of the large-scale limit of stationary
measures for the KPZ equation on the segment. On the three
regions u, v > 0 (maximal current phase), v > u < 0 (low
density phase) and u > v < 0 (high density phase), we have
indicated the nature of the stationary measure in the large scale
limit. For the directed polymer the phases are as follows: For
u, v > 0 the polymer is delocalized in the bulk, for v < 0, u > v
it is bound to x = L, and for u < 0, u < v it is bound to
x = 0. Exactly at the phase boundary u = v the polymer has
probability 1/2 to be bound to either side.

implies that X̃(1) = 0. Thus, in the limit ũ, ṽ → +∞,
X̃(x̃) ⇒ 1√

2
E(x̃), where E is a standard Brownian excur-

sion (i.e. a Brownian bridge conditioned to stay positive),
so that

H̃(x̃) =⇒
1√
2

W̃ (x̃) +
1√
2

E(x̃). (32)

We recover the same process as in the large scale limit of
TASEP [14] or ASEP [15] invariant measures. This shall
not be a surprise: TASEP, ASEP and the KPZ equation
all converge at large time to the KPZ fixed point [43], so
that the process (32) describes the stationary measure of
the KPZ fixed point in the so called maximal current phase
for ASEP, that is with repulsive boundary conditions in
terms of the directed polymer model.

When ũ → +∞, ṽ = 0 or ũ = 0, ṽ → +∞ (u > 0, v = 0
or u = 0, v > 0). When ũ → +∞, ṽ = 0 (equiv-
alently u > 0, v = 0) the weight in (31) vanishes un-
less minx̃ X̃(x̃) = 0, hence X̃ is now a Brownian mean-
der (Brownian motion conditioned to stay positive up to
time 1). We recover the same stationary process as in the
large scale limit of ASEP stationary measures [15]. Sim-
ilarly, when ũ = 0, ṽ → +∞ (equivalently u = 0, v > 0),
X̃(1)− X̃(1−x) tends to a Brownian meander, and again,
this matches with [15].

When u or v may be negative. By symmetry, we only
need to consider the case where v is negative. The mea-
sure for X(x) in (5) is a Brownian measure with drift −v
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The measure for X̃(x̃) can then be written, up to a nor-

malization, as DX̃e−S[X̃] with the action

S[X̃] =

∫ 1

0
dx̃

(
dX̃(x̃)

dx̃

)2

+
ũ√
L

log

(∫ 1

0
dx̃ e−2

√
LX̃(x̃)

)

+
ṽ√
L

log

(∫ 1

0
dx̃ e2

√
L(X̃(1)−X̃(x̃))

)
(28)

with X̃(0) = 0 and X̃(1) free.

Limit L → 0. In this limit one recovers the Edwards-
Wilkinson model. One sees that in (28) we can expand
up to linear order in X̃ in the logarithmic terms, and one
finds that to leading order in L, i.e. to L0, it becomes a
Gaussian action with a parabolic mean profile. One finds
(see details in [42])

H̃(x̃) − H̃(0) =⇒ ũx̃ −
1

2
(ũ + ṽ)x̃2 + B(x̃) (29)

where B(x̃) is a standard Brownian motion.

Limit L → +∞ (KPZ fixed point). Under the scalings
considered above, X̃ converges to a probability measure
proportional to

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
+ṽ)2

e2(ũ+ṽ) minx̃ X̃(x̃) (30)

with X̃(0) = 0. Hence it is a Brownian on [0, 1] with a
non trivial Radon Nikodym derivative depending on ũ, ṽ
(equivalently a Brownian with drift −ṽ with derivative de-
pending only on ũ+ ṽ). The measure can also be rewritten
in a more symmetric form as

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
)2

e2ũ minx̃{X̃(x̃)}+2ṽ minx̃{X̃(x̃)−X̃(1)}.
(31)

As detailed in [42] the measure (30) can be studied using
a limit of LQM, where the exponential potential is re-
placed by a hard wall. Accordingly all the above Laplace
transform formula (13)-(20), are obtained for the rescaled
process and parameters by simply replacing Γ(z) → 1/z.
The field H̃(x̃) should correspond to stationary measures
of the KPZ fixed point on the interval [0, 1] with boundary
parameters ũ, ṽ, and it is natural to predict that they arise
as scaling limit of stationary measures of all models in the
KPZ class on an interval. This is partially confirmed in
some special cases that we study next, where we recover
results obtained in [14,15] for the large scale limit of ASEP
stationary measures.

Phase diagram. – Now we study the phase diagram
in Fig. 1, obtained in the L → ∞ limit when u, v are fixed
(equivalently when ũ, ṽ go to ±∞).

When ũ, ṽ → +∞ (u, v > 0). In that case the weight
in (31) vanishes unless minx̃ X̃(x̃) = 0 and minx̃(X̃(x̃) −
X̃(1)) = 0, in which case the weight is 1. The second iden-
tity taken at x̃ = 0, together with the first taken at x̃ = 1
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√
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Fig. 1: Phase diagram of the large-scale limit of stationary
measures for the KPZ equation on the segment. On the three
regions u, v > 0 (maximal current phase), v > u < 0 (low
density phase) and u > v < 0 (high density phase), we have
indicated the nature of the stationary measure in the large scale
limit. For the directed polymer the phases are as follows: For
u, v > 0 the polymer is delocalized in the bulk, for v < 0, u > v
it is bound to x = L, and for u < 0, u < v it is bound to
x = 0. Exactly at the phase boundary u = v the polymer has
probability 1/2 to be bound to either side.

implies that X̃(1) = 0. Thus, in the limit ũ, ṽ → +∞,
X̃(x̃) ⇒ 1√

2
E(x̃), where E is a standard Brownian excur-

sion (i.e. a Brownian bridge conditioned to stay positive),
so that

H̃(x̃) =⇒
1√
2

W̃ (x̃) +
1√
2

E(x̃). (32)

We recover the same process as in the large scale limit of
TASEP [14] or ASEP [15] invariant measures. This shall
not be a surprise: TASEP, ASEP and the KPZ equation
all converge at large time to the KPZ fixed point [43], so
that the process (32) describes the stationary measure of
the KPZ fixed point in the so called maximal current phase
for ASEP, that is with repulsive boundary conditions in
terms of the directed polymer model.

When ũ → +∞, ṽ = 0 or ũ = 0, ṽ → +∞ (u > 0, v = 0
or u = 0, v > 0). When ũ → +∞, ṽ = 0 (equiv-
alently u > 0, v = 0) the weight in (31) vanishes un-
less minx̃ X̃(x̃) = 0, hence X̃ is now a Brownian mean-
der (Brownian motion conditioned to stay positive up to
time 1). We recover the same stationary process as in the
large scale limit of ASEP stationary measures [15]. Sim-
ilarly, when ũ = 0, ṽ → +∞ (equivalently u = 0, v > 0),
X̃(1)− X̃(1−x) tends to a Brownian meander, and again,
this matches with [15].

When u or v may be negative. By symmetry, we only
need to consider the case where v is negative. The mea-
sure for X(x) in (5) is a Brownian measure with drift −v
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The measure for X̃(x̃) can then be written, up to a nor-

malization, as DX̃e−S[X̃] with the action

S[X̃] =

∫ 1

0
dx̃

(
dX̃(x̃)

dx̃
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+
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log
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0
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ṽ√
L

log

(∫ 1
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L(X̃(1)−X̃(x̃))

)
(28)

with X̃(0) = 0 and X̃(1) free.

Limit L → 0. In this limit one recovers the Edwards-
Wilkinson model. One sees that in (28) we can expand
up to linear order in X̃ in the logarithmic terms, and one
finds that to leading order in L, i.e. to L0, it becomes a
Gaussian action with a parabolic mean profile. One finds
(see details in [42])

H̃(x̃) − H̃(0) =⇒ ũx̃ −
1

2
(ũ + ṽ)x̃2 + B(x̃) (29)

where B(x̃) is a standard Brownian motion.

Limit L → +∞ (KPZ fixed point). Under the scalings
considered above, X̃ converges to a probability measure
proportional to

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
+ṽ)2

e2(ũ+ṽ) minx̃ X̃(x̃) (30)

with X̃(0) = 0. Hence it is a Brownian on [0, 1] with a
non trivial Radon Nikodym derivative depending on ũ, ṽ
(equivalently a Brownian with drift −ṽ with derivative de-
pending only on ũ+ ṽ). The measure can also be rewritten
in a more symmetric form as

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
)2

e2ũ minx̃{X̃(x̃)}+2ṽ minx̃{X̃(x̃)−X̃(1)}.
(31)

As detailed in [42] the measure (30) can be studied using
a limit of LQM, where the exponential potential is re-
placed by a hard wall. Accordingly all the above Laplace
transform formula (13)-(20), are obtained for the rescaled
process and parameters by simply replacing Γ(z) → 1/z.
The field H̃(x̃) should correspond to stationary measures
of the KPZ fixed point on the interval [0, 1] with boundary
parameters ũ, ṽ, and it is natural to predict that they arise
as scaling limit of stationary measures of all models in the
KPZ class on an interval. This is partially confirmed in
some special cases that we study next, where we recover
results obtained in [14,15] for the large scale limit of ASEP
stationary measures.

Phase diagram. – Now we study the phase diagram
in Fig. 1, obtained in the L → ∞ limit when u, v are fixed
(equivalently when ũ, ṽ go to ±∞).

When ũ, ṽ → +∞ (u, v > 0). In that case the weight
in (31) vanishes unless minx̃ X̃(x̃) = 0 and minx̃(X̃(x̃) −
X̃(1)) = 0, in which case the weight is 1. The second iden-
tity taken at x̃ = 0, together with the first taken at x̃ = 1
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Fig. 1: Phase diagram of the large-scale limit of stationary
measures for the KPZ equation on the segment. On the three
regions u, v > 0 (maximal current phase), v > u < 0 (low
density phase) and u > v < 0 (high density phase), we have
indicated the nature of the stationary measure in the large scale
limit. For the directed polymer the phases are as follows: For
u, v > 0 the polymer is delocalized in the bulk, for v < 0, u > v
it is bound to x = L, and for u < 0, u < v it is bound to
x = 0. Exactly at the phase boundary u = v the polymer has
probability 1/2 to be bound to either side.

implies that X̃(1) = 0. Thus, in the limit ũ, ṽ → +∞,
X̃(x̃) ⇒ 1√

2
E(x̃), where E is a standard Brownian excur-

sion (i.e. a Brownian bridge conditioned to stay positive),
so that

H̃(x̃) =⇒
1√
2

W̃ (x̃) +
1√
2

E(x̃). (32)

We recover the same process as in the large scale limit of
TASEP [14] or ASEP [15] invariant measures. This shall
not be a surprise: TASEP, ASEP and the KPZ equation
all converge at large time to the KPZ fixed point [43], so
that the process (32) describes the stationary measure of
the KPZ fixed point in the so called maximal current phase
for ASEP, that is with repulsive boundary conditions in
terms of the directed polymer model.

When ũ → +∞, ṽ = 0 or ũ = 0, ṽ → +∞ (u > 0, v = 0
or u = 0, v > 0). When ũ → +∞, ṽ = 0 (equiv-
alently u > 0, v = 0) the weight in (31) vanishes un-
less minx̃ X̃(x̃) = 0, hence X̃ is now a Brownian mean-
der (Brownian motion conditioned to stay positive up to
time 1). We recover the same stationary process as in the
large scale limit of ASEP stationary measures [15]. Sim-
ilarly, when ũ = 0, ṽ → +∞ (equivalently u = 0, v > 0),
X̃(1)− X̃(1−x) tends to a Brownian meander, and again,
this matches with [15].

When u or v may be negative. By symmetry, we only
need to consider the case where v is negative. The mea-
sure for X(x) in (5) is a Brownian measure with drift −v
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The measure for X̃(x̃) can then be written, up to a nor-

malization, as DX̃e−S[X̃] with the action

S[X̃] =

∫ 1
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with X̃(0) = 0 and X̃(1) free.

Limit L → 0. In this limit one recovers the Edwards-
Wilkinson model. One sees that in (28) we can expand
up to linear order in X̃ in the logarithmic terms, and one
finds that to leading order in L, i.e. to L0, it becomes a
Gaussian action with a parabolic mean profile. One finds
(see details in [42])

H̃(x̃) − H̃(0) =⇒ ũx̃ −
1

2
(ũ + ṽ)x̃2 + B(x̃) (29)

where B(x̃) is a standard Brownian motion.

Limit L → +∞ (KPZ fixed point). Under the scalings
considered above, X̃ converges to a probability measure
proportional to
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−
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+ṽ)2

e2(ũ+ṽ) minx̃ X̃(x̃) (30)

with X̃(0) = 0. Hence it is a Brownian on [0, 1] with a
non trivial Radon Nikodym derivative depending on ũ, ṽ
(equivalently a Brownian with drift −ṽ with derivative de-
pending only on ũ+ ṽ). The measure can also be rewritten
in a more symmetric form as
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e2ũ minx̃{X̃(x̃)}+2ṽ minx̃{X̃(x̃)−X̃(1)}.
(31)

As detailed in [42] the measure (30) can be studied using
a limit of LQM, where the exponential potential is re-
placed by a hard wall. Accordingly all the above Laplace
transform formula (13)-(20), are obtained for the rescaled
process and parameters by simply replacing Γ(z) → 1/z.
The field H̃(x̃) should correspond to stationary measures
of the KPZ fixed point on the interval [0, 1] with boundary
parameters ũ, ṽ, and it is natural to predict that they arise
as scaling limit of stationary measures of all models in the
KPZ class on an interval. This is partially confirmed in
some special cases that we study next, where we recover
results obtained in [14,15] for the large scale limit of ASEP
stationary measures.

Phase diagram. – Now we study the phase diagram
in Fig. 1, obtained in the L → ∞ limit when u, v are fixed
(equivalently when ũ, ṽ go to ±∞).

When ũ, ṽ → +∞ (u, v > 0). In that case the weight
in (31) vanishes unless minx̃ X̃(x̃) = 0 and minx̃(X̃(x̃) −
X̃(1)) = 0, in which case the weight is 1. The second iden-
tity taken at x̃ = 0, together with the first taken at x̃ = 1
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Fig. 1: Phase diagram of the large-scale limit of stationary
measures for the KPZ equation on the segment. On the three
regions u, v > 0 (maximal current phase), v > u < 0 (low
density phase) and u > v < 0 (high density phase), we have
indicated the nature of the stationary measure in the large scale
limit. For the directed polymer the phases are as follows: For
u, v > 0 the polymer is delocalized in the bulk, for v < 0, u > v
it is bound to x = L, and for u < 0, u < v it is bound to
x = 0. Exactly at the phase boundary u = v the polymer has
probability 1/2 to be bound to either side.

implies that X̃(1) = 0. Thus, in the limit ũ, ṽ → +∞,
X̃(x̃) ⇒ 1√

2
E(x̃), where E is a standard Brownian excur-

sion (i.e. a Brownian bridge conditioned to stay positive),
so that

H̃(x̃) =⇒
1√
2

W̃ (x̃) +
1√
2

E(x̃). (32)

We recover the same process as in the large scale limit of
TASEP [14] or ASEP [15] invariant measures. This shall
not be a surprise: TASEP, ASEP and the KPZ equation
all converge at large time to the KPZ fixed point [43], so
that the process (32) describes the stationary measure of
the KPZ fixed point in the so called maximal current phase
for ASEP, that is with repulsive boundary conditions in
terms of the directed polymer model.

When ũ → +∞, ṽ = 0 or ũ = 0, ṽ → +∞ (u > 0, v = 0
or u = 0, v > 0). When ũ → +∞, ṽ = 0 (equiv-
alently u > 0, v = 0) the weight in (31) vanishes un-
less minx̃ X̃(x̃) = 0, hence X̃ is now a Brownian mean-
der (Brownian motion conditioned to stay positive up to
time 1). We recover the same stationary process as in the
large scale limit of ASEP stationary measures [15]. Sim-
ilarly, when ũ = 0, ṽ → +∞ (equivalently u = 0, v > 0),
X̃(1)− X̃(1−x) tends to a Brownian meander, and again,
this matches with [15].

When u or v may be negative. By symmetry, we only
need to consider the case where v is negative. The mea-
sure for X(x) in (5) is a Brownian measure with drift −v
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The measure for X̃(x̃) can then be written, up to a nor-

malization, as DX̃e−S[X̃] with the action

S[X̃] =

∫ 1

0
dx̃

(
dX̃(x̃)

dx̃
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+
ũ√
L

log
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+
ṽ√
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0
dx̃ e2

√
L(X̃(1)−X̃(x̃))

)
(28)

with X̃(0) = 0 and X̃(1) free.

Limit L → 0. In this limit one recovers the Edwards-
Wilkinson model. One sees that in (28) we can expand
up to linear order in X̃ in the logarithmic terms, and one
finds that to leading order in L, i.e. to L0, it becomes a
Gaussian action with a parabolic mean profile. One finds
(see details in [42])

H̃(x̃) − H̃(0) =⇒ ũx̃ −
1

2
(ũ + ṽ)x̃2 + B(x̃) (29)

where B(x̃) is a standard Brownian motion.

Limit L → +∞ (KPZ fixed point). Under the scalings
considered above, X̃ converges to a probability measure
proportional to

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
+ṽ)2

e2(ũ+ṽ) minx̃ X̃(x̃) (30)

with X̃(0) = 0. Hence it is a Brownian on [0, 1] with a
non trivial Radon Nikodym derivative depending on ũ, ṽ
(equivalently a Brownian with drift −ṽ with derivative de-
pending only on ũ+ ṽ). The measure can also be rewritten
in a more symmetric form as

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
)2

e2ũ minx̃{X̃(x̃)}+2ṽ minx̃{X̃(x̃)−X̃(1)}.
(31)

As detailed in [42] the measure (30) can be studied using
a limit of LQM, where the exponential potential is re-
placed by a hard wall. Accordingly all the above Laplace
transform formula (13)-(20), are obtained for the rescaled
process and parameters by simply replacing Γ(z) → 1/z.
The field H̃(x̃) should correspond to stationary measures
of the KPZ fixed point on the interval [0, 1] with boundary
parameters ũ, ṽ, and it is natural to predict that they arise
as scaling limit of stationary measures of all models in the
KPZ class on an interval. This is partially confirmed in
some special cases that we study next, where we recover
results obtained in [14,15] for the large scale limit of ASEP
stationary measures.

Phase diagram. – Now we study the phase diagram
in Fig. 1, obtained in the L → ∞ limit when u, v are fixed
(equivalently when ũ, ṽ go to ±∞).

When ũ, ṽ → +∞ (u, v > 0). In that case the weight
in (31) vanishes unless minx̃ X̃(x̃) = 0 and minx̃(X̃(x̃) −
X̃(1)) = 0, in which case the weight is 1. The second iden-
tity taken at x̃ = 0, together with the first taken at x̃ = 1
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Fig. 1: Phase diagram of the large-scale limit of stationary
measures for the KPZ equation on the segment. On the three
regions u, v > 0 (maximal current phase), v > u < 0 (low
density phase) and u > v < 0 (high density phase), we have
indicated the nature of the stationary measure in the large scale
limit. For the directed polymer the phases are as follows: For
u, v > 0 the polymer is delocalized in the bulk, for v < 0, u > v
it is bound to x = L, and for u < 0, u < v it is bound to
x = 0. Exactly at the phase boundary u = v the polymer has
probability 1/2 to be bound to either side.

implies that X̃(1) = 0. Thus, in the limit ũ, ṽ → +∞,
X̃(x̃) ⇒ 1√

2
E(x̃), where E is a standard Brownian excur-

sion (i.e. a Brownian bridge conditioned to stay positive),
so that

H̃(x̃) =⇒
1√
2

W̃ (x̃) +
1√
2

E(x̃). (32)

We recover the same process as in the large scale limit of
TASEP [14] or ASEP [15] invariant measures. This shall
not be a surprise: TASEP, ASEP and the KPZ equation
all converge at large time to the KPZ fixed point [43], so
that the process (32) describes the stationary measure of
the KPZ fixed point in the so called maximal current phase
for ASEP, that is with repulsive boundary conditions in
terms of the directed polymer model.

When ũ → +∞, ṽ = 0 or ũ = 0, ṽ → +∞ (u > 0, v = 0
or u = 0, v > 0). When ũ → +∞, ṽ = 0 (equiv-
alently u > 0, v = 0) the weight in (31) vanishes un-
less minx̃ X̃(x̃) = 0, hence X̃ is now a Brownian mean-
der (Brownian motion conditioned to stay positive up to
time 1). We recover the same stationary process as in the
large scale limit of ASEP stationary measures [15]. Sim-
ilarly, when ũ = 0, ṽ → +∞ (equivalently u = 0, v > 0),
X̃(1)− X̃(1−x) tends to a Brownian meander, and again,
this matches with [15].

When u or v may be negative. By symmetry, we only
need to consider the case where v is negative. The mea-
sure for X(x) in (5) is a Brownian measure with drift −v
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The measure for X̃(x̃) can then be written, up to a nor-
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ṽ√
L

log

(∫ 1

0
dx̃ e2

√
L(X̃(1)−X̃(x̃))

)
(28)

with X̃(0) = 0 and X̃(1) free.

Limit L → 0. In this limit one recovers the Edwards-
Wilkinson model. One sees that in (28) we can expand
up to linear order in X̃ in the logarithmic terms, and one
finds that to leading order in L, i.e. to L0, it becomes a
Gaussian action with a parabolic mean profile. One finds
(see details in [42])

H̃(x̃) − H̃(0) =⇒ ũx̃ −
1

2
(ũ + ṽ)x̃2 + B(x̃) (29)

where B(x̃) is a standard Brownian motion.

Limit L → +∞ (KPZ fixed point). Under the scalings
considered above, X̃ converges to a probability measure
proportional to

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
+ṽ)2

e2(ũ+ṽ) minx̃ X̃(x̃) (30)

with X̃(0) = 0. Hence it is a Brownian on [0, 1] with a
non trivial Radon Nikodym derivative depending on ũ, ṽ
(equivalently a Brownian with drift −ṽ with derivative de-
pending only on ũ+ ṽ). The measure can also be rewritten
in a more symmetric form as

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
)2

e2ũ minx̃{X̃(x̃)}+2ṽ minx̃{X̃(x̃)−X̃(1)}.
(31)

As detailed in [42] the measure (30) can be studied using
a limit of LQM, where the exponential potential is re-
placed by a hard wall. Accordingly all the above Laplace
transform formula (13)-(20), are obtained for the rescaled
process and parameters by simply replacing Γ(z) → 1/z.
The field H̃(x̃) should correspond to stationary measures
of the KPZ fixed point on the interval [0, 1] with boundary
parameters ũ, ṽ, and it is natural to predict that they arise
as scaling limit of stationary measures of all models in the
KPZ class on an interval. This is partially confirmed in
some special cases that we study next, where we recover
results obtained in [14,15] for the large scale limit of ASEP
stationary measures.

Phase diagram. – Now we study the phase diagram
in Fig. 1, obtained in the L → ∞ limit when u, v are fixed
(equivalently when ũ, ṽ go to ±∞).

When ũ, ṽ → +∞ (u, v > 0). In that case the weight
in (31) vanishes unless minx̃ X̃(x̃) = 0 and minx̃(X̃(x̃) −
X̃(1)) = 0, in which case the weight is 1. The second iden-
tity taken at x̃ = 0, together with the first taken at x̃ = 1
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Fig. 1: Phase diagram of the large-scale limit of stationary
measures for the KPZ equation on the segment. On the three
regions u, v > 0 (maximal current phase), v > u < 0 (low
density phase) and u > v < 0 (high density phase), we have
indicated the nature of the stationary measure in the large scale
limit. For the directed polymer the phases are as follows: For
u, v > 0 the polymer is delocalized in the bulk, for v < 0, u > v
it is bound to x = L, and for u < 0, u < v it is bound to
x = 0. Exactly at the phase boundary u = v the polymer has
probability 1/2 to be bound to either side.

implies that X̃(1) = 0. Thus, in the limit ũ, ṽ → +∞,
X̃(x̃) ⇒ 1√

2
E(x̃), where E is a standard Brownian excur-

sion (i.e. a Brownian bridge conditioned to stay positive),
so that

H̃(x̃) =⇒
1√
2

W̃ (x̃) +
1√
2

E(x̃). (32)

We recover the same process as in the large scale limit of
TASEP [14] or ASEP [15] invariant measures. This shall
not be a surprise: TASEP, ASEP and the KPZ equation
all converge at large time to the KPZ fixed point [43], so
that the process (32) describes the stationary measure of
the KPZ fixed point in the so called maximal current phase
for ASEP, that is with repulsive boundary conditions in
terms of the directed polymer model.

When ũ → +∞, ṽ = 0 or ũ = 0, ṽ → +∞ (u > 0, v = 0
or u = 0, v > 0). When ũ → +∞, ṽ = 0 (equiv-
alently u > 0, v = 0) the weight in (31) vanishes un-
less minx̃ X̃(x̃) = 0, hence X̃ is now a Brownian mean-
der (Brownian motion conditioned to stay positive up to
time 1). We recover the same stationary process as in the
large scale limit of ASEP stationary measures [15]. Sim-
ilarly, when ũ = 0, ṽ → +∞ (equivalently u = 0, v > 0),
X̃(1)− X̃(1−x) tends to a Brownian meander, and again,
this matches with [15].

When u or v may be negative. By symmetry, we only
need to consider the case where v is negative. The mea-
sure for X(x) in (5) is a Brownian measure with drift −v
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The measure for X̃(x̃) can then be written, up to a nor-
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with X̃(0) = 0 and X̃(1) free.

Limit L → 0. In this limit one recovers the Edwards-
Wilkinson model. One sees that in (28) we can expand
up to linear order in X̃ in the logarithmic terms, and one
finds that to leading order in L, i.e. to L0, it becomes a
Gaussian action with a parabolic mean profile. One finds
(see details in [42])

H̃(x̃) − H̃(0) =⇒ ũx̃ −
1

2
(ũ + ṽ)x̃2 + B(x̃) (29)

where B(x̃) is a standard Brownian motion.

Limit L → +∞ (KPZ fixed point). Under the scalings
considered above, X̃ converges to a probability measure
proportional to

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
+ṽ)2

e2(ũ+ṽ) minx̃ X̃(x̃) (30)

with X̃(0) = 0. Hence it is a Brownian on [0, 1] with a
non trivial Radon Nikodym derivative depending on ũ, ṽ
(equivalently a Brownian with drift −ṽ with derivative de-
pending only on ũ+ ṽ). The measure can also be rewritten
in a more symmetric form as

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
)2

e2ũ minx̃{X̃(x̃)}+2ṽ minx̃{X̃(x̃)−X̃(1)}.
(31)

As detailed in [42] the measure (30) can be studied using
a limit of LQM, where the exponential potential is re-
placed by a hard wall. Accordingly all the above Laplace
transform formula (13)-(20), are obtained for the rescaled
process and parameters by simply replacing Γ(z) → 1/z.
The field H̃(x̃) should correspond to stationary measures
of the KPZ fixed point on the interval [0, 1] with boundary
parameters ũ, ṽ, and it is natural to predict that they arise
as scaling limit of stationary measures of all models in the
KPZ class on an interval. This is partially confirmed in
some special cases that we study next, where we recover
results obtained in [14,15] for the large scale limit of ASEP
stationary measures.

Phase diagram. – Now we study the phase diagram
in Fig. 1, obtained in the L → ∞ limit when u, v are fixed
(equivalently when ũ, ṽ go to ±∞).

When ũ, ṽ → +∞ (u, v > 0). In that case the weight
in (31) vanishes unless minx̃ X̃(x̃) = 0 and minx̃(X̃(x̃) −
X̃(1)) = 0, in which case the weight is 1. The second iden-
tity taken at x̃ = 0, together with the first taken at x̃ = 1
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Fig. 1: Phase diagram of the large-scale limit of stationary
measures for the KPZ equation on the segment. On the three
regions u, v > 0 (maximal current phase), v > u < 0 (low
density phase) and u > v < 0 (high density phase), we have
indicated the nature of the stationary measure in the large scale
limit. For the directed polymer the phases are as follows: For
u, v > 0 the polymer is delocalized in the bulk, for v < 0, u > v
it is bound to x = L, and for u < 0, u < v it is bound to
x = 0. Exactly at the phase boundary u = v the polymer has
probability 1/2 to be bound to either side.

implies that X̃(1) = 0. Thus, in the limit ũ, ṽ → +∞,
X̃(x̃) ⇒ 1√

2
E(x̃), where E is a standard Brownian excur-

sion (i.e. a Brownian bridge conditioned to stay positive),
so that

H̃(x̃) =⇒
1√
2

W̃ (x̃) +
1√
2

E(x̃). (32)

We recover the same process as in the large scale limit of
TASEP [14] or ASEP [15] invariant measures. This shall
not be a surprise: TASEP, ASEP and the KPZ equation
all converge at large time to the KPZ fixed point [43], so
that the process (32) describes the stationary measure of
the KPZ fixed point in the so called maximal current phase
for ASEP, that is with repulsive boundary conditions in
terms of the directed polymer model.

When ũ → +∞, ṽ = 0 or ũ = 0, ṽ → +∞ (u > 0, v = 0
or u = 0, v > 0). When ũ → +∞, ṽ = 0 (equiv-
alently u > 0, v = 0) the weight in (31) vanishes un-
less minx̃ X̃(x̃) = 0, hence X̃ is now a Brownian mean-
der (Brownian motion conditioned to stay positive up to
time 1). We recover the same stationary process as in the
large scale limit of ASEP stationary measures [15]. Sim-
ilarly, when ũ = 0, ṽ → +∞ (equivalently u = 0, v > 0),
X̃(1)− X̃(1−x) tends to a Brownian meander, and again,
this matches with [15].

When u or v may be negative. By symmetry, we only
need to consider the case where v is negative. The mea-
sure for X(x) in (5) is a Brownian measure with drift −v
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The measure for X̃(x̃) can then be written, up to a nor-

malization, as DX̃e−S[X̃] with the action

S[X̃] =

∫ 1
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(28)

with X̃(0) = 0 and X̃(1) free.

Limit L → 0. In this limit one recovers the Edwards-
Wilkinson model. One sees that in (28) we can expand
up to linear order in X̃ in the logarithmic terms, and one
finds that to leading order in L, i.e. to L0, it becomes a
Gaussian action with a parabolic mean profile. One finds
(see details in [42])

H̃(x̃) − H̃(0) =⇒ ũx̃ −
1

2
(ũ + ṽ)x̃2 + B(x̃) (29)

where B(x̃) is a standard Brownian motion.

Limit L → +∞ (KPZ fixed point). Under the scalings
considered above, X̃ converges to a probability measure
proportional to

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
+ṽ)2

e2(ũ+ṽ) minx̃ X̃(x̃) (30)

with X̃(0) = 0. Hence it is a Brownian on [0, 1] with a
non trivial Radon Nikodym derivative depending on ũ, ṽ
(equivalently a Brownian with drift −ṽ with derivative de-
pending only on ũ+ ṽ). The measure can also be rewritten
in a more symmetric form as

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
)2

e2ũ minx̃{X̃(x̃)}+2ṽ minx̃{X̃(x̃)−X̃(1)}.
(31)

As detailed in [42] the measure (30) can be studied using
a limit of LQM, where the exponential potential is re-
placed by a hard wall. Accordingly all the above Laplace
transform formula (13)-(20), are obtained for the rescaled
process and parameters by simply replacing Γ(z) → 1/z.
The field H̃(x̃) should correspond to stationary measures
of the KPZ fixed point on the interval [0, 1] with boundary
parameters ũ, ṽ, and it is natural to predict that they arise
as scaling limit of stationary measures of all models in the
KPZ class on an interval. This is partially confirmed in
some special cases that we study next, where we recover
results obtained in [14,15] for the large scale limit of ASEP
stationary measures.

Phase diagram. – Now we study the phase diagram
in Fig. 1, obtained in the L → ∞ limit when u, v are fixed
(equivalently when ũ, ṽ go to ±∞).

When ũ, ṽ → +∞ (u, v > 0). In that case the weight
in (31) vanishes unless minx̃ X̃(x̃) = 0 and minx̃(X̃(x̃) −
X̃(1)) = 0, in which case the weight is 1. The second iden-
tity taken at x̃ = 0, together with the first taken at x̃ = 1

v

u

0

0

H̃(x̃) − u
√

Lx̃

⇓
standard Brownian motion

H̃(x̃) + v
√

Lx̃

⇓
standard Brownian motion

H̃(x̃)

⇓
Brownian +

Brownian excursion

Brownian +

Brownian meander

Fig. 1: Phase diagram of the large-scale limit of stationary
measures for the KPZ equation on the segment. On the three
regions u, v > 0 (maximal current phase), v > u < 0 (low
density phase) and u > v < 0 (high density phase), we have
indicated the nature of the stationary measure in the large scale
limit. For the directed polymer the phases are as follows: For
u, v > 0 the polymer is delocalized in the bulk, for v < 0, u > v
it is bound to x = L, and for u < 0, u < v it is bound to
x = 0. Exactly at the phase boundary u = v the polymer has
probability 1/2 to be bound to either side.

implies that X̃(1) = 0. Thus, in the limit ũ, ṽ → +∞,
X̃(x̃) ⇒ 1√

2
E(x̃), where E is a standard Brownian excur-

sion (i.e. a Brownian bridge conditioned to stay positive),
so that

H̃(x̃) =⇒
1√
2

W̃ (x̃) +
1√
2

E(x̃). (32)

We recover the same process as in the large scale limit of
TASEP [14] or ASEP [15] invariant measures. This shall
not be a surprise: TASEP, ASEP and the KPZ equation
all converge at large time to the KPZ fixed point [43], so
that the process (32) describes the stationary measure of
the KPZ fixed point in the so called maximal current phase
for ASEP, that is with repulsive boundary conditions in
terms of the directed polymer model.

When ũ → +∞, ṽ = 0 or ũ = 0, ṽ → +∞ (u > 0, v = 0
or u = 0, v > 0). When ũ → +∞, ṽ = 0 (equiv-
alently u > 0, v = 0) the weight in (31) vanishes un-
less minx̃ X̃(x̃) = 0, hence X̃ is now a Brownian mean-
der (Brownian motion conditioned to stay positive up to
time 1). We recover the same stationary process as in the
large scale limit of ASEP stationary measures [15]. Sim-
ilarly, when ũ = 0, ṽ → +∞ (equivalently u = 0, v > 0),
X̃(1)− X̃(1−x) tends to a Brownian meander, and again,
this matches with [15].

When u or v may be negative. By symmetry, we only
need to consider the case where v is negative. The mea-
sure for X(x) in (5) is a Brownian measure with drift −v

p-5

standard Brownian excursion

1

X̃(x) � 0 (1)

X̃(1)  0 (2)

X̃(0)� X̃(1)  0 (3)

X̃(1) � 0 (4)

X̃(0) = 0 (5)

X̃(1) (6)

@xh|x=0 = u (7)

@xh|x=L = �v (8)

v = �u (9)

H(x)�H(0) = B(x) + ux (10)

b ⌧ 1 (11)

z (12)

z0 (13)

|x� y| ⌧ t2/3 (14)

|x� y| = O(1) (15)

x/t ! 0 (16)

x ⌧ t2/3 (17)

x = O(1) (18)

Z(x, t)

Z(0, t)
= eh(x,t)�h(0,t) ! eB(x)

(19)

t ! +1 (20)

Z(x, t)

Z(y, t)
= eh(x,t)�h(y,t) ! eB(x)�B(y)

(21)

Z(x, t)

Z(y, t)
= eh(x,t)�h(y,t) ! eB(x)�B(y)�a(x�y)

(22)

�at (23)

t ! +1 (24)

Z(x, t|y, 0) = (25)

Z x(t)=x

x(0)=y
Dx(⌧) (26)

e�
R t
0 d⌧ 1

4 (
dx(⌧)
d⌧ )2

(27)

e�
R t
0 d⌧ 1

4 (
dx(⌧)
d⌧ )2�

p
2 ⇠(x(⌧),⌧)

(28)

V (x, t)V (x0, t0) = c̄ (29)

�(t� t0)�(x� x0
) (30)

h(x, t)� h(x� 1, t) =

(
�1 x occupied

1 x empty
(31)

L � 1 (32)

L ⌧ 1 (33)

b ⌧ 1 (34)

b = O(1) (35)

�bt (36)

` (37)

�at (38)

1

X̃(x) � 0 (1)

X̃(1)  0 (2)

X̃(0)� X̃(1)  0 (3)

X̃(1) � 0 (4)

X̃(0) = 0 (5)

X̃(1) (6)

@xh|x=0 = u (7)

@xh|x=L = �v (8)

v = �u (9)

H(x)�H(0) = B(x) + ux (10)

b ⌧ 1 (11)

z (12)

z0 (13)

|x� y| ⌧ t2/3 (14)

|x� y| = O(1) (15)

x/t ! 0 (16)

x ⌧ t2/3 (17)

x = O(1) (18)

Z(x, t)

Z(0, t)
= eh(x,t)�h(0,t) ! eB(x)

(19)

t ! +1 (20)

Z(x, t)

Z(y, t)
= eh(x,t)�h(y,t) ! eB(x)�B(y)

(21)

Z(x, t)

Z(y, t)
= eh(x,t)�h(y,t) ! eB(x)�B(y)�a(x�y)

(22)

�at (23)

t ! +1 (24)

Z(x, t|y, 0) = (25)

Z x(t)=x

x(0)=y
Dx(⌧) (26)

e�
R t
0 d⌧ 1

4 (
dx(⌧)
d⌧ )2

(27)

e�
R t
0 d⌧ 1

4 (
dx(⌧)
d⌧ )2�

p
2 ⇠(x(⌧),⌧)

(28)

V (x, t)V (x0, t0) = c̄ (29)

�(t� t0)�(x� x0
) (30)

h(x, t)� h(x� 1, t) =

(
�1 x occupied

1 x empty
(31)

L � 1 (32)

L ⌧ 1 (33)

b ⌧ 1 (34)

b = O(1) (35)

�bt (36)

` (37)

�at (38)

1

X̃(x) � 0 (1)

X̃(1)  0 (2)

X̃(0)� X̃(1) � 0 (3)

X̃(1) � 0 (4)

X̃(0) = 0 (5)

X̃(1) (6)

@xh|x=0 = u (7)

@xh|x=L = �v (8)

v = �u (9)

H(x)�H(0) = B(x) + ux (10)

b ⌧ 1 (11)

z (12)

z0 (13)

|x� y| ⌧ t2/3 (14)

|x� y| = O(1) (15)

x/t ! 0 (16)

x ⌧ t2/3 (17)

x = O(1) (18)

Z(x, t)

Z(0, t)
= eh(x,t)�h(0,t) ! eB(x)

(19)

t ! +1 (20)

Z(x, t)

Z(y, t)
= eh(x,t)�h(y,t) ! eB(x)�B(y)

(21)

Z(x, t)

Z(y, t)
= eh(x,t)�h(y,t) ! eB(x)�B(y)�a(x�y)

(22)

�at (23)

t ! +1 (24)

Z(x, t|y, 0) = (25)

Z x(t)=x

x(0)=y
Dx(⌧) (26)

e�
R t
0 d⌧ 1

4 (
dx(⌧)
d⌧ )2

(27)

e�
R t
0 d⌧ 1

4 (
dx(⌧)
d⌧ )2�

p
2 ⇠(x(⌧),⌧)

(28)

V (x, t)V (x0, t0) = c̄ (29)

�(t� t0)�(x� x0
) (30)

h(x, t)� h(x� 1, t) =

(
�1 x occupied

1 x empty
(31)

L � 1 (32)

L ⌧ 1 (33)

b ⌧ 1 (34)

b = O(1) (35)

�bt (36)

` (37)

�at (38)

1

X̃(x) � 0 (1)

X̃(1)  0 (2)

X̃(0)� X̃(1) � 0 (3)

X̃(1) � 0 (4)

X̃(0) = 0 (5)

X̃(1) = 0 (6)

@xh|x=0 = u (7)

@xh|x=L = �v (8)

v = �u (9)

H(x)�H(0) = B(x) + ux (10)

b ⌧ 1 (11)

z (12)

z0 (13)

|x� y| ⌧ t2/3 (14)

|x� y| = O(1) (15)

x/t ! 0 (16)

x ⌧ t2/3 (17)

x = O(1) (18)

Z(x, t)

Z(0, t)
= eh(x,t)�h(0,t) ! eB(x)

(19)

t ! +1 (20)

Z(x, t)

Z(y, t)
= eh(x,t)�h(y,t) ! eB(x)�B(y)

(21)

Z(x, t)

Z(y, t)
= eh(x,t)�h(y,t) ! eB(x)�B(y)�a(x�y)

(22)

�at (23)

t ! +1 (24)

Z(x, t|y, 0) = (25)

Z x(t)=x

x(0)=y
Dx(⌧) (26)

e�
R t
0 d⌧ 1

4 (
dx(⌧)
d⌧ )2

(27)

e�
R t
0 d⌧ 1

4 (
dx(⌧)
d⌧ )2�

p
2 ⇠(x(⌧),⌧)

(28)

V (x, t)V (x0, t0) = c̄ (29)

�(t� t0)�(x� x0
) (30)

h(x, t)� h(x� 1, t) =

(
�1 x occupied

1 x empty
(31)

L � 1 (32)

L ⌧ 1 (33)

b ⌧ 1 (34)

b = O(1) (35)

�bt (36)

` (37)

�at (38)

Steady state of the KPZ equation on an interval and Liouville quantum mechanics

The measure for X̃(x̃) can then be written, up to a nor-

malization, as DX̃e−S[X̃] with the action

S[X̃] =

∫ 1

0
dx̃

(
dX̃(x̃)

dx̃

)2

+
ũ√
L

log

(∫ 1

0
dx̃ e−2

√
LX̃(x̃)

)

+
ṽ√
L

log

(∫ 1

0
dx̃ e2

√
L(X̃(1)−X̃(x̃))

)
(28)

with X̃(0) = 0 and X̃(1) free.

Limit L → 0. In this limit one recovers the Edwards-
Wilkinson model. One sees that in (28) we can expand
up to linear order in X̃ in the logarithmic terms, and one
finds that to leading order in L, i.e. to L0, it becomes a
Gaussian action with a parabolic mean profile. One finds
(see details in [42])

H̃(x̃) − H̃(0) =⇒ ũx̃ −
1

2
(ũ + ṽ)x̃2 + B(x̃) (29)

where B(x̃) is a standard Brownian motion.

Limit L → +∞ (KPZ fixed point). Under the scalings
considered above, X̃ converges to a probability measure
proportional to

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
+ṽ)2

e2(ũ+ṽ) minx̃ X̃(x̃) (30)

with X̃(0) = 0. Hence it is a Brownian on [0, 1] with a
non trivial Radon Nikodym derivative depending on ũ, ṽ
(equivalently a Brownian with drift −ṽ with derivative de-
pending only on ũ+ ṽ). The measure can also be rewritten
in a more symmetric form as

DX̃e
−
∫ 1

0
dx̃( dX̃(x̃)

dx̃
)2

e2ũ minx̃{X̃(x̃)}+2ṽ minx̃{X̃(x̃)−X̃(1)}.
(31)

As detailed in [42] the measure (30) can be studied using
a limit of LQM, where the exponential potential is re-
placed by a hard wall. Accordingly all the above Laplace
transform formula (13)-(20), are obtained for the rescaled
process and parameters by simply replacing Γ(z) → 1/z.
The field H̃(x̃) should correspond to stationary measures
of the KPZ fixed point on the interval [0, 1] with boundary
parameters ũ, ṽ, and it is natural to predict that they arise
as scaling limit of stationary measures of all models in the
KPZ class on an interval. This is partially confirmed in
some special cases that we study next, where we recover
results obtained in [14,15] for the large scale limit of ASEP
stationary measures.

Phase diagram. – Now we study the phase diagram
in Fig. 1, obtained in the L → ∞ limit when u, v are fixed
(equivalently when ũ, ṽ go to ±∞).

When ũ, ṽ → +∞ (u, v > 0). In that case the weight
in (31) vanishes unless minx̃ X̃(x̃) = 0 and minx̃(X̃(x̃) −
X̃(1)) = 0, in which case the weight is 1. The second iden-
tity taken at x̃ = 0, together with the first taken at x̃ = 1

v

u

0

0

H̃(x̃) − u
√

Lx̃

⇓
standard Brownian motion

H̃(x̃) + v
√

Lx̃

⇓
standard Brownian motion

H̃(x̃)

⇓
Brownian +

Brownian excursion

Brownian +

Brownian meander

Fig. 1: Phase diagram of the large-scale limit of stationary
measures for the KPZ equation on the segment. On the three
regions u, v > 0 (maximal current phase), v > u < 0 (low
density phase) and u > v < 0 (high density phase), we have
indicated the nature of the stationary measure in the large scale
limit. For the directed polymer the phases are as follows: For
u, v > 0 the polymer is delocalized in the bulk, for v < 0, u > v
it is bound to x = L, and for u < 0, u < v it is bound to
x = 0. Exactly at the phase boundary u = v the polymer has
probability 1/2 to be bound to either side.

implies that X̃(1) = 0. Thus, in the limit ũ, ṽ → +∞,
X̃(x̃) ⇒ 1√

2
E(x̃), where E is a standard Brownian excur-

sion (i.e. a Brownian bridge conditioned to stay positive),
so that

H̃(x̃) =⇒
1√
2

W̃ (x̃) +
1√
2

E(x̃). (32)

We recover the same process as in the large scale limit of
TASEP [14] or ASEP [15] invariant measures. This shall
not be a surprise: TASEP, ASEP and the KPZ equation
all converge at large time to the KPZ fixed point [43], so
that the process (32) describes the stationary measure of
the KPZ fixed point in the so called maximal current phase
for ASEP, that is with repulsive boundary conditions in
terms of the directed polymer model.

When ũ → +∞, ṽ = 0 or ũ = 0, ṽ → +∞ (u > 0, v = 0
or u = 0, v > 0). When ũ → +∞, ṽ = 0 (equiv-
alently u > 0, v = 0) the weight in (31) vanishes un-
less minx̃ X̃(x̃) = 0, hence X̃ is now a Brownian mean-
der (Brownian motion conditioned to stay positive up to
time 1). We recover the same stationary process as in the
large scale limit of ASEP stationary measures [15]. Sim-
ilarly, when ũ = 0, ṽ → +∞ (equivalently u = 0, v > 0),
X̃(1)− X̃(1−x) tends to a Brownian meander, and again,
this matches with [15].

When u or v may be negative. By symmetry, we only
need to consider the case where v is negative. The mea-
sure for X(x) in (5) is a Brownian measure with drift −v
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weighted by ZL[X ]−(u+v), where ZL[X ] =
∫ L

0 dxe−2X(x).
We may rewrite (7), up to a renormalisation, as

EB−v

[
F (B−v)ZL[B−v]−(u+v)

]
, (33)

where B−v denotes a Brownian with drift −v and diffusion
coefficient 1/2. It is well-known that ZL[B−v] converges as
L → ∞ to a finite random variable Z∞[B−v] distributed
as an inverse Gamma law with shape parameter −2v [22,
44], which becomes asymptotically independent from the
rescaled process X̃. In order for Z∞[B−v]−(u+v) to have a
finite expectation, we need to assume that −(u+v) < −2v,
that is u > v. Thus, we are considering the whole high
density phase in Fig. 1. At this point, we find that the
resulting measure for H̃(x̃)+v

√
Lx̃ is simply the standard

Brownian motion. In the low density phase where u < 0
and v > u (see Figure 1), we deduce by symmetry that the
limiting stationary process is a standard Brownian motion
with drift u

√
L.

Half-line KPZ equation. – Consider the KPZ equa-
tion (1) in R+, with boundary parameter u at x = 0. The
stationary measures of the height field can be computed
as the L → ∞ limit of the stationary measures defined in
(4) and (5) and depending on parameters u, v. It turns
out that this limit was studied in [39] (see also the review
[45]). We will make considerable use of these results here.
The set of stationary measures obtained in the L → ∞
limit always depend on the boundary parameter u, and
sometimes depend on the parameter v. When this is the
case v can be interpreted as minus the average drift of the
process at infinity (see below).

In the low density phase (u ! 0, v " u), the station-
ary measure (4) simply converge as L → ∞ to a stan-
dard Brownian motion with drift u [39] (so that the limit
does not depend on v). In the maximal current phase
(u " 0, v " 0), the stationary measures converge [39] to a
distribution that we denote HY(0)

γu
– the letters HY stand

for Hariya-Yor. This is the distribution of the process

H(x) = B(1)(x)+B(2)(x)+log

(
1 + γu

∫ x

0
e−2B(2)(z)dz

)
,

(34)
where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu is an indepen-
dent Gamma random variable with shape parameter u.
Again, the limit does not depend on v. In the high-density
phase (v ! 0, u " v), the stationary measures converge
[39] to a distribution that we denote HY(−v)

γu−v
. This is the

distribution of the process

H(x) = B(1)(x) + B(2)(x) + vx

+ log

(
1 + γu−v

∫ x

0
e−2B(2)(z)−2vzdz

)
, (35)

where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu−v is an indepen-
dent Gamma random variable with shape parameter u−v.

v
drift

parameter

u
boundary parameter

0

0

Standard Brownian

motion with drift u

HY(−v)
γu−v

defined in (35)

HY(0)
γu

defined in (34)

Fig. 2: Phase diagram of stationary measures for the KPZ
equation in the half-space R+ with boundary parameter u. The
diagram means that if the initial condition has drift −v at
infinity, the height field should converge at large time under
mild assumptions to the stationary measure indicated in one
of the three regions of the (u, v) plane. In particular, if u ! 0
and the drift at infinity is 0, which includes the flat initial data,
the height field will converge to a Brownian motion with drift
u, as predicted in [17]. Along the antidiagonal line u = −v,
the stationary measure is always a Brownian motion with drift
u, see [42].

In this phase, the limit depends on v, and we remark that
the drift at infinity of the process (35) is −v (in the sense
that H(x) − H(0) % −vx when x → +∞).

We expect that for a large class of initial conditions with
drift at infinity equal to −v, the height field will converge
at large time (modulo a global shift) to one of the station-
ary measures that we have just described, according to the
phase diagram in Figure 2. This prediction is based on an
analogous convergence result at large time for ASEP on
a half-line proved in [11], though the stationary measures
were explicitly described much later [13, 46].

Large-scale limit. Now that we have described the
stationary measures of the KPZ equation on a half-line,
it would be interesting to consider their large scale limit
as x goes to infinity. The processes obtained in this limit
should be understood as stationary measures of the half-
space KPZ fixed point, that is the universal process arising
as scaling limit of all half-space models in the KPZ class.
In particular, we conjecture that the large scale limit of
half-line ASEP stationary measures [46] do converge to the
same limit at large scale. Note that this half-space KPZ
fixed point has not been defined rigorously (unlike the
full-space situation), but its multipoint distributions for
some initial conditions are known [47,48]. The large scale
limit of half-line KPZ equation stationary measures are
described in the phase diagram of Fig. 3. We will let x →
+∞ and define H̃(y) = 1√

x
H(xy) and scale the boundary

parameter as u = ũ√
x

. In the low-density phase, clearly,

the Brownian motion with drift u becomes a Brownian
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corresponds to the KPZ equation limit1 of formulas with
a similar structure obtained in [20] of formulas with a simi-
lar structure obtained in [20] for the stationary measure of
ASEP. However, obtaining a characterization of the pro-
cess allowing to study properties of the stationary measure
remains a challenge. This amounts to invert the compli-
cated Laplace transforms in [18].

In this Letter we obtain a simple formula for the station-
ary measure of the KPZ equation on an interval of any size
L, with general Neumann type boundary conditions. Our
result is particularly convenient to study various limits as
L → +∞. In particular we recover the phase diagram for
stationary measures of the KPZ fixed point on an interval,
we obtain new crossover regimes near the critical point,
and we study the stationary measures of the KPZ equa-
tion on a half-line and their large scale limits. We unveil
and exploit a surprising connection to Liouville quantum
mechanics (LQM), i.e. the Schrodinger equation in an
exponential potential. The LQM, which is the 1D limit
of the 2D Liouville field theory, notably allows to study
the statistics of exponential functionals of the Brownian
motion, see [21] for a short review. As such, it appears
in several areas of physics such as diffusion in 1D ran-
dom media [21–27], multifractal eigenfunctions of random
Schrodinger and Dirac operators [21, 28–31], diffusion in
the hyperbolic plane [32–34], and more recently, and strik-
ingly, in quantum chaos and its relation to gravity [35,36].
LQM was recently used to obtain multipoint observables
for the stationary KPZ equation in a half-space (see Supp.
Mat. in [17]).

Model. – The KPZ equation for the height field
h(x, t) reads

∂th(x, t) = ν∂2
xh +

λ

2
(∂xh)2 +

√
Dξ(x, t) (1)

where ξ(x, t) is a standard space-time white noise. We use
space-time units so that ν = 1 and λ = D = 2 2. Here
we study the problem on the interval so that (1) holds
for 0 < x < L. The solution is defined from the Cole-
Hopf mapping h(x, t) = log Z(x, t), where Z(x, t) equals
the partition sum of a continuum directed polymer with
endpoint at (x, t) in a random potential −

√
2ξ(x, t). It

satisfies the stochastic heat equation (SHE)

∂tZ(x, t) = ∂2
xZ(x, t) +

√
2Z(x, t)ξ(x, t), x ∈ [0, L] (2)

in the Ito sense, with Robin boundary conditions

∂xZ(x, t)|x=0 = AZ(0, t), ∂xZ(x, t)|x=L = −BZ(L, t),
(3)

and it will be convenient to define boundary parameters
u = A + 1/2 and v = B + 1/2. Although Z(x, t), t > 0,

1The limit from ASEP to KPZ was previously investigated in
[19]. Remark 2.11 therein explains how to rescale ASEP boundary
parameters to obtain the boundary conditions for the KPZ equation.

2The units chosen in [18] amount to rescaling our time as t → 2t,
immaterial in the steady state.

is not differentiable, the standard way to understand (3)
is to impose these conditions on the heat kernel [19], or
through a path integral as in [37, 38]. For the DP, A > 0
corresponds to a repulsive wall and A < 0 an attractive
one, and similarly for B at x = L.

Main result. – Our main result is the prediction that
the KPZ random height profile in the stationary state,
denoted {H(x)}x∈[0,L], can be written as the sum of two
independent random fields

H(x) − H(0) =
1√
2

W (x) + X(x) (4)

where W (x) is a one sided Brownian motion (i.e. with
W (0) = 0 and W (L) free) and the probability distribution
of the process X(x) is given by the path integral measure

DX

Zu,v
e

−
∫

L

0
dx( dX(x)

dx
)2

e−2vX(L)

(∫ L

0
dx e−2X(x)

)−(u+v)

(5)
with X(0) = 0 and X(L) free, and Zu,v a normalization
such that Z0,0 = 1. For the choice v = −u, H(x) + vx is
thus simply a standard Brownian motion. The Brownian
motion with drift u is also stationary for the half-space
KPZ equation [16], and on the segment it arises only when
the two boundary conditions are compatible.

In mathematical terms, X is a continuous stochastic
process on [0, L] whose measure PX is absolutely contin-
uous with respect to that of a Brownian motion with dif-
fusion coefficient 1/2, denoted PB, with Radon-Nikodym
derivative dPX

dPB
= 1

Zu,v
e−Eu,v(X) where

Eu,v(X) =

u log

(∫ L

0
dxe−2X(x)

)

+ v log

(∫ L

0
dxe2X(L)−2X(x)

)

.

(6)

This is a mere reformulation of (5) in a more symmetric
form so that it becomes apparent that the process is left
invariant after reversing space and exchanging u, v. This
reformulation simply means that for any continuous and
bounded functional F of the process X = {X(x)}x∈[0,L],

EX [F (X)] =
1

Zu,v
EB

[
F (B) e−Eu,v(B)

]
, (7)

where in the R.H.S., B = {B(x)}x∈[0,L] is a Brownian mo-
tion with diffusion coefficient 1/2. Surprisingly the mea-
sure defined here in (5) as the steady state of the KPZ
equation has been already introduced and studied in a
work of Hariya and Yor in a different context [39]. We
will use some of their results below.

Liouville quantum mechanics. – The Liouville
Hamiltonian Ĥ on the real axis U ∈ R is defined as

Ĥ = −
1

4

d2

dU2
+ e−2U (8)
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corresponds to the KPZ equation limit1 of formulas with
a similar structure obtained in [20] of formulas with a simi-
lar structure obtained in [20] for the stationary measure of
ASEP. However, obtaining a characterization of the pro-
cess allowing to study properties of the stationary measure
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cated Laplace transforms in [18].
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and we study the stationary measures of the KPZ equa-
tion on a half-line and their large scale limits. We unveil
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mechanics (LQM), i.e. the Schrodinger equation in an
exponential potential. The LQM, which is the 1D limit
of the 2D Liouville field theory, notably allows to study
the statistics of exponential functionals of the Brownian
motion, see [21] for a short review. As such, it appears
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dom media [21–27], multifractal eigenfunctions of random
Schrodinger and Dirac operators [21, 28–31], diffusion in
the hyperbolic plane [32–34], and more recently, and strik-
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LQM was recently used to obtain multipoint observables
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Mat. in [17]).

Model. – The KPZ equation for the height field
h(x, t) reads

∂th(x, t) = ν∂2
xh +

λ

2
(∂xh)2 +

√
Dξ(x, t) (1)

where ξ(x, t) is a standard space-time white noise. We use
space-time units so that ν = 1 and λ = D = 2 2. Here
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√
2ξ(x, t). It
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∂tZ(x, t) = ∂2
xZ(x, t) +

√
2Z(x, t)ξ(x, t), x ∈ [0, L] (2)
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∂xZ(x, t)|x=0 = AZ(0, t), ∂xZ(x, t)|x=L = −BZ(L, t),
(3)

and it will be convenient to define boundary parameters
u = A + 1/2 and v = B + 1/2. Although Z(x, t), t > 0,

1The limit from ASEP to KPZ was previously investigated in
[19]. Remark 2.11 therein explains how to rescale ASEP boundary
parameters to obtain the boundary conditions for the KPZ equation.

2The units chosen in [18] amount to rescaling our time as t → 2t,
immaterial in the steady state.

is not differentiable, the standard way to understand (3)
is to impose these conditions on the heat kernel [19], or
through a path integral as in [37, 38]. For the DP, A > 0
corresponds to a repulsive wall and A < 0 an attractive
one, and similarly for B at x = L.

Main result. – Our main result is the prediction that
the KPZ random height profile in the stationary state,
denoted {H(x)}x∈[0,L], can be written as the sum of two
independent random fields

H(x) − H(0) =
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W (x) + X(x) (4)

where W (x) is a one sided Brownian motion (i.e. with
W (0) = 0 and W (L) free) and the probability distribution
of the process X(x) is given by the path integral measure
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with X(0) = 0 and X(L) free, and Zu,v a normalization
such that Z0,0 = 1. For the choice v = −u, H(x) + vx is
thus simply a standard Brownian motion. The Brownian
motion with drift u is also stationary for the half-space
KPZ equation [16], and on the segment it arises only when
the two boundary conditions are compatible.

In mathematical terms, X is a continuous stochastic
process on [0, L] whose measure PX is absolutely contin-
uous with respect to that of a Brownian motion with dif-
fusion coefficient 1/2, denoted PB, with Radon-Nikodym
derivative dPX

dPB
= 1
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e−Eu,v(X) where

Eu,v(X) =

u log

(∫ L

0
dxe−2X(x)

)

+ v log
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0
dxe2X(L)−2X(x)

)

.

(6)

This is a mere reformulation of (5) in a more symmetric
form so that it becomes apparent that the process is left
invariant after reversing space and exchanging u, v. This
reformulation simply means that for any continuous and
bounded functional F of the process X = {X(x)}x∈[0,L],

EX [F (X)] =
1

Zu,v
EB

[
F (B) e−Eu,v(B)

]
, (7)

where in the R.H.S., B = {B(x)}x∈[0,L] is a Brownian mo-
tion with diffusion coefficient 1/2. Surprisingly the mea-
sure defined here in (5) as the steady state of the KPZ
equation has been already introduced and studied in a
work of Hariya and Yor in a different context [39]. We
will use some of their results below.

Liouville quantum mechanics. – The Liouville
Hamiltonian Ĥ on the real axis U ∈ R is defined as

Ĥ = −
1

4

d2

dU2
+ e−2U (8)
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weighted by ZL[X ]−(u+v), where ZL[X ] =
∫ L

0 dxe−2X(x).
We may rewrite (7), up to a renormalisation, as

EB−v

[
F (B−v)ZL[B−v]−(u+v)

]
, (33)

where B−v denotes a Brownian with drift −v and diffusion
coefficient 1/2. It is well-known that ZL[B−v] converges as
L → ∞ to a finite random variable Z∞[B−v] distributed
as an inverse Gamma law with shape parameter −2v [22,
44], which becomes asymptotically independent from the
rescaled process X̃. In order for Z∞[B−v]−(u+v) to have a
finite expectation, we need to assume that −(u+v) < −2v,
that is u > v. Thus, we are considering the whole high
density phase in Fig. 1. At this point, we find that the
resulting measure for H̃(x̃)+v

√
Lx̃ is simply the standard

Brownian motion. In the low density phase where u < 0
and v > u (see Figure 1), we deduce by symmetry that the
limiting stationary process is a standard Brownian motion
with drift u

√
L.

Half-line KPZ equation. – Consider the KPZ equa-
tion (1) in R+, with boundary parameter u at x = 0. The
stationary measures of the height field can be computed
as the L → ∞ limit of the stationary measures defined in
(4) and (5) and depending on parameters u, v. It turns
out that this limit was studied in [39] (see also the review
[45]). We will make considerable use of these results here.
The set of stationary measures obtained in the L → ∞
limit always depend on the boundary parameter u, and
sometimes depend on the parameter v. When this is the
case v can be interpreted as minus the average drift of the
process at infinity (see below).

In the low density phase (u ! 0, v " u), the station-
ary measure (4) simply converge as L → ∞ to a stan-
dard Brownian motion with drift u [39] (so that the limit
does not depend on v). In the maximal current phase
(u " 0, v " 0), the stationary measures converge [39] to a
distribution that we denote HY(0)

γu
– the letters HY stand

for Hariya-Yor. This is the distribution of the process

H(x) = B(1)(x)+B(2)(x)+log

(
1 + γu

∫ x

0
e−2B(2)(z)dz

)
,

(34)
where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu is an indepen-
dent Gamma random variable with shape parameter u.
Again, the limit does not depend on v. In the high-density
phase (v ! 0, u " v), the stationary measures converge
[39] to a distribution that we denote HY(−v)

γu−v
. This is the

distribution of the process

H(x) = B(1)(x) + B(2)(x) + vx

+ log

(
1 + γu−v

∫ x

0
e−2B(2)(z)−2vzdz

)
, (35)

where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu−v is an indepen-
dent Gamma random variable with shape parameter u−v.

v
drift

parameter

u
boundary parameter

0

0

Standard Brownian

motion with drift u

HY(−v)
γu−v

defined in (35)

HY(0)
γu

defined in (34)

Fig. 2: Phase diagram of stationary measures for the KPZ
equation in the half-space R+ with boundary parameter u. The
diagram means that if the initial condition has drift −v at
infinity, the height field should converge at large time under
mild assumptions to the stationary measure indicated in one
of the three regions of the (u, v) plane. In particular, if u ! 0
and the drift at infinity is 0, which includes the flat initial data,
the height field will converge to a Brownian motion with drift
u, as predicted in [17]. Along the antidiagonal line u = −v,
the stationary measure is always a Brownian motion with drift
u, see [42].

In this phase, the limit depends on v, and we remark that
the drift at infinity of the process (35) is −v (in the sense
that H(x) − H(0) % −vx when x → +∞).

We expect that for a large class of initial conditions with
drift at infinity equal to −v, the height field will converge
at large time (modulo a global shift) to one of the station-
ary measures that we have just described, according to the
phase diagram in Figure 2. This prediction is based on an
analogous convergence result at large time for ASEP on
a half-line proved in [11], though the stationary measures
were explicitly described much later [13, 46].

Large-scale limit. Now that we have described the
stationary measures of the KPZ equation on a half-line,
it would be interesting to consider their large scale limit
as x goes to infinity. The processes obtained in this limit
should be understood as stationary measures of the half-
space KPZ fixed point, that is the universal process arising
as scaling limit of all half-space models in the KPZ class.
In particular, we conjecture that the large scale limit of
half-line ASEP stationary measures [46] do converge to the
same limit at large scale. Note that this half-space KPZ
fixed point has not been defined rigorously (unlike the
full-space situation), but its multipoint distributions for
some initial conditions are known [47,48]. The large scale
limit of half-line KPZ equation stationary measures are
described in the phase diagram of Fig. 3. We will let x →
+∞ and define H̃(y) = 1√

x
H(xy) and scale the boundary

parameter as u = ũ√
x

. In the low-density phase, clearly,

the Brownian motion with drift u becomes a Brownian
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weighted by ZL[X ]−(u+v), where ZL[X ] =
∫ L

0 dxe−2X(x).
We may rewrite (7), up to a renormalisation, as

EB−v

[
F (B−v)ZL[B−v]−(u+v)

]
, (33)

where B−v denotes a Brownian with drift −v and diffusion
coefficient 1/2. It is well-known that ZL[B−v] converges as
L → ∞ to a finite random variable Z∞[B−v] distributed
as an inverse Gamma law with shape parameter −2v [22,
44], which becomes asymptotically independent from the
rescaled process X̃. In order for Z∞[B−v]−(u+v) to have a
finite expectation, we need to assume that −(u+v) < −2v,
that is u > v. Thus, we are considering the whole high
density phase in Fig. 1. At this point, we find that the
resulting measure for H̃(x̃)+v

√
Lx̃ is simply the standard

Brownian motion. In the low density phase where u < 0
and v > u (see Figure 1), we deduce by symmetry that the
limiting stationary process is a standard Brownian motion
with drift u

√
L.

Half-line KPZ equation. – Consider the KPZ equa-
tion (1) in R+, with boundary parameter u at x = 0. The
stationary measures of the height field can be computed
as the L → ∞ limit of the stationary measures defined in
(4) and (5) and depending on parameters u, v. It turns
out that this limit was studied in [39] (see also the review
[45]). We will make considerable use of these results here.
The set of stationary measures obtained in the L → ∞
limit always depend on the boundary parameter u, and
sometimes depend on the parameter v. When this is the
case v can be interpreted as minus the average drift of the
process at infinity (see below).

In the low density phase (u ! 0, v " u), the station-
ary measure (4) simply converge as L → ∞ to a stan-
dard Brownian motion with drift u [39] (so that the limit
does not depend on v). In the maximal current phase
(u " 0, v " 0), the stationary measures converge [39] to a
distribution that we denote HY(0)

γu
– the letters HY stand

for Hariya-Yor. This is the distribution of the process

H(x) = B(1)(x)+B(2)(x)+log

(
1 + γu

∫ x

0
e−2B(2)(z)dz

)
,

(34)
where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu is an indepen-
dent Gamma random variable with shape parameter u.
Again, the limit does not depend on v. In the high-density
phase (v ! 0, u " v), the stationary measures converge
[39] to a distribution that we denote HY(−v)

γu−v
. This is the

distribution of the process

H(x) = B(1)(x) + B(2)(x) + vx

+ log

(
1 + γu−v

∫ x

0
e−2B(2)(z)−2vzdz

)
, (35)

where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu−v is an indepen-
dent Gamma random variable with shape parameter u−v.
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Fig. 2: Phase diagram of stationary measures for the KPZ
equation in the half-space R+ with boundary parameter u. The
diagram means that if the initial condition has drift −v at
infinity, the height field should converge at large time under
mild assumptions to the stationary measure indicated in one
of the three regions of the (u, v) plane. In particular, if u ! 0
and the drift at infinity is 0, which includes the flat initial data,
the height field will converge to a Brownian motion with drift
u, as predicted in [17]. Along the antidiagonal line u = −v,
the stationary measure is always a Brownian motion with drift
u, see [42].

In this phase, the limit depends on v, and we remark that
the drift at infinity of the process (35) is −v (in the sense
that H(x) − H(0) % −vx when x → +∞).

We expect that for a large class of initial conditions with
drift at infinity equal to −v, the height field will converge
at large time (modulo a global shift) to one of the station-
ary measures that we have just described, according to the
phase diagram in Figure 2. This prediction is based on an
analogous convergence result at large time for ASEP on
a half-line proved in [11], though the stationary measures
were explicitly described much later [13, 46].

Large-scale limit. Now that we have described the
stationary measures of the KPZ equation on a half-line,
it would be interesting to consider their large scale limit
as x goes to infinity. The processes obtained in this limit
should be understood as stationary measures of the half-
space KPZ fixed point, that is the universal process arising
as scaling limit of all half-space models in the KPZ class.
In particular, we conjecture that the large scale limit of
half-line ASEP stationary measures [46] do converge to the
same limit at large scale. Note that this half-space KPZ
fixed point has not been defined rigorously (unlike the
full-space situation), but its multipoint distributions for
some initial conditions are known [47,48]. The large scale
limit of half-line KPZ equation stationary measures are
described in the phase diagram of Fig. 3. We will let x →
+∞ and define H̃(y) = 1√

x
H(xy) and scale the boundary

parameter as u = ũ√
x

. In the low-density phase, clearly,

the Brownian motion with drift u becomes a Brownian
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weighted by ZL[X ]−(u+v), where ZL[X ] =
∫ L

0 dxe−2X(x).
We may rewrite (7), up to a renormalisation, as

EB−v

[
F (B−v)ZL[B−v]−(u+v)

]
, (33)

where B−v denotes a Brownian with drift −v and diffusion
coefficient 1/2. It is well-known that ZL[B−v] converges as
L → ∞ to a finite random variable Z∞[B−v] distributed
as an inverse Gamma law with shape parameter −2v [22,
44], which becomes asymptotically independent from the
rescaled process X̃. In order for Z∞[B−v]−(u+v) to have a
finite expectation, we need to assume that −(u+v) < −2v,
that is u > v. Thus, we are considering the whole high
density phase in Fig. 1. At this point, we find that the
resulting measure for H̃(x̃)+v

√
Lx̃ is simply the standard

Brownian motion. In the low density phase where u < 0
and v > u (see Figure 1), we deduce by symmetry that the
limiting stationary process is a standard Brownian motion
with drift u

√
L.

Half-line KPZ equation. – Consider the KPZ equa-
tion (1) in R+, with boundary parameter u at x = 0. The
stationary measures of the height field can be computed
as the L → ∞ limit of the stationary measures defined in
(4) and (5) and depending on parameters u, v. It turns
out that this limit was studied in [39] (see also the review
[45]). We will make considerable use of these results here.
The set of stationary measures obtained in the L → ∞
limit always depend on the boundary parameter u, and
sometimes depend on the parameter v. When this is the
case v can be interpreted as minus the average drift of the
process at infinity (see below).

In the low density phase (u ! 0, v " u), the station-
ary measure (4) simply converge as L → ∞ to a stan-
dard Brownian motion with drift u [39] (so that the limit
does not depend on v). In the maximal current phase
(u " 0, v " 0), the stationary measures converge [39] to a
distribution that we denote HY(0)

γu
– the letters HY stand

for Hariya-Yor. This is the distribution of the process

H(x) = B(1)(x)+B(2)(x)+log

(
1 + γu

∫ x

0
e−2B(2)(z)dz

)
,

(34)
where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu is an indepen-
dent Gamma random variable with shape parameter u.
Again, the limit does not depend on v. In the high-density
phase (v ! 0, u " v), the stationary measures converge
[39] to a distribution that we denote HY(−v)

γu−v
. This is the

distribution of the process

H(x) = B(1)(x) + B(2)(x) + vx

+ log

(
1 + γu−v
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)
, (35)

where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu−v is an indepen-
dent Gamma random variable with shape parameter u−v.
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equation in the half-space R+ with boundary parameter u. The
diagram means that if the initial condition has drift −v at
infinity, the height field should converge at large time under
mild assumptions to the stationary measure indicated in one
of the three regions of the (u, v) plane. In particular, if u ! 0
and the drift at infinity is 0, which includes the flat initial data,
the height field will converge to a Brownian motion with drift
u, as predicted in [17]. Along the antidiagonal line u = −v,
the stationary measure is always a Brownian motion with drift
u, see [42].

In this phase, the limit depends on v, and we remark that
the drift at infinity of the process (35) is −v (in the sense
that H(x) − H(0) % −vx when x → +∞).

We expect that for a large class of initial conditions with
drift at infinity equal to −v, the height field will converge
at large time (modulo a global shift) to one of the station-
ary measures that we have just described, according to the
phase diagram in Figure 2. This prediction is based on an
analogous convergence result at large time for ASEP on
a half-line proved in [11], though the stationary measures
were explicitly described much later [13, 46].

Large-scale limit. Now that we have described the
stationary measures of the KPZ equation on a half-line,
it would be interesting to consider their large scale limit
as x goes to infinity. The processes obtained in this limit
should be understood as stationary measures of the half-
space KPZ fixed point, that is the universal process arising
as scaling limit of all half-space models in the KPZ class.
In particular, we conjecture that the large scale limit of
half-line ASEP stationary measures [46] do converge to the
same limit at large scale. Note that this half-space KPZ
fixed point has not been defined rigorously (unlike the
full-space situation), but its multipoint distributions for
some initial conditions are known [47,48]. The large scale
limit of half-line KPZ equation stationary measures are
described in the phase diagram of Fig. 3. We will let x →
+∞ and define H̃(y) = 1√

x
H(xy) and scale the boundary

parameter as u = ũ√
x

. In the low-density phase, clearly,

the Brownian motion with drift u becomes a Brownian
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weighted by ZL[X ]−(u+v), where ZL[X ] =
∫ L

0 dxe−2X(x).
We may rewrite (7), up to a renormalisation, as

EB−v

[
F (B−v)ZL[B−v]−(u+v)

]
, (33)

where B−v denotes a Brownian with drift −v and diffusion
coefficient 1/2. It is well-known that ZL[B−v] converges as
L → ∞ to a finite random variable Z∞[B−v] distributed
as an inverse Gamma law with shape parameter −2v [22,
44], which becomes asymptotically independent from the
rescaled process X̃. In order for Z∞[B−v]−(u+v) to have a
finite expectation, we need to assume that −(u+v) < −2v,
that is u > v. Thus, we are considering the whole high
density phase in Fig. 1. At this point, we find that the
resulting measure for H̃(x̃)+v

√
Lx̃ is simply the standard

Brownian motion. In the low density phase where u < 0
and v > u (see Figure 1), we deduce by symmetry that the
limiting stationary process is a standard Brownian motion
with drift u

√
L.

Half-line KPZ equation. – Consider the KPZ equa-
tion (1) in R+, with boundary parameter u at x = 0. The
stationary measures of the height field can be computed
as the L → ∞ limit of the stationary measures defined in
(4) and (5) and depending on parameters u, v. It turns
out that this limit was studied in [39] (see also the review
[45]). We will make considerable use of these results here.
The set of stationary measures obtained in the L → ∞
limit always depend on the boundary parameter u, and
sometimes depend on the parameter v. When this is the
case v can be interpreted as minus the average drift of the
process at infinity (see below).

In the low density phase (u ! 0, v " u), the station-
ary measure (4) simply converge as L → ∞ to a stan-
dard Brownian motion with drift u [39] (so that the limit
does not depend on v). In the maximal current phase
(u " 0, v " 0), the stationary measures converge [39] to a
distribution that we denote HY(0)

γu
– the letters HY stand

for Hariya-Yor. This is the distribution of the process

H(x) = B(1)(x)+B(2)(x)+log

(
1 + γu

∫ x

0
e−2B(2)(z)dz

)
,

(34)
where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu is an indepen-
dent Gamma random variable with shape parameter u.
Again, the limit does not depend on v. In the high-density
phase (v ! 0, u " v), the stationary measures converge
[39] to a distribution that we denote HY(−v)

γu−v
. This is the

distribution of the process

H(x) = B(1)(x) + B(2)(x) + vx

+ log

(
1 + γu−v

∫ x

0
e−2B(2)(z)−2vzdz

)
, (35)

where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu−v is an indepen-
dent Gamma random variable with shape parameter u−v.
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Fig. 2: Phase diagram of stationary measures for the KPZ
equation in the half-space R+ with boundary parameter u. The
diagram means that if the initial condition has drift −v at
infinity, the height field should converge at large time under
mild assumptions to the stationary measure indicated in one
of the three regions of the (u, v) plane. In particular, if u ! 0
and the drift at infinity is 0, which includes the flat initial data,
the height field will converge to a Brownian motion with drift
u, as predicted in [17]. Along the antidiagonal line u = −v,
the stationary measure is always a Brownian motion with drift
u, see [42].

In this phase, the limit depends on v, and we remark that
the drift at infinity of the process (35) is −v (in the sense
that H(x) − H(0) % −vx when x → +∞).

We expect that for a large class of initial conditions with
drift at infinity equal to −v, the height field will converge
at large time (modulo a global shift) to one of the station-
ary measures that we have just described, according to the
phase diagram in Figure 2. This prediction is based on an
analogous convergence result at large time for ASEP on
a half-line proved in [11], though the stationary measures
were explicitly described much later [13, 46].

Large-scale limit. Now that we have described the
stationary measures of the KPZ equation on a half-line,
it would be interesting to consider their large scale limit
as x goes to infinity. The processes obtained in this limit
should be understood as stationary measures of the half-
space KPZ fixed point, that is the universal process arising
as scaling limit of all half-space models in the KPZ class.
In particular, we conjecture that the large scale limit of
half-line ASEP stationary measures [46] do converge to the
same limit at large scale. Note that this half-space KPZ
fixed point has not been defined rigorously (unlike the
full-space situation), but its multipoint distributions for
some initial conditions are known [47,48]. The large scale
limit of half-line KPZ equation stationary measures are
described in the phase diagram of Fig. 3. We will let x →
+∞ and define H̃(y) = 1√

x
H(xy) and scale the boundary

parameter as u = ũ√
x

. In the low-density phase, clearly,

the Brownian motion with drift u becomes a Brownian
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weighted by ZL[X ]−(u+v), where ZL[X ] =
∫ L

0 dxe−2X(x).
We may rewrite (7), up to a renormalisation, as

EB−v

[
F (B−v)ZL[B−v]−(u+v)

]
, (33)

where B−v denotes a Brownian with drift −v and diffusion
coefficient 1/2. It is well-known that ZL[B−v] converges as
L → ∞ to a finite random variable Z∞[B−v] distributed
as an inverse Gamma law with shape parameter −2v [22,
44], which becomes asymptotically independent from the
rescaled process X̃. In order for Z∞[B−v]−(u+v) to have a
finite expectation, we need to assume that −(u+v) < −2v,
that is u > v. Thus, we are considering the whole high
density phase in Fig. 1. At this point, we find that the
resulting measure for H̃(x̃)+v

√
Lx̃ is simply the standard

Brownian motion. In the low density phase where u < 0
and v > u (see Figure 1), we deduce by symmetry that the
limiting stationary process is a standard Brownian motion
with drift u

√
L.

Half-line KPZ equation. – Consider the KPZ equa-
tion (1) in R+, with boundary parameter u at x = 0. The
stationary measures of the height field can be computed
as the L → ∞ limit of the stationary measures defined in
(4) and (5) and depending on parameters u, v. It turns
out that this limit was studied in [39] (see also the review
[45]). We will make considerable use of these results here.
The set of stationary measures obtained in the L → ∞
limit always depend on the boundary parameter u, and
sometimes depend on the parameter v. When this is the
case v can be interpreted as minus the average drift of the
process at infinity (see below).

In the low density phase (u ! 0, v " u), the station-
ary measure (4) simply converge as L → ∞ to a stan-
dard Brownian motion with drift u [39] (so that the limit
does not depend on v). In the maximal current phase
(u " 0, v " 0), the stationary measures converge [39] to a
distribution that we denote HY(0)

γu
– the letters HY stand

for Hariya-Yor. This is the distribution of the process

H(x) = B(1)(x)+B(2)(x)+log

(
1 + γu

∫ x

0
e−2B(2)(z)dz

)
,

(34)
where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu is an indepen-
dent Gamma random variable with shape parameter u.
Again, the limit does not depend on v. In the high-density
phase (v ! 0, u " v), the stationary measures converge
[39] to a distribution that we denote HY(−v)

γu−v
. This is the

distribution of the process

H(x) = B(1)(x) + B(2)(x) + vx

+ log

(
1 + γu−v

∫ x

0
e−2B(2)(z)−2vzdz

)
, (35)

where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu−v is an indepen-
dent Gamma random variable with shape parameter u−v.
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Fig. 2: Phase diagram of stationary measures for the KPZ
equation in the half-space R+ with boundary parameter u. The
diagram means that if the initial condition has drift −v at
infinity, the height field should converge at large time under
mild assumptions to the stationary measure indicated in one
of the three regions of the (u, v) plane. In particular, if u ! 0
and the drift at infinity is 0, which includes the flat initial data,
the height field will converge to a Brownian motion with drift
u, as predicted in [17]. Along the antidiagonal line u = −v,
the stationary measure is always a Brownian motion with drift
u, see [42].

In this phase, the limit depends on v, and we remark that
the drift at infinity of the process (35) is −v (in the sense
that H(x) − H(0) % −vx when x → +∞).

We expect that for a large class of initial conditions with
drift at infinity equal to −v, the height field will converge
at large time (modulo a global shift) to one of the station-
ary measures that we have just described, according to the
phase diagram in Figure 2. This prediction is based on an
analogous convergence result at large time for ASEP on
a half-line proved in [11], though the stationary measures
were explicitly described much later [13, 46].

Large-scale limit. Now that we have described the
stationary measures of the KPZ equation on a half-line,
it would be interesting to consider their large scale limit
as x goes to infinity. The processes obtained in this limit
should be understood as stationary measures of the half-
space KPZ fixed point, that is the universal process arising
as scaling limit of all half-space models in the KPZ class.
In particular, we conjecture that the large scale limit of
half-line ASEP stationary measures [46] do converge to the
same limit at large scale. Note that this half-space KPZ
fixed point has not been defined rigorously (unlike the
full-space situation), but its multipoint distributions for
some initial conditions are known [47,48]. The large scale
limit of half-line KPZ equation stationary measures are
described in the phase diagram of Fig. 3. We will let x →
+∞ and define H̃(y) = 1√

x
H(xy) and scale the boundary

parameter as u = ũ√
x

. In the low-density phase, clearly,

the Brownian motion with drift u becomes a Brownian
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weighted by ZL[X ]−(u+v), where ZL[X ] =
∫ L

0 dxe−2X(x).
We may rewrite (7), up to a renormalisation, as

EB−v

[
F (B−v)ZL[B−v]−(u+v)

]
, (33)

where B−v denotes a Brownian with drift −v and diffusion
coefficient 1/2. It is well-known that ZL[B−v] converges as
L → ∞ to a finite random variable Z∞[B−v] distributed
as an inverse Gamma law with shape parameter −2v [22,
44], which becomes asymptotically independent from the
rescaled process X̃. In order for Z∞[B−v]−(u+v) to have a
finite expectation, we need to assume that −(u+v) < −2v,
that is u > v. Thus, we are considering the whole high
density phase in Fig. 1. At this point, we find that the
resulting measure for H̃(x̃)+v

√
Lx̃ is simply the standard

Brownian motion. In the low density phase where u < 0
and v > u (see Figure 1), we deduce by symmetry that the
limiting stationary process is a standard Brownian motion
with drift u

√
L.

Half-line KPZ equation. – Consider the KPZ equa-
tion (1) in R+, with boundary parameter u at x = 0. The
stationary measures of the height field can be computed
as the L → ∞ limit of the stationary measures defined in
(4) and (5) and depending on parameters u, v. It turns
out that this limit was studied in [39] (see also the review
[45]). We will make considerable use of these results here.
The set of stationary measures obtained in the L → ∞
limit always depend on the boundary parameter u, and
sometimes depend on the parameter v. When this is the
case v can be interpreted as minus the average drift of the
process at infinity (see below).

In the low density phase (u ! 0, v " u), the station-
ary measure (4) simply converge as L → ∞ to a stan-
dard Brownian motion with drift u [39] (so that the limit
does not depend on v). In the maximal current phase
(u " 0, v " 0), the stationary measures converge [39] to a
distribution that we denote HY(0)

γu
– the letters HY stand

for Hariya-Yor. This is the distribution of the process

H(x) = B(1)(x)+B(2)(x)+log

(
1 + γu

∫ x

0
e−2B(2)(z)dz

)
,

(34)
where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu is an indepen-
dent Gamma random variable with shape parameter u.
Again, the limit does not depend on v. In the high-density
phase (v ! 0, u " v), the stationary measures converge
[39] to a distribution that we denote HY(−v)

γu−v
. This is the

distribution of the process

H(x) = B(1)(x) + B(2)(x) + vx

+ log

(
1 + γu−v

∫ x

0
e−2B(2)(z)−2vzdz

)
, (35)

where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu−v is an indepen-
dent Gamma random variable with shape parameter u−v.

v
drift

parameter

u
boundary parameter

0

0

Standard Brownian

motion with drift u

HY(−v)
γu−v

defined in (35)

HY(0)
γu

defined in (34)

Fig. 2: Phase diagram of stationary measures for the KPZ
equation in the half-space R+ with boundary parameter u. The
diagram means that if the initial condition has drift −v at
infinity, the height field should converge at large time under
mild assumptions to the stationary measure indicated in one
of the three regions of the (u, v) plane. In particular, if u ! 0
and the drift at infinity is 0, which includes the flat initial data,
the height field will converge to a Brownian motion with drift
u, as predicted in [17]. Along the antidiagonal line u = −v,
the stationary measure is always a Brownian motion with drift
u, see [42].

In this phase, the limit depends on v, and we remark that
the drift at infinity of the process (35) is −v (in the sense
that H(x) − H(0) % −vx when x → +∞).

We expect that for a large class of initial conditions with
drift at infinity equal to −v, the height field will converge
at large time (modulo a global shift) to one of the station-
ary measures that we have just described, according to the
phase diagram in Figure 2. This prediction is based on an
analogous convergence result at large time for ASEP on
a half-line proved in [11], though the stationary measures
were explicitly described much later [13, 46].

Large-scale limit. Now that we have described the
stationary measures of the KPZ equation on a half-line,
it would be interesting to consider their large scale limit
as x goes to infinity. The processes obtained in this limit
should be understood as stationary measures of the half-
space KPZ fixed point, that is the universal process arising
as scaling limit of all half-space models in the KPZ class.
In particular, we conjecture that the large scale limit of
half-line ASEP stationary measures [46] do converge to the
same limit at large scale. Note that this half-space KPZ
fixed point has not been defined rigorously (unlike the
full-space situation), but its multipoint distributions for
some initial conditions are known [47,48]. The large scale
limit of half-line KPZ equation stationary measures are
described in the phase diagram of Fig. 3. We will let x →
+∞ and define H̃(y) = 1√

x
H(xy) and scale the boundary

parameter as u = ũ√
x

. In the low-density phase, clearly,

the Brownian motion with drift u becomes a Brownian
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weighted by ZL[X ]−(u+v), where ZL[X ] =
∫ L

0 dxe−2X(x).
We may rewrite (7), up to a renormalisation, as

EB−v

[
F (B−v)ZL[B−v]−(u+v)

]
, (33)

where B−v denotes a Brownian with drift −v and diffusion
coefficient 1/2. It is well-known that ZL[B−v] converges as
L → ∞ to a finite random variable Z∞[B−v] distributed
as an inverse Gamma law with shape parameter −2v [22,
44], which becomes asymptotically independent from the
rescaled process X̃. In order for Z∞[B−v]−(u+v) to have a
finite expectation, we need to assume that −(u+v) < −2v,
that is u > v. Thus, we are considering the whole high
density phase in Fig. 1. At this point, we find that the
resulting measure for H̃(x̃)+v

√
Lx̃ is simply the standard

Brownian motion. In the low density phase where u < 0
and v > u (see Figure 1), we deduce by symmetry that the
limiting stationary process is a standard Brownian motion
with drift u

√
L.

Half-line KPZ equation. – Consider the KPZ equa-
tion (1) in R+, with boundary parameter u at x = 0. The
stationary measures of the height field can be computed
as the L → ∞ limit of the stationary measures defined in
(4) and (5) and depending on parameters u, v. It turns
out that this limit was studied in [39] (see also the review
[45]). We will make considerable use of these results here.
The set of stationary measures obtained in the L → ∞
limit always depend on the boundary parameter u, and
sometimes depend on the parameter v. When this is the
case v can be interpreted as minus the average drift of the
process at infinity (see below).

In the low density phase (u ! 0, v " u), the station-
ary measure (4) simply converge as L → ∞ to a stan-
dard Brownian motion with drift u [39] (so that the limit
does not depend on v). In the maximal current phase
(u " 0, v " 0), the stationary measures converge [39] to a
distribution that we denote HY(0)

γu
– the letters HY stand

for Hariya-Yor. This is the distribution of the process

H(x) = B(1)(x)+B(2)(x)+log

(
1 + γu

∫ x

0
e−2B(2)(z)dz

)
,

(34)
where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu is an indepen-
dent Gamma random variable with shape parameter u.
Again, the limit does not depend on v. In the high-density
phase (v ! 0, u " v), the stationary measures converge
[39] to a distribution that we denote HY(−v)

γu−v
. This is the

distribution of the process

H(x) = B(1)(x) + B(2)(x) + vx

+ log

(
1 + γu−v

∫ x

0
e−2B(2)(z)−2vzdz

)
, (35)

where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu−v is an indepen-
dent Gamma random variable with shape parameter u−v.
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Fig. 2: Phase diagram of stationary measures for the KPZ
equation in the half-space R+ with boundary parameter u. The
diagram means that if the initial condition has drift −v at
infinity, the height field should converge at large time under
mild assumptions to the stationary measure indicated in one
of the three regions of the (u, v) plane. In particular, if u ! 0
and the drift at infinity is 0, which includes the flat initial data,
the height field will converge to a Brownian motion with drift
u, as predicted in [17]. Along the antidiagonal line u = −v,
the stationary measure is always a Brownian motion with drift
u, see [42].

In this phase, the limit depends on v, and we remark that
the drift at infinity of the process (35) is −v (in the sense
that H(x) − H(0) % −vx when x → +∞).

We expect that for a large class of initial conditions with
drift at infinity equal to −v, the height field will converge
at large time (modulo a global shift) to one of the station-
ary measures that we have just described, according to the
phase diagram in Figure 2. This prediction is based on an
analogous convergence result at large time for ASEP on
a half-line proved in [11], though the stationary measures
were explicitly described much later [13, 46].

Large-scale limit. Now that we have described the
stationary measures of the KPZ equation on a half-line,
it would be interesting to consider their large scale limit
as x goes to infinity. The processes obtained in this limit
should be understood as stationary measures of the half-
space KPZ fixed point, that is the universal process arising
as scaling limit of all half-space models in the KPZ class.
In particular, we conjecture that the large scale limit of
half-line ASEP stationary measures [46] do converge to the
same limit at large scale. Note that this half-space KPZ
fixed point has not been defined rigorously (unlike the
full-space situation), but its multipoint distributions for
some initial conditions are known [47,48]. The large scale
limit of half-line KPZ equation stationary measures are
described in the phase diagram of Fig. 3. We will let x →
+∞ and define H̃(y) = 1√

x
H(xy) and scale the boundary

parameter as u = ũ√
x

. In the low-density phase, clearly,

the Brownian motion with drift u becomes a Brownian
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weighted by ZL[X ]−(u+v), where ZL[X ] =
∫ L

0 dxe−2X(x).
We may rewrite (7), up to a renormalisation, as

EB−v

[
F (B−v)ZL[B−v]−(u+v)

]
, (33)

where B−v denotes a Brownian with drift −v and diffusion
coefficient 1/2. It is well-known that ZL[B−v] converges as
L → ∞ to a finite random variable Z∞[B−v] distributed
as an inverse Gamma law with shape parameter −2v [22,
44], which becomes asymptotically independent from the
rescaled process X̃. In order for Z∞[B−v]−(u+v) to have a
finite expectation, we need to assume that −(u+v) < −2v,
that is u > v. Thus, we are considering the whole high
density phase in Fig. 1. At this point, we find that the
resulting measure for H̃(x̃)+v

√
Lx̃ is simply the standard

Brownian motion. In the low density phase where u < 0
and v > u (see Figure 1), we deduce by symmetry that the
limiting stationary process is a standard Brownian motion
with drift u

√
L.

Half-line KPZ equation. – Consider the KPZ equa-
tion (1) in R+, with boundary parameter u at x = 0. The
stationary measures of the height field can be computed
as the L → ∞ limit of the stationary measures defined in
(4) and (5) and depending on parameters u, v. It turns
out that this limit was studied in [39] (see also the review
[45]). We will make considerable use of these results here.
The set of stationary measures obtained in the L → ∞
limit always depend on the boundary parameter u, and
sometimes depend on the parameter v. When this is the
case v can be interpreted as minus the average drift of the
process at infinity (see below).

In the low density phase (u ! 0, v " u), the station-
ary measure (4) simply converge as L → ∞ to a stan-
dard Brownian motion with drift u [39] (so that the limit
does not depend on v). In the maximal current phase
(u " 0, v " 0), the stationary measures converge [39] to a
distribution that we denote HY(0)

γu
– the letters HY stand

for Hariya-Yor. This is the distribution of the process

H(x) = B(1)(x)+B(2)(x)+log

(
1 + γu

∫ x

0
e−2B(2)(z)dz

)
,

(34)
where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu is an indepen-
dent Gamma random variable with shape parameter u.
Again, the limit does not depend on v. In the high-density
phase (v ! 0, u " v), the stationary measures converge
[39] to a distribution that we denote HY(−v)

γu−v
. This is the

distribution of the process

H(x) = B(1)(x) + B(2)(x) + vx

+ log

(
1 + γu−v

∫ x

0
e−2B(2)(z)−2vzdz

)
, (35)

where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu−v is an indepen-
dent Gamma random variable with shape parameter u−v.
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Fig. 2: Phase diagram of stationary measures for the KPZ
equation in the half-space R+ with boundary parameter u. The
diagram means that if the initial condition has drift −v at
infinity, the height field should converge at large time under
mild assumptions to the stationary measure indicated in one
of the three regions of the (u, v) plane. In particular, if u ! 0
and the drift at infinity is 0, which includes the flat initial data,
the height field will converge to a Brownian motion with drift
u, as predicted in [17]. Along the antidiagonal line u = −v,
the stationary measure is always a Brownian motion with drift
u, see [42].

In this phase, the limit depends on v, and we remark that
the drift at infinity of the process (35) is −v (in the sense
that H(x) − H(0) % −vx when x → +∞).

We expect that for a large class of initial conditions with
drift at infinity equal to −v, the height field will converge
at large time (modulo a global shift) to one of the station-
ary measures that we have just described, according to the
phase diagram in Figure 2. This prediction is based on an
analogous convergence result at large time for ASEP on
a half-line proved in [11], though the stationary measures
were explicitly described much later [13, 46].

Large-scale limit. Now that we have described the
stationary measures of the KPZ equation on a half-line,
it would be interesting to consider their large scale limit
as x goes to infinity. The processes obtained in this limit
should be understood as stationary measures of the half-
space KPZ fixed point, that is the universal process arising
as scaling limit of all half-space models in the KPZ class.
In particular, we conjecture that the large scale limit of
half-line ASEP stationary measures [46] do converge to the
same limit at large scale. Note that this half-space KPZ
fixed point has not been defined rigorously (unlike the
full-space situation), but its multipoint distributions for
some initial conditions are known [47,48]. The large scale
limit of half-line KPZ equation stationary measures are
described in the phase diagram of Fig. 3. We will let x →
+∞ and define H̃(y) = 1√

x
H(xy) and scale the boundary

parameter as u = ũ√
x

. In the low-density phase, clearly,

the Brownian motion with drift u becomes a Brownian
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weighted by ZL[X ]−(u+v), where ZL[X ] =
∫ L

0 dxe−2X(x).
We may rewrite (7), up to a renormalisation, as

EB−v

[
F (B−v)ZL[B−v]−(u+v)

]
, (33)

where B−v denotes a Brownian with drift −v and diffusion
coefficient 1/2. It is well-known that ZL[B−v] converges as
L → ∞ to a finite random variable Z∞[B−v] distributed
as an inverse Gamma law with shape parameter −2v [22,
44], which becomes asymptotically independent from the
rescaled process X̃. In order for Z∞[B−v]−(u+v) to have a
finite expectation, we need to assume that −(u+v) < −2v,
that is u > v. Thus, we are considering the whole high
density phase in Fig. 1. At this point, we find that the
resulting measure for H̃(x̃)+v

√
Lx̃ is simply the standard

Brownian motion. In the low density phase where u < 0
and v > u (see Figure 1), we deduce by symmetry that the
limiting stationary process is a standard Brownian motion
with drift u

√
L.

Half-line KPZ equation. – Consider the KPZ equa-
tion (1) in R+, with boundary parameter u at x = 0. The
stationary measures of the height field can be computed
as the L → ∞ limit of the stationary measures defined in
(4) and (5) and depending on parameters u, v. It turns
out that this limit was studied in [39] (see also the review
[45]). We will make considerable use of these results here.
The set of stationary measures obtained in the L → ∞
limit always depend on the boundary parameter u, and
sometimes depend on the parameter v. When this is the
case v can be interpreted as minus the average drift of the
process at infinity (see below).

In the low density phase (u ! 0, v " u), the station-
ary measure (4) simply converge as L → ∞ to a stan-
dard Brownian motion with drift u [39] (so that the limit
does not depend on v). In the maximal current phase
(u " 0, v " 0), the stationary measures converge [39] to a
distribution that we denote HY(0)

γu
– the letters HY stand

for Hariya-Yor. This is the distribution of the process

H(x) = B(1)(x)+B(2)(x)+log

(
1 + γu

∫ x

0
e−2B(2)(z)dz

)
,

(34)
where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu is an indepen-
dent Gamma random variable with shape parameter u.
Again, the limit does not depend on v. In the high-density
phase (v ! 0, u " v), the stationary measures converge
[39] to a distribution that we denote HY(−v)

γu−v
. This is the

distribution of the process

H(x) = B(1)(x) + B(2)(x) + vx

+ log

(
1 + γu−v

∫ x

0
e−2B(2)(z)−2vzdz

)
, (35)

where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu−v is an indepen-
dent Gamma random variable with shape parameter u−v.
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HY(0)
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defined in (34)

Fig. 2: Phase diagram of stationary measures for the KPZ
equation in the half-space R+ with boundary parameter u. The
diagram means that if the initial condition has drift −v at
infinity, the height field should converge at large time under
mild assumptions to the stationary measure indicated in one
of the three regions of the (u, v) plane. In particular, if u ! 0
and the drift at infinity is 0, which includes the flat initial data,
the height field will converge to a Brownian motion with drift
u, as predicted in [17]. Along the antidiagonal line u = −v,
the stationary measure is always a Brownian motion with drift
u, see [42].

In this phase, the limit depends on v, and we remark that
the drift at infinity of the process (35) is −v (in the sense
that H(x) − H(0) % −vx when x → +∞).

We expect that for a large class of initial conditions with
drift at infinity equal to −v, the height field will converge
at large time (modulo a global shift) to one of the station-
ary measures that we have just described, according to the
phase diagram in Figure 2. This prediction is based on an
analogous convergence result at large time for ASEP on
a half-line proved in [11], though the stationary measures
were explicitly described much later [13, 46].

Large-scale limit. Now that we have described the
stationary measures of the KPZ equation on a half-line,
it would be interesting to consider their large scale limit
as x goes to infinity. The processes obtained in this limit
should be understood as stationary measures of the half-
space KPZ fixed point, that is the universal process arising
as scaling limit of all half-space models in the KPZ class.
In particular, we conjecture that the large scale limit of
half-line ASEP stationary measures [46] do converge to the
same limit at large scale. Note that this half-space KPZ
fixed point has not been defined rigorously (unlike the
full-space situation), but its multipoint distributions for
some initial conditions are known [47,48]. The large scale
limit of half-line KPZ equation stationary measures are
described in the phase diagram of Fig. 3. We will let x →
+∞ and define H̃(y) = 1√

x
H(xy) and scale the boundary

parameter as u = ũ√
x

. In the low-density phase, clearly,

the Brownian motion with drift u becomes a Brownian
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weighted by ZL[X ]−(u+v), where ZL[X ] =
∫ L

0 dxe−2X(x).
We may rewrite (7), up to a renormalisation, as

EB−v

[
F (B−v)ZL[B−v]−(u+v)

]
, (33)

where B−v denotes a Brownian with drift −v and diffusion
coefficient 1/2. It is well-known that ZL[B−v] converges as
L → ∞ to a finite random variable Z∞[B−v] distributed
as an inverse Gamma law with shape parameter −2v [22,
44], which becomes asymptotically independent from the
rescaled process X̃. In order for Z∞[B−v]−(u+v) to have a
finite expectation, we need to assume that −(u+v) < −2v,
that is u > v. Thus, we are considering the whole high
density phase in Fig. 1. At this point, we find that the
resulting measure for H̃(x̃)+v

√
Lx̃ is simply the standard

Brownian motion. In the low density phase where u < 0
and v > u (see Figure 1), we deduce by symmetry that the
limiting stationary process is a standard Brownian motion
with drift u

√
L.

Half-line KPZ equation. – Consider the KPZ equa-
tion (1) in R+, with boundary parameter u at x = 0. The
stationary measures of the height field can be computed
as the L → ∞ limit of the stationary measures defined in
(4) and (5) and depending on parameters u, v. It turns
out that this limit was studied in [39] (see also the review
[45]). We will make considerable use of these results here.
The set of stationary measures obtained in the L → ∞
limit always depend on the boundary parameter u, and
sometimes depend on the parameter v. When this is the
case v can be interpreted as minus the average drift of the
process at infinity (see below).

In the low density phase (u ! 0, v " u), the station-
ary measure (4) simply converge as L → ∞ to a stan-
dard Brownian motion with drift u [39] (so that the limit
does not depend on v). In the maximal current phase
(u " 0, v " 0), the stationary measures converge [39] to a
distribution that we denote HY(0)

γu
– the letters HY stand

for Hariya-Yor. This is the distribution of the process

H(x) = B(1)(x)+B(2)(x)+log

(
1 + γu

∫ x

0
e−2B(2)(z)dz

)
,

(34)
where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu is an indepen-
dent Gamma random variable with shape parameter u.
Again, the limit does not depend on v. In the high-density
phase (v ! 0, u " v), the stationary measures converge
[39] to a distribution that we denote HY(−v)

γu−v
. This is the

distribution of the process

H(x) = B(1)(x) + B(2)(x) + vx

+ log

(
1 + γu−v

∫ x

0
e−2B(2)(z)−2vzdz

)
, (35)

where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu−v is an indepen-
dent Gamma random variable with shape parameter u−v.
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Fig. 2: Phase diagram of stationary measures for the KPZ
equation in the half-space R+ with boundary parameter u. The
diagram means that if the initial condition has drift −v at
infinity, the height field should converge at large time under
mild assumptions to the stationary measure indicated in one
of the three regions of the (u, v) plane. In particular, if u ! 0
and the drift at infinity is 0, which includes the flat initial data,
the height field will converge to a Brownian motion with drift
u, as predicted in [17]. Along the antidiagonal line u = −v,
the stationary measure is always a Brownian motion with drift
u, see [42].

In this phase, the limit depends on v, and we remark that
the drift at infinity of the process (35) is −v (in the sense
that H(x) − H(0) % −vx when x → +∞).

We expect that for a large class of initial conditions with
drift at infinity equal to −v, the height field will converge
at large time (modulo a global shift) to one of the station-
ary measures that we have just described, according to the
phase diagram in Figure 2. This prediction is based on an
analogous convergence result at large time for ASEP on
a half-line proved in [11], though the stationary measures
were explicitly described much later [13, 46].

Large-scale limit. Now that we have described the
stationary measures of the KPZ equation on a half-line,
it would be interesting to consider their large scale limit
as x goes to infinity. The processes obtained in this limit
should be understood as stationary measures of the half-
space KPZ fixed point, that is the universal process arising
as scaling limit of all half-space models in the KPZ class.
In particular, we conjecture that the large scale limit of
half-line ASEP stationary measures [46] do converge to the
same limit at large scale. Note that this half-space KPZ
fixed point has not been defined rigorously (unlike the
full-space situation), but its multipoint distributions for
some initial conditions are known [47,48]. The large scale
limit of half-line KPZ equation stationary measures are
described in the phase diagram of Fig. 3. We will let x →
+∞ and define H̃(y) = 1√

x
H(xy) and scale the boundary

parameter as u = ũ√
x

. In the low-density phase, clearly,

the Brownian motion with drift u becomes a Brownian
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weighted by ZL[X ]−(u+v), where ZL[X ] =
∫ L

0 dxe−2X(x).
We may rewrite (7), up to a renormalisation, as

EB−v

[
F (B−v)ZL[B−v]−(u+v)

]
, (33)

where B−v denotes a Brownian with drift −v and diffusion
coefficient 1/2. It is well-known that ZL[B−v] converges as
L → ∞ to a finite random variable Z∞[B−v] distributed
as an inverse Gamma law with shape parameter −2v [22,
44], which becomes asymptotically independent from the
rescaled process X̃. In order for Z∞[B−v]−(u+v) to have a
finite expectation, we need to assume that −(u+v) < −2v,
that is u > v. Thus, we are considering the whole high
density phase in Fig. 1. At this point, we find that the
resulting measure for H̃(x̃)+v

√
Lx̃ is simply the standard

Brownian motion. In the low density phase where u < 0
and v > u (see Figure 1), we deduce by symmetry that the
limiting stationary process is a standard Brownian motion
with drift u

√
L.

Half-line KPZ equation. – Consider the KPZ equa-
tion (1) in R+, with boundary parameter u at x = 0. The
stationary measures of the height field can be computed
as the L → ∞ limit of the stationary measures defined in
(4) and (5) and depending on parameters u, v. It turns
out that this limit was studied in [39] (see also the review
[45]). We will make considerable use of these results here.
The set of stationary measures obtained in the L → ∞
limit always depend on the boundary parameter u, and
sometimes depend on the parameter v. When this is the
case v can be interpreted as minus the average drift of the
process at infinity (see below).

In the low density phase (u ! 0, v " u), the station-
ary measure (4) simply converge as L → ∞ to a stan-
dard Brownian motion with drift u [39] (so that the limit
does not depend on v). In the maximal current phase
(u " 0, v " 0), the stationary measures converge [39] to a
distribution that we denote HY(0)

γu
– the letters HY stand

for Hariya-Yor. This is the distribution of the process

H(x) = B(1)(x)+B(2)(x)+log

(
1 + γu

∫ x

0
e−2B(2)(z)dz

)
,

(34)
where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu is an indepen-
dent Gamma random variable with shape parameter u.
Again, the limit does not depend on v. In the high-density
phase (v ! 0, u " v), the stationary measures converge
[39] to a distribution that we denote HY(−v)

γu−v
. This is the

distribution of the process

H(x) = B(1)(x) + B(2)(x) + vx

+ log

(
1 + γu−v

∫ x

0
e−2B(2)(z)−2vzdz

)
, (35)

where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu−v is an indepen-
dent Gamma random variable with shape parameter u−v.
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Fig. 2: Phase diagram of stationary measures for the KPZ
equation in the half-space R+ with boundary parameter u. The
diagram means that if the initial condition has drift −v at
infinity, the height field should converge at large time under
mild assumptions to the stationary measure indicated in one
of the three regions of the (u, v) plane. In particular, if u ! 0
and the drift at infinity is 0, which includes the flat initial data,
the height field will converge to a Brownian motion with drift
u, as predicted in [17]. Along the antidiagonal line u = −v,
the stationary measure is always a Brownian motion with drift
u, see [42].

In this phase, the limit depends on v, and we remark that
the drift at infinity of the process (35) is −v (in the sense
that H(x) − H(0) % −vx when x → +∞).

We expect that for a large class of initial conditions with
drift at infinity equal to −v, the height field will converge
at large time (modulo a global shift) to one of the station-
ary measures that we have just described, according to the
phase diagram in Figure 2. This prediction is based on an
analogous convergence result at large time for ASEP on
a half-line proved in [11], though the stationary measures
were explicitly described much later [13, 46].

Large-scale limit. Now that we have described the
stationary measures of the KPZ equation on a half-line,
it would be interesting to consider their large scale limit
as x goes to infinity. The processes obtained in this limit
should be understood as stationary measures of the half-
space KPZ fixed point, that is the universal process arising
as scaling limit of all half-space models in the KPZ class.
In particular, we conjecture that the large scale limit of
half-line ASEP stationary measures [46] do converge to the
same limit at large scale. Note that this half-space KPZ
fixed point has not been defined rigorously (unlike the
full-space situation), but its multipoint distributions for
some initial conditions are known [47,48]. The large scale
limit of half-line KPZ equation stationary measures are
described in the phase diagram of Fig. 3. We will let x →
+∞ and define H̃(y) = 1√

x
H(xy) and scale the boundary

parameter as u = ũ√
x

. In the low-density phase, clearly,

the Brownian motion with drift u becomes a Brownian
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weighted by ZL[X ]−(u+v), where ZL[X ] =
∫ L

0 dxe−2X(x).
We may rewrite (7), up to a renormalisation, as

EB−v

[
F (B−v)ZL[B−v]−(u+v)

]
, (33)

where B−v denotes a Brownian with drift −v and diffusion
coefficient 1/2. It is well-known that ZL[B−v] converges as
L → ∞ to a finite random variable Z∞[B−v] distributed
as an inverse Gamma law with shape parameter −2v [22,
44], which becomes asymptotically independent from the
rescaled process X̃. In order for Z∞[B−v]−(u+v) to have a
finite expectation, we need to assume that −(u+v) < −2v,
that is u > v. Thus, we are considering the whole high
density phase in Fig. 1. At this point, we find that the
resulting measure for H̃(x̃)+v

√
Lx̃ is simply the standard

Brownian motion. In the low density phase where u < 0
and v > u (see Figure 1), we deduce by symmetry that the
limiting stationary process is a standard Brownian motion
with drift u

√
L.

Half-line KPZ equation. – Consider the KPZ equa-
tion (1) in R+, with boundary parameter u at x = 0. The
stationary measures of the height field can be computed
as the L → ∞ limit of the stationary measures defined in
(4) and (5) and depending on parameters u, v. It turns
out that this limit was studied in [39] (see also the review
[45]). We will make considerable use of these results here.
The set of stationary measures obtained in the L → ∞
limit always depend on the boundary parameter u, and
sometimes depend on the parameter v. When this is the
case v can be interpreted as minus the average drift of the
process at infinity (see below).

In the low density phase (u ! 0, v " u), the station-
ary measure (4) simply converge as L → ∞ to a stan-
dard Brownian motion with drift u [39] (so that the limit
does not depend on v). In the maximal current phase
(u " 0, v " 0), the stationary measures converge [39] to a
distribution that we denote HY(0)

γu
– the letters HY stand

for Hariya-Yor. This is the distribution of the process

H(x) = B(1)(x)+B(2)(x)+log

(
1 + γu

∫ x

0
e−2B(2)(z)dz

)
,

(34)
where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu is an indepen-
dent Gamma random variable with shape parameter u.
Again, the limit does not depend on v. In the high-density
phase (v ! 0, u " v), the stationary measures converge
[39] to a distribution that we denote HY(−v)

γu−v
. This is the

distribution of the process

H(x) = B(1)(x) + B(2)(x) + vx

+ log

(
1 + γu−v

∫ x

0
e−2B(2)(z)−2vzdz

)
, (35)

where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu−v is an indepen-
dent Gamma random variable with shape parameter u−v.
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Fig. 2: Phase diagram of stationary measures for the KPZ
equation in the half-space R+ with boundary parameter u. The
diagram means that if the initial condition has drift −v at
infinity, the height field should converge at large time under
mild assumptions to the stationary measure indicated in one
of the three regions of the (u, v) plane. In particular, if u ! 0
and the drift at infinity is 0, which includes the flat initial data,
the height field will converge to a Brownian motion with drift
u, as predicted in [17]. Along the antidiagonal line u = −v,
the stationary measure is always a Brownian motion with drift
u, see [42].

In this phase, the limit depends on v, and we remark that
the drift at infinity of the process (35) is −v (in the sense
that H(x) − H(0) % −vx when x → +∞).

We expect that for a large class of initial conditions with
drift at infinity equal to −v, the height field will converge
at large time (modulo a global shift) to one of the station-
ary measures that we have just described, according to the
phase diagram in Figure 2. This prediction is based on an
analogous convergence result at large time for ASEP on
a half-line proved in [11], though the stationary measures
were explicitly described much later [13, 46].

Large-scale limit. Now that we have described the
stationary measures of the KPZ equation on a half-line,
it would be interesting to consider their large scale limit
as x goes to infinity. The processes obtained in this limit
should be understood as stationary measures of the half-
space KPZ fixed point, that is the universal process arising
as scaling limit of all half-space models in the KPZ class.
In particular, we conjecture that the large scale limit of
half-line ASEP stationary measures [46] do converge to the
same limit at large scale. Note that this half-space KPZ
fixed point has not been defined rigorously (unlike the
full-space situation), but its multipoint distributions for
some initial conditions are known [47,48]. The large scale
limit of half-line KPZ equation stationary measures are
described in the phase diagram of Fig. 3. We will let x →
+∞ and define H̃(y) = 1√

x
H(xy) and scale the boundary

parameter as u = ũ√
x

. In the low-density phase, clearly,

the Brownian motion with drift u becomes a Brownian
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B̃(1)(y) + B̃(2)(y) + ṽy+

max
{

0, −Eũ−ṽ − 2 min0!z!y{B̃(2)(z) + ṽz}
}

B̃(1)(y) + B̃(2)(y)+

max
{

0, −Eũ − 2 min0!z!y{B̃(2)(z)}
}

Fig. 3: Large scale limits of stationary measures of the half-
space KPZ equation described in Fig. 2. B̃(1)(y) and B̃(2)(y)
denote independent Brownian motions with diffusion coeffi-
cient 1/2. Eũ and Eũ−ṽ denote independent exponential ran-
dom variables with parameters ũ and ũ − ṽ. The parameters
ũ, ṽ are rescalings of the parameters u, v in Fig. 2 as explained
in the Letter.

motion in the variable y with drift ũ in the scaling limit.
In the maximal current phase (ũ, ṽ > 0), the large scale
limit of (34) yields

H̃(y) = B̃(1)(y) + B̃(2)(y)

+ max

{
0, −Eũ − 2 min

0!z!y
{B̃(2)(z)}

}
, (36)

where B̃(1)(y), B̃(2)(y) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and Eũ is an indepen-
dent exponential random variable with rate parameter ũ.
Here we have used that −1√

x
log γũ/

√
x converges to an ex-

ponential distribution with parameter ũ. In particular,
when ũ → +∞, we obtain the sum of a Brownian motion
and a Bessel 3 process [49] 3, that is a Brownian motion
conditioned to remain positive on [0, +∞). In the high
density phase (ṽ < 0, ũ > ṽ), we scale v = ṽ√

x
and the

large scale limit of (35) yields

H̃(y) = B̃(1)(y) + B̃(2)(y) + ṽy

+ max

{
0, −Eũ−ṽ − 2 min

0!z!y
{B̃(2)(z) + ṽz}

}
, (37)

where B̃(1)(y), B̃(2)(y) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and Eũ−ṽ is an indepen-
dent exponential random variable with parameter ũ − ṽ.
Again, −ṽ represents the drift at infinity of the process
H̃(y). When ũ = −ṽ, the process (37) becomes a stan-
dard Brownian motion with drift ũ as this was already the
case before taking any limit, although this is not immedi-
ately obvious from (37).

3We thank A. Comtet for an exchange on this point.

Directed polymer endpoint. – We obtain the end-
point probability for a very long polymer as Q(x) =

eH(x)/
∫ L

0 dxeH(x), where H(x) is given in (4). The statis-

tics of the ratio Q(L)/Q(0) = e
√

L
2 G+Y , where G is a stan-

dard Gaussian random variable, requires only the PDF
P (Y ) of Y = X(L) − X(0), which in some special cases
takes a simple form [42]. For u + v = −1 one obtains

P (Y ) =
e−(1+2v)Y + L

4

2Zu,v

[
erf

(
L − 2Y

2
√

L

)
+ erf

(
L + 2Y

2
√

L

)]

(38)

with Zu,v = ev2L

1+2v (e(1+2v)L − 1). At the transition point,
u = v = −1/2, P (Y ) becomes uniform in [−L/2, L/2]
consistent with the polymer being localized near either
boundary with probability 1/2 (see [42] for details, and
[50] for an earlier work based on ASEP).

Note. While this work was near completion, the
preprint [51] appeared. This paper also performs a Laplace
transform inversion of the result of [18], although [51] de-
scribes the process X differently, as a Markov process
with explicit transition probabilities. Both descriptions
are equivalent: indeed, their formula [51, (1.7)] can also
be read from (16) above.

∗ ∗ ∗
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weighted by ZL[X ]−(u+v), where ZL[X ] =
∫ L

0 dxe−2X(x).
We may rewrite (7), up to a renormalisation, as

EB−v

[
F (B−v)ZL[B−v]−(u+v)

]
, (33)

where B−v denotes a Brownian with drift −v and diffusion
coefficient 1/2. It is well-known that ZL[B−v] converges as
L → ∞ to a finite random variable Z∞[B−v] distributed
as an inverse Gamma law with shape parameter −2v [22,
44], which becomes asymptotically independent from the
rescaled process X̃. In order for Z∞[B−v]−(u+v) to have a
finite expectation, we need to assume that −(u+v) < −2v,
that is u > v. Thus, we are considering the whole high
density phase in Fig. 1. At this point, we find that the
resulting measure for H̃(x̃)+v

√
Lx̃ is simply the standard

Brownian motion. In the low density phase where u < 0
and v > u (see Figure 1), we deduce by symmetry that the
limiting stationary process is a standard Brownian motion
with drift u

√
L.

Half-line KPZ equation. – Consider the KPZ equa-
tion (1) in R+, with boundary parameter u at x = 0. The
stationary measures of the height field can be computed
as the L → ∞ limit of the stationary measures defined in
(4) and (5) and depending on parameters u, v. It turns
out that this limit was studied in [39] (see also the review
[45]). We will make considerable use of these results here.
The set of stationary measures obtained in the L → ∞
limit always depend on the boundary parameter u, and
sometimes depend on the parameter v. When this is the
case v can be interpreted as minus the average drift of the
process at infinity (see below).

In the low density phase (u ! 0, v " u), the station-
ary measure (4) simply converge as L → ∞ to a stan-
dard Brownian motion with drift u [39] (so that the limit
does not depend on v). In the maximal current phase
(u " 0, v " 0), the stationary measures converge [39] to a
distribution that we denote HY(0)

γu
– the letters HY stand

for Hariya-Yor. This is the distribution of the process

H(x) = B(1)(x)+B(2)(x)+log

(
1 + γu

∫ x

0
e−2B(2)(z)dz

)
,

(34)
where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu is an indepen-
dent Gamma random variable with shape parameter u.
Again, the limit does not depend on v. In the high-density
phase (v ! 0, u " v), the stationary measures converge
[39] to a distribution that we denote HY(−v)

γu−v
. This is the

distribution of the process

H(x) = B(1)(x) + B(2)(x) + vx

+ log

(
1 + γu−v

∫ x

0
e−2B(2)(z)−2vzdz

)
, (35)

where B(1)(x), B(2)(x) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and γu−v is an indepen-
dent Gamma random variable with shape parameter u−v.

v
drift

parameter

u
boundary parameter

0

0

Standard Brownian

motion with drift u

HY(−v)
γu−v

defined in (35)

HY(0)
γu

defined in (34)

Fig. 2: Phase diagram of stationary measures for the KPZ
equation in the half-space R+ with boundary parameter u. The
diagram means that if the initial condition has drift −v at
infinity, the height field should converge at large time under
mild assumptions to the stationary measure indicated in one
of the three regions of the (u, v) plane. In particular, if u ! 0
and the drift at infinity is 0, which includes the flat initial data,
the height field will converge to a Brownian motion with drift
u, as predicted in [17]. Along the antidiagonal line u = −v,
the stationary measure is always a Brownian motion with drift
u, see [42].

In this phase, the limit depends on v, and we remark that
the drift at infinity of the process (35) is −v (in the sense
that H(x) − H(0) % −vx when x → +∞).

We expect that for a large class of initial conditions with
drift at infinity equal to −v, the height field will converge
at large time (modulo a global shift) to one of the station-
ary measures that we have just described, according to the
phase diagram in Figure 2. This prediction is based on an
analogous convergence result at large time for ASEP on
a half-line proved in [11], though the stationary measures
were explicitly described much later [13, 46].

Large-scale limit. Now that we have described the
stationary measures of the KPZ equation on a half-line,
it would be interesting to consider their large scale limit
as x goes to infinity. The processes obtained in this limit
should be understood as stationary measures of the half-
space KPZ fixed point, that is the universal process arising
as scaling limit of all half-space models in the KPZ class.
In particular, we conjecture that the large scale limit of
half-line ASEP stationary measures [46] do converge to the
same limit at large scale. Note that this half-space KPZ
fixed point has not been defined rigorously (unlike the
full-space situation), but its multipoint distributions for
some initial conditions are known [47,48]. The large scale
limit of half-line KPZ equation stationary measures are
described in the phase diagram of Fig. 3. We will let x →
+∞ and define H̃(y) = 1√

x
H(xy) and scale the boundary

parameter as u = ũ√
x

. In the low-density phase, clearly,

the Brownian motion with drift u becomes a Brownian
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ṽ
drift

parameter

ũ
boundary parameter

0

0

Standard Brownian

motion with drift ũ

B̃(1)(y) + B̃(2)(y) + ṽy+

max
{

0, −Eũ−ṽ − 2 min0!z!y{B̃(2)(z) + ṽz}
}

B̃(1)(y) + B̃(2)(y)+

max
{

0, −Eũ − 2 min0!z!y{B̃(2)(z)}
}

Fig. 3: Large scale limits of stationary measures of the half-
space KPZ equation described in Fig. 2. B̃(1)(y) and B̃(2)(y)
denote independent Brownian motions with diffusion coeffi-
cient 1/2. Eũ and Eũ−ṽ denote independent exponential ran-
dom variables with parameters ũ and ũ − ṽ. The parameters
ũ, ṽ are rescalings of the parameters u, v in Fig. 2 as explained
in the Letter.

motion in the variable y with drift ũ in the scaling limit.
In the maximal current phase (ũ, ṽ > 0), the large scale
limit of (34) yields

H̃(y) = B̃(1)(y) + B̃(2)(y)

+ max

{
0, −Eũ − 2 min

0!z!y
{B̃(2)(z)}

}
, (36)

where B̃(1)(y), B̃(2)(y) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and Eũ is an indepen-
dent exponential random variable with rate parameter ũ.
Here we have used that −1√

x
log γũ/

√
x converges to an ex-

ponential distribution with parameter ũ. In particular,
when ũ → +∞, we obtain the sum of a Brownian motion
and a Bessel 3 process [49] 3, that is a Brownian motion
conditioned to remain positive on [0, +∞). In the high
density phase (ṽ < 0, ũ > ṽ), we scale v = ṽ√

x
and the

large scale limit of (35) yields

H̃(y) = B̃(1)(y) + B̃(2)(y) + ṽy

+ max

{
0, −Eũ−ṽ − 2 min

0!z!y
{B̃(2)(z) + ṽz}

}
, (37)

where B̃(1)(y), B̃(2)(y) are two independent Brownian mo-
tions with diffusion coefficient 1/2 and Eũ−ṽ is an indepen-
dent exponential random variable with parameter ũ − ṽ.
Again, −ṽ represents the drift at infinity of the process
H̃(y). When ũ = −ṽ, the process (37) becomes a stan-
dard Brownian motion with drift ũ as this was already the
case before taking any limit, although this is not immedi-
ately obvious from (37).

3We thank A. Comtet for an exchange on this point.

Directed polymer endpoint. – We obtain the end-
point probability for a very long polymer as Q(x) =

eH(x)/
∫ L

0 dxeH(x), where H(x) is given in (4). The statis-

tics of the ratio Q(L)/Q(0) = e
√

L
2 G+Y , where G is a stan-

dard Gaussian random variable, requires only the PDF
P (Y ) of Y = X(L) − X(0), which in some special cases
takes a simple form [42]. For u + v = −1 one obtains

P (Y ) =
e−(1+2v)Y + L

4

2Zu,v

[
erf

(
L − 2Y

2
√

L

)
+ erf

(
L + 2Y

2
√

L

)]

(38)

with Zu,v = ev2L

1+2v (e(1+2v)L − 1). At the transition point,
u = v = −1/2, P (Y ) becomes uniform in [−L/2, L/2]
consistent with the polymer being localized near either
boundary with probability 1/2 (see [42] for details, and
[50] for an earlier work based on ASEP).

Note. While this work was near completion, the
preprint [51] appeared. This paper also performs a Laplace
transform inversion of the result of [18], although [51] de-
scribes the process X differently, as a Markov process
with explicit transition probabilities. Both descriptions
are equivalent: indeed, their formula [51, (1.7)] can also
be read from (16) above.

∗ ∗ ∗

PLD acknowledges support from ANR grant ANR-17-
CE30-0027-01 RaMaTraF.
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Matrix product ansatz
Consider ASEP on {0, 1}` with boundary parameters ↵,�,�, �.

reservoir reservoir
1 2 3

. . .
`

1 q 1 1q↵

�

�

�

We describe the state of the system by ⌘ 2 {0, 1}`. The stationary
measure P can be written as [Derrida-Evans-Hakim-Pasquier 1993]

P(⌘) = 1

Z`
hw |

Ỳ

i=1

(⌘iD + (1� ⌘i )E ) |vi

where
Z` = hw | (E + D)` |vi

and E ,D are infinite matrices, and hw | , |vi are row/column vectors such
that

DE � qED = D + E

hw | (↵E � �D) = hw |
(�D � �E ) |vi = |vi



Enaud-Derrida’s representation
Enaud-Derrida found a very simple representation for any parameters
q,↵,�,�, �. Under Liggett’s condition, it becomes :

D =

0

BB@

[1]q [1]q 0 0 0 · · ·
0 [2]q [2]q 0 0 · · ·
0 0 [3]q [3]q 0 · · ·
...

... 0
. . .

. . .
. . .

1

CCA , E =

0

BB@

[1]q 0 0 0 · · ·
[2]q [2]q 0 0 · · ·
0 [3]q [3]q 0

0 0
. . .

. . .
. . .

1

CCA

where [n]q = 1�qn

1�q .

Denoting by {|ni}n>1 the vectors of the associated basis, let

hw | =
X

n>1

✓
1� %0
%0

◆n

hn| , |vi =
X

n>1

✓
%`

1� %`

◆n

[n]q |ni .

Then, E ,D, hw | , |vi satisfy

DE � qED = D + E

hw | (↵E � �D) = hw |
(�D � �E ) |vi = |vi



Sum over paths

Due to the bidiagonal structure, the normalization constant
Z` = hw | (D + E )` |vi can be written as a sum over lattice paths
~n = (n0, n1, . . . , n`) 2 N` of the form

Z` =
X

~n

⌦(~n)

where

⌦(~n) =

✓
1� %0
%0

◆n0 ✓ %`
1� %`

◆n` Ỳ

i=1

v(ni�1, ni )
Ỳ

i=0

[ni ]q,

with

v(n, n0) =

8
><

>:

2 if n = n
0,

1 if |n � n
0| = 1

0 else.

I This introduces a natural probability measure on random walk paths
~n. The stationary measure P(⌘) can be recovered from this measure.



Open ASEP invariant measure

Following arguments similar as [Derrida-Enaud-Lebowitz 2004], one
arrives at

Theorem ([B.-Le Doussal 2022])

Under the stationary measure P(⌧), ASEP height function

H(x) =
Px

j=1(2⌘i � 1) is such that

(H(i))16i6`

(d)
= (ni � n0 +mi )16i6` ,

where (ni ,mi )06i6` is a two dimensional random walk on Z2
, starting

from (n0, 0), distributed as

P(~n, ~m) =
1n0>0

4�`Z`

✓
1� %0
%0

◆n0 ✓ %`
1� %`

◆n` Ỳ

i=0

[ni ]q ⇥ P
SSRW
n0,0 (~n, ~m),

where P
SSRW
n0,0 denotes the probability measure of the symmetric simple

random walk (SSRW) on Z2
starting from (n0, 0).



Scaling limit to the KPZ equation
Under the scalings such that ASEP’s height function converges to KPZ,
in particular

q = 1� ", ` = "�2, %0 =
1

2
(1 + u"), %` =

1

2
(1� v")

we find, denoting by Yx the rescaled version of the random walk ni

Ỳ

i=0

[ni ]q ! e
�

R L
0 e�2Ys ds

✓
1� %a
%a

◆n0 ✓ %b
1� %b

◆n`

! e
�2uY0�2vYL

so that
(mi , ni ) =) (Wx ,Yx)

where Wx is a Brownian motion and Yx is absolutely continuous to the
Brownian measure with Radon Nikodym derivative

1

Zu,v
e
�2uY0�2vYLe

�
R L
0 e�2Ys ds .



Liouville field theory in dimension 1

Theorem
The KPZ equation on [0, L] with boundary parameters u and v with

u + v > 0 has a unique stationary measure

h
L
u,v (x) = Wx + Yx � Y0,

where

I W is a Brownian motion,

I Y is independent from W , and its law is absolutely continuous w.r.t.

to that of a Brownian motion with free starting point. The

Radon-Nikodym derivative is

1

Zu,v
exp

✓
�2uY0 � 2vYL �

Z L

0

e�2Ysds

◆

It was originally proved by [Bryc-Kuznetsov-Wang-Weso lowski 2021], [B.-
Le Doussal 2021] using results from [Corwin-Knizel 2021]. Uniqueness
was later proved by [Knizel-Matetski 2022].
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very long polymers. They have the same distribution as ratios of the exponential of a Brownian
motion, which we denote by Zstat

1 (y) = eB(y). More precisely,

lim
t→+∞

Z(x, −t|y, 0)

Z(x, −t|z, 0)

(d)
=

Zstat
1 (y)

Zstat
1 (z)

= eB(y)−B(z) (3)

for any fixed x, where B(y) is a standard Brownian motion (i.e. with B(0) = 0 and dB(y)2 =
dy). In (3), the limit on the left-hand-side exists for almost every realization of the environment
η, and the equality in distribution holds as a process, that is jointly in y and z. The particular
realization of B depends of course in a very non-trivial way on the random potential η.

The process Zstat
1 (y) = eB(y) describes the (unnormalized) endpoint measure for very long

polymers. Although it is not normalizable in the full space, we may apply an external force on
the directed polymer endpoint, as can be done in experiments. Assuming the force derives from
a sufficiently confining potential U(y), the density of the polymer endpoint becomes proportional
to Zstat

1 (y)e−βU(y), which is now normalizable. Similarly, the probability measure of the midpoint
of a very long polymer can be read from (3) by considering Z(x, −t|y, 0)Z(y, 0|x, t) for large

t and it is distributed as eB(y)+B̃(y), where B and B̃ are two independent standard Brownian
motions.

1.3 Non-intersecting directed polymers. A very natural question is to consider now "
continuum directed polymers constrained not to cross, in the same random potential η, and
ask what is the stationary measure. In this paper we obtain this stationary measure for the
case of space-time white noise, in a form which generalizes the result for a single polymer
" = 1, depending now on " Brownian motions. This provides information on the behavior of the
endpoint probabilities of very long non-crossing polymers, as well as their midpoint probabilities,
as we discuss below. The result is obtained by considering a discrete version, the log gamma
polymer model, recalled below, for which we also obtain novel results. We first summarize our
main results in the continuum and explain later the general idea of the method, as well as the
new results in the discrete setting.

To express our result in the next subsection, leaving aside mathematical subtleties for now,
let us define Z"(#x, 0|#y, t), the partition function of " non intersecting continuous polymers, with
starting points at #x = (x1 < x2 < · · · < x") and ending at #y = (y1 < y2 < · · · < y"). It can be
defined as the expectation over " non-intersecting Brownian paths Wj(τ), j = 1, . . . , " starting
from Wj(0) = xj and ending at Wj(t) = yj,

Z"(#x, 0|#y, t) = det (pt(xi, yj))
"
i,j=1 E

[

e
−
∫ t

0
dτ
∑

j
η(Wj(τ),τ)

]

, (4)

where the expectation E is taken over W1, . . . W", " non-intersecting Brownian bridges. The first
factor corresponds to the standard formula for the propagator of " non-intersecting Brownian
motions. The partition function Z"(#x, 0|#y, t) was considered in physics [22, 26, 28] and is given
by the Karlin Mc Gregor formula [38]

Z"(x1, . . . , x"; 0|y1, . . . , y"; t) = det (Z1(xi, 0|yj , t))"
i,j=1 . (5)

From a mathematical point of view, (5) can be taken as a definition of Z", which poses no issue
even in the case of a white noise in space. The partition function Z" satisfies the stochastic
partial differential equation

∂tZ" =
∑

i

1

2
∂yiyiZ" + Z"

∑

i

ξ(yi, t) (6)

3
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defined as the expectation over " non-intersecting Brownian paths Wj(τ), j = 1, . . . , " starting
from Wj(0) = xj and ending at Wj(t) = yj,

Z"(#x, 0|#y, t) = det (pt(xi, yj))
"
i,j=1 E

[

e
−
∫ t

0
dτ
∑

j
η(Wj(τ),τ)

]

, (4)

where the expectation E is taken over W1, . . . W", " non-intersecting Brownian bridges. The first
factor corresponds to the standard formula for the propagator of " non-intersecting Brownian
motions. The partition function Z"(#x, 0|#y, t) was considered in physics [22, 26, 28] and is given
by the Karlin Mc Gregor formula [38]

Z"(x1, . . . , x"; 0|y1, . . . , y"; t) = det (Z1(xi, 0|yj , t))"
i,j=1 . (5)

From a mathematical point of view, (5) can be taken as a definition of Z", which poses no issue
even in the case of a white noise in space. The partition function Z" satisfies the stochastic
partial differential equation

∂tZ" =
∑

i

1

2
∂yiyiZ" + Z"

∑

i

ξ(yi, t) (6)
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on the Weyl chamber

W! =
{

!y ∈ R
!; y1 < y2 < · · · < y!

}

, (7)

with the boundary condition that Z! = 0 whenever any yj = yj+1. The formula (4) is well
defined for a smooth spatial noise correlator, but there are some mathematical issues in defining
the white noise limit. We refer to [30, 39, 40] for a more precise mathematical discussion on the
well-posedness of such stochastic PDEs.

1.4 Main results. We can now state our main result for the continuum model described in
the previous section. We find that the generalization of (3) to " non-crossing directed polymers
is the following. For !x, !y, !z ∈ W!,

lim
t→+∞

Z!(!x; −t|!y; 0)

Z!(!x; −t|!z; 0)

(d)
=

Zstat
! (!y)

Zstat
! (!z)

(8)

where the partition function Zstat
! is now defined by

Zstat
! (!y) =

∫

GT ("y)

!
∏

k=1

k
∏

i=1

eB!−k+1(zk
i )−B!−k+1(zk−1

i−1 )
!−1
∏

k=1

k
∏

i=1

dzk
i , (9)

where the Bk(z), k = 1, . . . , " are " independent standard Brownian motions (we will assume for
convenience that Bk(0) = 0, although it does not matters since (9) only involves increments of
the Brownian motions). We use the convention that zk

0 = 0 for 0 ! k ! ", and the integration
is performed on the interlaced set of "(" − 1)/2 independent auxiliary variables (which form a
Gelfand-Tsetlin pattern)

GT (!y) = {(zk
i )1!i!k!! : zk+1

i ! zk
i ! zk+1

i+1 for 1 ! i ! k ! "− 1, and z!
i = yi for 1 ! i ! "}.

(10)
Note that for any x ! y1,

Zstat
! (!y) = e

∑!

i=1
Bi(x)Zstat

! (!y − x!1). (11)

Remark 1.1. We expect that as t goes to infinity,

Z!(!x; −t|!y; 0)

Z!(!x; −t|!z; 0)

(d)
#

Zstat
! (!y)

Zstat
! (!z)

(12)

as long as |yi − zj | $ t2/3 for all 1 ! i, j ! ".

1.4.1 Graphical interpretation. For " = 2 one has, with z = z1
1 and y1 < y2

Zstat
2 (y1, y2) = eB1(y1)+B1(y2)

∫ y2

y1

dze−B1(z)+B2(z), (13)

which can be seen as the partition function of two non-intersecting semi-discrete polymers as
shown in Fig. 1. The polymer paths live on two horizontal lines. The two polymers start at
the horizontal coordinate 0, and end on the second line at horizontal coordinates y1 and y2

respectively. The energy collected by a given polymer path is the sum of increments of two
independent standard Brownian motions B1 and B2 along each horizontal line.
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Figure 1: The partition function Zstat
! (!y) defined in (9) can be interpreted as the partition sum

of non-crossing semi-discrete polymers. We have depicted the case " = 2 (left) and " = 3 (right).

For " = 3 and for y1 < y2 < y3 one has

Zstat
3 (y1, y2, y3) = eB1(y1)+B1(y2)+B1(y3)

×
∫

y1<z2
1<y2<z2

2<y3

dz2
1dz2

2eB2(z2
1)−B1(z2

1)+B2(z2
2)−B1(z2

2)
∫

z2
1<z1

1<z2
2

dz1
1eB3(z1

1)−B2(z1
1). (14)

This can also be interpreted as the partition function of three non-intersecting semi-discrete
polymers as shown in Fig. 1 (right).

More generally, for any ", Zstat
! (!y) is the partition function of " non-intersecting semi-discrete

polymers on " horizontal lines, indexed from top to bottom, weighted by independent standard
Brownian motions B1, . . . , B!. The polymer paths all start from the horizontal coordinate 0,
and end on the first line at locations y1, . . . , y!. Such a semi-discrete polymer model has been
well-studied, starting from [41], and is generally referred to as the O’Connell-Yor polymer model,
although known formulas deal with the case when all the polymers end at the same horizontal
coordinate. Note that we have represented the case where all yi > 0 but this is sufficient, since
the origin can be chosen arbitrarily far to the left, as it cancels is the partition function ratio.

Since, as we just discussed, Zstat
! (!y) can be seen as the partition function of " non-intersecting

polymers, the Karlin-McGregor formula yields the alternative formula

Zstat
! (!y) = det

(

ZOY[(0, i)|(yj , 1)]
)

1!i,j!!
, (15)

where ZOY[(0, i)|(y, 1)] is the partition function for a single semi-discrete polymer starting from
horizontal coordinate 0 on the i-the line (lines are indexed from top to bottom) and ending on
the first line at horizontal coordinate y (see Section 3.4 below for more details about the semi-
discrete O’Connell-Yor polymer mode, see in particular (85) for an explicit expression defining
ZOY[(0, i)|(yj , 1)).

Remark 1.2. The quantity Zstat
! defined in (9) satisfies a surprising identity. For any realiza-

tion of the Brownian motions B1, . . . , B!, Zstat
! remains unchanged if we replace the Brownian

motions B1, . . . , B! by a family of process WB1, . . . , WB! built from the Brownian motions
B1, . . . , B! (this process is called the melon of the Brownian motions B1, . . . , B! in [42], where
a similar invariance plays a crucial role in the construction of the Airy sheet). We explain the
details of this construction in Section 3.6, based on results from [43]. Remarkably, the dis-
tribution of the process WB1, . . . , WB! converges at large scale to non-intersecting Brownian
motions, that is to a GUE Dyson Brownian motion (Λ1(y), . . . , Λ!(y)). It remains to be seen
whether these observations can help analyzing the distribution of Zstat

! .
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convenience that Bk(0) = 0, although it does not matters since (9) only involves increments of
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as long as |yi − zj | $ t2/3 for all 1 ! i, j ! ".

1.4.1 Graphical interpretation. For " = 2 one has, with z = z1
1 and y1 < y2

Zstat
2 (y1, y2) = eB1(y1)+B1(y2)

∫ y2

y1

dze−B1(z)+B2(z), (13)

which can be seen as the partition function of two non-intersecting semi-discrete polymers as
shown in Fig. 1. The polymer paths live on two horizontal lines. The two polymers start at
the horizontal coordinate 0, and end on the second line at horizontal coordinates y1 and y2

respectively. The energy collected by a given polymer path is the sum of increments of two
independent standard Brownian motions B1 and B2 along each horizontal line.
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Figure 1: The partition function Zstat
! (!y) defined in (9) can be interpreted as the partition sum

of non-crossing semi-discrete polymers. We have depicted the case " = 2 (left) and " = 3 (right).

For " = 3 and for y1 < y2 < y3 one has

Zstat
3 (y1, y2, y3) = eB1(y1)+B1(y2)+B1(y3)
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1). (14)

This can also be interpreted as the partition function of three non-intersecting semi-discrete
polymers as shown in Fig. 1 (right).

More generally, for any ", Zstat
! (!y) is the partition function of " non-intersecting semi-discrete

polymers on " horizontal lines, indexed from top to bottom, weighted by independent standard
Brownian motions B1, . . . , B!. The polymer paths all start from the horizontal coordinate 0,
and end on the first line at locations y1, . . . , y!. Such a semi-discrete polymer model has been
well-studied, starting from [41], and is generally referred to as the O’Connell-Yor polymer model,
although known formulas deal with the case when all the polymers end at the same horizontal
coordinate. Note that we have represented the case where all yi > 0 but this is sufficient, since
the origin can be chosen arbitrarily far to the left, as it cancels is the partition function ratio.

Since, as we just discussed, Zstat
! (!y) can be seen as the partition function of " non-intersecting

polymers, the Karlin-McGregor formula yields the alternative formula

Zstat
! (!y) = det

(

ZOY[(0, i)|(yj , 1)]
)

1!i,j!!
, (15)

where ZOY[(0, i)|(y, 1)] is the partition function for a single semi-discrete polymer starting from
horizontal coordinate 0 on the i-the line (lines are indexed from top to bottom) and ending on
the first line at horizontal coordinate y (see Section 3.4 below for more details about the semi-
discrete O’Connell-Yor polymer mode, see in particular (85) for an explicit expression defining
ZOY[(0, i)|(yj , 1)).

Remark 1.2. The quantity Zstat
! defined in (9) satisfies a surprising identity. For any realiza-

tion of the Brownian motions B1, . . . , B!, Zstat
! remains unchanged if we replace the Brownian

motions B1, . . . , B! by a family of process WB1, . . . , WB! built from the Brownian motions
B1, . . . , B! (this process is called the melon of the Brownian motions B1, . . . , B! in [42], where
a similar invariance plays a crucial role in the construction of the Airy sheet). We explain the
details of this construction in Section 3.6, based on results from [43]. Remarkably, the dis-
tribution of the process WB1, . . . , WB! converges at large scale to non-intersecting Brownian
motions, that is to a GUE Dyson Brownian motion (Λ1(y), . . . , Λ!(y)). It remains to be seen
whether these observations can help analyzing the distribution of Zstat

! .
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stationary measure for    non-crossing polymers   

This partition function has another graphical interpretation, see Fig. 3 (right), where !y repre-
sents the positions of the midpoints of " non intersecting semi-discrete polymers. We can view
Z̃midpoint

! (!y) as proportional to the probability density of the midpoints for " very long non-
intersecting polymers. The normalization of this probability measure (restricting !y ∈ [0, x]!) is
given by

∫

"y∈W!∩[0,x]!
Zmidpoint2

! (!y) = det
(

ZOY[(0, i)|(x, j − ")]
)!

i,j=1
, (29)

where we recall that W! was defined in (7) and ZOY is the partition function of a single semi-
discrete polymer defined in (85) (the lines of the O’Connell-Yor polymer are here indexed by
integers {1 − ", 2 − ", . . . , "− 1, "}).

1.6 Applications to normalized endpoint distributions. As is the case for " = 1, the
partition sum Zstat

! (!y) grows unboundedly at large !y and cannot be normalized on the whole
line R!. To define normalized stationary endpoint probabilities, i.e. for very long non-crossing
polymers one could consider the system in a restricted geometry (such as a circle, or in presence
of walls) but then the stationary measure is different and dependent on the boundaries. There
are still however some interesting observables related to the endpoint probabilities of " non
crossing polymers which one can define from our present result, leaving their detailed study for
the future.

Conditional probability in a fixed interval. One can study the endpoint probability con-
ditioned to the event that all " polymers belong to some fixed interval [0, L]. It reads

P (!y ∈ E|!y ∈ [0, L]) =

∫

W!∩E! dyZstat
! (!y)

∫

W!∩[0,L]! dyZstat
! (!y)

. (30)

Polymers with endpoints submitted to a potential. It is possible to consider a model
where the polymer endpoints are submitted to an additional potential, that we denote V (!y). It
can result from interactions between the endpoints, or from an external potential acting on each
endpoint V (!y) =

∑

i v(yi). An experimental example of the latter is a tunnelling microscope
tip acting on the endpoint of vortex lines [47]. If V (!y) is globally confining, with associated
equilibrium Gibbs measure e−V (y), it leads to a normalizable endpoint probability for " non-
crossing very long polymers

P (!y) =
Zstat

! (!y)e−V ("y)

∫

W!
d!zZstat

! (!z)e−V ("z)
(31)

We assume here that V (!y) grows faster than
√

|y|.
One realization which does not involve explicitly an additional potential, is to consider the

midpoint of " non-crossing directed polymers in the case where there is no disorder on the top
part (assumed here to be of length T ), and all points equal (within ε) at the final time (see
Figure 2). In that case

e−V ("y) → ∆β(!y)e−"y2/(4T ) (32)

where β = 1, 0 depending whether one enforces or not the non-crossing constraint in the top
part. The Vandermonde determinant ∆(!y) results from the non-crossing constraint. Note that
now the normalization integral is convergent and finite.
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with the boundary condition that Z! = 0 whenever any yj = yj+1. The formula (4) is well
defined for a smooth spatial noise correlator, but there are some mathematical issues in defining
the white noise limit. We refer to [30, 39, 40] for a more precise mathematical discussion on the
well-posedness of such stochastic PDEs.
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where the Bk(z), k = 1, . . . , " are " independent standard Brownian motions (we will assume for
convenience that Bk(0) = 0, although it does not matters since (9) only involves increments of
the Brownian motions). We use the convention that zk

0 = 0 for 0 ! k ! ", and the integration
is performed on the interlaced set of "(" − 1)/2 independent auxiliary variables (which form a
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which can be seen as the partition function of two non-intersecting semi-discrete polymers as
shown in Fig. 1. The polymer paths live on two horizontal lines. The two polymers start at
the horizontal coordinate 0, and end on the second line at horizontal coordinates y1 and y2

respectively. The energy collected by a given polymer path is the sum of increments of two
independent standard Brownian motions B1 and B2 along each horizontal line.
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Liouville field theory and log-correlated Random Energy Models
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An exact mapping is established between the c � 25 Liouville field theory (LFT) and the Gibbs
measure statistics of a thermal particle in a 2D Gaussian Free Field plus a logarithmic confining
potential. The probability distribution of the position of the minimum of the energy landscape is
obtained exactly by combining the conformal bootstrap and one-step replica symmetry breaking
methods. Operator product expansions in LFT allow to unveil novel universal behaviours of the
log-correlated Random Energy class. High precision numerical tests are given.

The problem of a thermal particle embedded in a log-
correlated random potential (log-REMs) plays a key role
in many physical systems ranging from 2D localisation
[1–4] to spin-glasses [5–7], branching process [8–12], and
random matrices [13–18]. As a result of the competi-
tion between the deep minima of the log-potential and
the entropic spreading of the particle, the system under-
goes a second order freezing transition between a high-
temperature delocalized phase and a low-temperature
glassy phase where the particle is frozen in few minima
[5, 8]. In the simplest realization of such disordered sys-
tems, the random potential is sampled from a 2D Gaus-
sian free field (2D GFF). This allowed for exact predic-
tions of free energy and Gibbs measure statistics [19],
in cases where the particle is restricted to simple 1D
curves drawn on the 2D GFF potential [20–26]. Unfor-
tunately, no results are known in 2D, despite powerful
tools of integrability and conformal field theory, e.g. the
Dotsenko-Fateev integrals [27] generalizing the Selberg
integrals used for 1D curves.

One of the most studied 2D conformal field theories
is the Liouville field theory (LFT) that describes the 2D
quantum gravity [28–30], and plays an important rôle in
the holography correspondence with (2 + 1)-D gravity,
see e.g. [31, 32] and references therein. Although LFT is
an interacting theory, it has strong connections to the 2D
GFF. Indeed, this is a general feature of conformal field
theories as it is manifest, for instance, in the Coulomb gas
approach to critical statistical models [27, 33]. This view-
point underlies also recent mathematical developments
[34–37].

Ideas of relating the Gibbs measure statistics in the
2D GFF and the c � 25-LFT go back to [1, 5] (see
[38] for earlier work on LFT–disordered system connec-
tions). Links were found between LFT features (scaling
dimension, c = 25 barrier) and disordered-system phe-
nomena (multifractal exponents, freezing, respectively).
However, as pointed out in [5], these ideas were not fully
exploited, because the asymptotic behaviour of the LFT
field is subtle to implement in the statistical model un-
der consideration. This Letter reopens the problem us-
ing more powerful methods, based on recent progresses
in LFT and in understanding of log-REM freezing tran-
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Figure 1. The map of connections considered in this work.
Building on known relations between LFT and 2D GFF, we
establish exact mappings between LFT and logREMs defined
by 2D GFF (eq. (9) and (13)). Then we exploit the universal-
ity of the logREM class to extend Liouville OPE predictions
to all logREMs, e.g. eq. (19).
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Figure 2. (Colour online) a. Colour plot of a 2D GFF (4)
sample plus the log confining potential U(z) (3) with a1,2 =
.8, .6. The two singularities z = 0, 1 are indicated by dots.
The domain has lattice spacing ✏ = 2�5 and size R = 8,
with periodic boundary condition. b. Top: When eq. (8)
is violated (a1,2 = .1, Q = 2), the particle is not confined,
the R ! 1 limit is ill-defined. Middle: When eq. (7) is
violated (a1,2 = 2, Q = 2), the particle is trapped and the
Gibbs measure becomes a � peak as ✏ ! 0. Bottom: When
both eq. (7) and 8 are met (a1,2 = .8, .6, Q = 2), the extent
of the central region is stable as R ! 1, ✏ ! 0.

sitions. Adding a logarithmic confining potential to the
2D GFF allows to establish an exact correspondence be-
tween the disorder averaged Gibbs measure in 2D and
the LFT 4-point function. When carried through the
freezing transition, this result leads to predictions for the
probability distribution of the positions of the extrema in
2D and also extends to curved surfaces and higher order
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An exact mapping is established between the c � 25 Liouville field theory (LFT) and the Gibbs
measure statistics of a thermal particle in a 2D Gaussian Free Field plus a logarithmic confining
potential. The probability distribution of the position of the minimum of the energy landscape is
obtained exactly by combining the conformal bootstrap and one-step replica symmetry breaking
methods. Operator product expansions in LFT allow to unveil novel universal behaviours of the
log-correlated Random Energy class. High precision numerical tests are given.

The problem of a thermal particle embedded in a log-
correlated random potential (log-REMs) plays a key role
in many physical systems ranging from 2D localisation
[1–4] to spin-glasses [5–7], branching process [8–12], and
random matrices [13–18]. As a result of the competi-
tion between the deep minima of the log-potential and
the entropic spreading of the particle, the system under-
goes a second order freezing transition between a high-
temperature delocalized phase and a low-temperature
glassy phase where the particle is frozen in few minima
[5, 8]. In the simplest realization of such disordered sys-
tems, the random potential is sampled from a 2D Gaus-
sian free field (2D GFF). This allowed for exact predic-
tions of free energy and Gibbs measure statistics [19],
in cases where the particle is restricted to simple 1D
curves drawn on the 2D GFF potential [20–26]. Unfor-
tunately, no results are known in 2D, despite powerful
tools of integrability and conformal field theory, e.g. the
Dotsenko-Fateev integrals [27] generalizing the Selberg
integrals used for 1D curves.

One of the most studied 2D conformal field theories
is the Liouville field theory (LFT) that describes the 2D
quantum gravity [28–30], and plays an important rôle in
the holography correspondence with (2 + 1)-D gravity,
see e.g. [31, 32] and references therein. Although LFT is
an interacting theory, it has strong connections to the 2D
GFF. Indeed, this is a general feature of conformal field
theories as it is manifest, for instance, in the Coulomb gas
approach to critical statistical models [27, 33]. This view-
point underlies also recent mathematical developments
[34–37].

Ideas of relating the Gibbs measure statistics in the
2D GFF and the c � 25-LFT go back to [1, 5] (see
[38] for earlier work on LFT–disordered system connec-
tions). Links were found between LFT features (scaling
dimension, c = 25 barrier) and disordered-system phe-
nomena (multifractal exponents, freezing, respectively).
However, as pointed out in [5], these ideas were not fully
exploited, because the asymptotic behaviour of the LFT
field is subtle to implement in the statistical model un-
der consideration. This Letter reopens the problem us-
ing more powerful methods, based on recent progresses
in LFT and in understanding of log-REM freezing tran-
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Figure 1. The map of connections considered in this work.
Building on known relations between LFT and 2D GFF, we
establish exact mappings between LFT and logREMs defined
by 2D GFF (eq. (9) and (13)). Then we exploit the universal-
ity of the logREM class to extend Liouville OPE predictions
to all logREMs, e.g. eq. (19).
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Figure 2. (Colour online) a. Colour plot of a 2D GFF (4)
sample plus the log confining potential U(z) (3) with a1,2 =
.8, .6. The two singularities z = 0, 1 are indicated by dots.
The domain has lattice spacing ✏ = 2�5 and size R = 8,
with periodic boundary condition. b. Top: When eq. (8)
is violated (a1,2 = .1, Q = 2), the particle is not confined,
the R ! 1 limit is ill-defined. Middle: When eq. (7) is
violated (a1,2 = 2, Q = 2), the particle is trapped and the
Gibbs measure becomes a � peak as ✏ ! 0. Bottom: When
both eq. (7) and 8 are met (a1,2 = .8, .6, Q = 2), the extent
of the central region is stable as R ! 1, ✏ ! 0.

sitions. Adding a logarithmic confining potential to the
2D GFF allows to establish an exact correspondence be-
tween the disorder averaged Gibbs measure in 2D and
the LFT 4-point function. When carried through the
freezing transition, this result leads to predictions for the
probability distribution of the positions of the extrema in
2D and also extends to curved surfaces and higher order
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The problem of a thermal particle embedded in a log-
correlated random potential (log-REMs) plays a key role
in many physical systems ranging from 2D localisation
[1–4] to spin-glasses [5–7], branching process [8–12], and
random matrices [13–18]. As a result of the competi-
tion between the deep minima of the log-potential and
the entropic spreading of the particle, the system under-
goes a second order freezing transition between a high-
temperature delocalized phase and a low-temperature
glassy phase where the particle is frozen in few minima
[5, 8]. In the simplest realization of such disordered sys-
tems, the random potential is sampled from a 2D Gaus-
sian free field (2D GFF). This allowed for exact predic-
tions of free energy and Gibbs measure statistics [19],
in cases where the particle is restricted to simple 1D
curves drawn on the 2D GFF potential [20–26]. Unfor-
tunately, no results are known in 2D, despite powerful
tools of integrability and conformal field theory, e.g. the
Dotsenko-Fateev integrals [27] generalizing the Selberg
integrals used for 1D curves.

One of the most studied 2D conformal field theories
is the Liouville field theory (LFT) that describes the 2D
quantum gravity [28–30], and plays an important rôle in
the holography correspondence with (2 + 1)-D gravity,
see e.g. [31, 32] and references therein. Although LFT is
an interacting theory, it has strong connections to the 2D
GFF. Indeed, this is a general feature of conformal field
theories as it is manifest, for instance, in the Coulomb gas
approach to critical statistical models [27, 33]. This view-
point underlies also recent mathematical developments
[34–37].

Ideas of relating the Gibbs measure statistics in the
2D GFF and the c � 25-LFT go back to [1, 5] (see
[38] for earlier work on LFT–disordered system connec-
tions). Links were found between LFT features (scaling
dimension, c = 25 barrier) and disordered-system phe-
nomena (multifractal exponents, freezing, respectively).
However, as pointed out in [5], these ideas were not fully
exploited, because the asymptotic behaviour of the LFT
field is subtle to implement in the statistical model un-
der consideration. This Letter reopens the problem us-
ing more powerful methods, based on recent progresses
in LFT and in understanding of log-REM freezing tran-
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Figure 1. The map of connections considered in this work.
Building on known relations between LFT and 2D GFF, we
establish exact mappings between LFT and logREMs defined
by 2D GFF (eq. (9) and (13)). Then we exploit the universal-
ity of the logREM class to extend Liouville OPE predictions
to all logREMs, e.g. eq. (19).
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Figure 2. (Colour online) a. Colour plot of a 2D GFF (4)
sample plus the log confining potential U(z) (3) with a1,2 =
.8, .6. The two singularities z = 0, 1 are indicated by dots.
The domain has lattice spacing ✏ = 2�5 and size R = 8,
with periodic boundary condition. b. Top: When eq. (8)
is violated (a1,2 = .1, Q = 2), the particle is not confined,
the R ! 1 limit is ill-defined. Middle: When eq. (7) is
violated (a1,2 = 2, Q = 2), the particle is trapped and the
Gibbs measure becomes a � peak as ✏ ! 0. Bottom: When
both eq. (7) and 8 are met (a1,2 = .8, .6, Q = 2), the extent
of the central region is stable as R ! 1, ✏ ! 0.

sitions. Adding a logarithmic confining potential to the
2D GFF allows to establish an exact correspondence be-
tween the disorder averaged Gibbs measure in 2D and
the LFT 4-point function. When carried through the
freezing transition, this result leads to predictions for the
probability distribution of the positions of the extrema in
2D and also extends to curved surfaces and higher order
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methods. Operator product expansions in LFT allow to unveil novel universal behaviours of the
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The problem of a thermal particle embedded in a log-
correlated random potential (log-REMs) plays a key role
in many physical systems ranging from 2D localisation
[1–4] to spin-glasses [5–7], branching process [8–12], and
random matrices [13–18]. As a result of the competi-
tion between the deep minima of the log-potential and
the entropic spreading of the particle, the system under-
goes a second order freezing transition between a high-
temperature delocalized phase and a low-temperature
glassy phase where the particle is frozen in few minima
[5, 8]. In the simplest realization of such disordered sys-
tems, the random potential is sampled from a 2D Gaus-
sian free field (2D GFF). This allowed for exact predic-
tions of free energy and Gibbs measure statistics [19],
in cases where the particle is restricted to simple 1D
curves drawn on the 2D GFF potential [20–26]. Unfor-
tunately, no results are known in 2D, despite powerful
tools of integrability and conformal field theory, e.g. the
Dotsenko-Fateev integrals [27] generalizing the Selberg
integrals used for 1D curves.

One of the most studied 2D conformal field theories
is the Liouville field theory (LFT) that describes the 2D
quantum gravity [28–30], and plays an important rôle in
the holography correspondence with (2 + 1)-D gravity,
see e.g. [31, 32] and references therein. Although LFT is
an interacting theory, it has strong connections to the 2D
GFF. Indeed, this is a general feature of conformal field
theories as it is manifest, for instance, in the Coulomb gas
approach to critical statistical models [27, 33]. This view-
point underlies also recent mathematical developments
[34–37].

Ideas of relating the Gibbs measure statistics in the
2D GFF and the c � 25-LFT go back to [1, 5] (see
[38] for earlier work on LFT–disordered system connec-
tions). Links were found between LFT features (scaling
dimension, c = 25 barrier) and disordered-system phe-
nomena (multifractal exponents, freezing, respectively).
However, as pointed out in [5], these ideas were not fully
exploited, because the asymptotic behaviour of the LFT
field is subtle to implement in the statistical model un-
der consideration. This Letter reopens the problem us-
ing more powerful methods, based on recent progresses
in LFT and in understanding of log-REM freezing tran-
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Figure 1. The map of connections considered in this work.
Building on known relations between LFT and 2D GFF, we
establish exact mappings between LFT and logREMs defined
by 2D GFF (eq. (9) and (13)). Then we exploit the universal-
ity of the logREM class to extend Liouville OPE predictions
to all logREMs, e.g. eq. (19).
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Figure 2. (Colour online) a. Colour plot of a 2D GFF (4)
sample plus the log confining potential U(z) (3) with a1,2 =
.8, .6. The two singularities z = 0, 1 are indicated by dots.
The domain has lattice spacing ✏ = 2�5 and size R = 8,
with periodic boundary condition. b. Top: When eq. (8)
is violated (a1,2 = .1, Q = 2), the particle is not confined,
the R ! 1 limit is ill-defined. Middle: When eq. (7) is
violated (a1,2 = 2, Q = 2), the particle is trapped and the
Gibbs measure becomes a � peak as ✏ ! 0. Bottom: When
both eq. (7) and 8 are met (a1,2 = .8, .6, Q = 2), the extent
of the central region is stable as R ! 1, ✏ ! 0.

sitions. Adding a logarithmic confining potential to the
2D GFF allows to establish an exact correspondence be-
tween the disorder averaged Gibbs measure in 2D and
the LFT 4-point function. When carried through the
freezing transition, this result leads to predictions for the
probability distribution of the positions of the extrema in
2D and also extends to curved surfaces and higher order
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2

Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.
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The problem of a thermal particle embedded in a log-
correlated random potential (log-REMs) plays a key role
in many physical systems ranging from 2D localisation
[1–4] to spin-glasses [5–7], branching process [8–12], and
random matrices [13–18]. As a result of the competi-
tion between the deep minima of the log-potential and
the entropic spreading of the particle, the system under-
goes a second order freezing transition between a high-
temperature delocalized phase and a low-temperature
glassy phase where the particle is frozen in few minima
[5, 8]. In the simplest realization of such disordered sys-
tems, the random potential is sampled from a 2D Gaus-
sian free field (2D GFF). This allowed for exact predic-
tions of free energy and Gibbs measure statistics [19],
in cases where the particle is restricted to simple 1D
curves drawn on the 2D GFF potential [20–26]. Unfor-
tunately, no results are known in 2D, despite powerful
tools of integrability and conformal field theory, e.g. the
Dotsenko-Fateev integrals [27] generalizing the Selberg
integrals used for 1D curves.

One of the most studied 2D conformal field theories
is the Liouville field theory (LFT) that describes the 2D
quantum gravity [28–30], and plays an important rôle in
the holography correspondence with (2 + 1)-D gravity,
see e.g. [31, 32] and references therein. Although LFT is
an interacting theory, it has strong connections to the 2D
GFF. Indeed, this is a general feature of conformal field
theories as it is manifest, for instance, in the Coulomb gas
approach to critical statistical models [27, 33]. This view-
point underlies also recent mathematical developments
[34–37].

Ideas of relating the Gibbs measure statistics in the
2D GFF and the c � 25-LFT go back to [1, 5] (see
[38] for earlier work on LFT–disordered system connec-
tions). Links were found between LFT features (scaling
dimension, c = 25 barrier) and disordered-system phe-
nomena (multifractal exponents, freezing, respectively).
However, as pointed out in [5], these ideas were not fully
exploited, because the asymptotic behaviour of the LFT
field is subtle to implement in the statistical model un-
der consideration. This Letter reopens the problem us-
ing more powerful methods, based on recent progresses
in LFT and in understanding of log-REM freezing tran-
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Figure 1. The map of connections considered in this work.
Building on known relations between LFT and 2D GFF, we
establish exact mappings between LFT and logREMs defined
by 2D GFF (eq. (9) and (13)). Then we exploit the universal-
ity of the logREM class to extend Liouville OPE predictions
to all logREMs, e.g. eq. (19).
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Figure 2. (Colour online) a. Colour plot of a 2D GFF (4)
sample plus the log confining potential U(z) (3) with a1,2 =
.8, .6. The two singularities z = 0, 1 are indicated by dots.
The domain has lattice spacing ✏ = 2�5 and size R = 8,
with periodic boundary condition. b. Top: When eq. (8)
is violated (a1,2 = .1, Q = 2), the particle is not confined,
the R ! 1 limit is ill-defined. Middle: When eq. (7) is
violated (a1,2 = 2, Q = 2), the particle is trapped and the
Gibbs measure becomes a � peak as ✏ ! 0. Bottom: When
both eq. (7) and 8 are met (a1,2 = .8, .6, Q = 2), the extent
of the central region is stable as R ! 1, ✏ ! 0.

sitions. Adding a logarithmic confining potential to the
2D GFF allows to establish an exact correspondence be-
tween the disorder averaged Gibbs measure in 2D and
the LFT 4-point function. When carried through the
freezing transition, this result leads to predictions for the
probability distribution of the positions of the extrema in
2D and also extends to curved surfaces and higher order
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The problem of a thermal particle embedded in a log-
correlated random potential (log-REMs) plays a key role
in many physical systems ranging from 2D localisation
[1–4] to spin-glasses [5–7], branching process [8–12], and
random matrices [13–18]. As a result of the competi-
tion between the deep minima of the log-potential and
the entropic spreading of the particle, the system under-
goes a second order freezing transition between a high-
temperature delocalized phase and a low-temperature
glassy phase where the particle is frozen in few minima
[5, 8]. In the simplest realization of such disordered sys-
tems, the random potential is sampled from a 2D Gaus-
sian free field (2D GFF). This allowed for exact predic-
tions of free energy and Gibbs measure statistics [19],
in cases where the particle is restricted to simple 1D
curves drawn on the 2D GFF potential [20–26]. Unfor-
tunately, no results are known in 2D, despite powerful
tools of integrability and conformal field theory, e.g. the
Dotsenko-Fateev integrals [27] generalizing the Selberg
integrals used for 1D curves.

One of the most studied 2D conformal field theories
is the Liouville field theory (LFT) that describes the 2D
quantum gravity [28–30], and plays an important rôle in
the holography correspondence with (2 + 1)-D gravity,
see e.g. [31, 32] and references therein. Although LFT is
an interacting theory, it has strong connections to the 2D
GFF. Indeed, this is a general feature of conformal field
theories as it is manifest, for instance, in the Coulomb gas
approach to critical statistical models [27, 33]. This view-
point underlies also recent mathematical developments
[34–37].

Ideas of relating the Gibbs measure statistics in the
2D GFF and the c � 25-LFT go back to [1, 5] (see
[38] for earlier work on LFT–disordered system connec-
tions). Links were found between LFT features (scaling
dimension, c = 25 barrier) and disordered-system phe-
nomena (multifractal exponents, freezing, respectively).
However, as pointed out in [5], these ideas were not fully
exploited, because the asymptotic behaviour of the LFT
field is subtle to implement in the statistical model un-
der consideration. This Letter reopens the problem us-
ing more powerful methods, based on recent progresses
in LFT and in understanding of log-REM freezing tran-
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Figure 1. The map of connections considered in this work.
Building on known relations between LFT and 2D GFF, we
establish exact mappings between LFT and logREMs defined
by 2D GFF (eq. (9) and (13)). Then we exploit the universal-
ity of the logREM class to extend Liouville OPE predictions
to all logREMs, e.g. eq. (19).
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Figure 2. (Colour online) a. Colour plot of a 2D GFF (4)
sample plus the log confining potential U(z) (3) with a1,2 =
.8, .6. The two singularities z = 0, 1 are indicated by dots.
The domain has lattice spacing ✏ = 2�5 and size R = 8,
with periodic boundary condition. b. Top: When eq. (8)
is violated (a1,2 = .1, Q = 2), the particle is not confined,
the R ! 1 limit is ill-defined. Middle: When eq. (7) is
violated (a1,2 = 2, Q = 2), the particle is trapped and the
Gibbs measure becomes a � peak as ✏ ! 0. Bottom: When
both eq. (7) and 8 are met (a1,2 = .8, .6, Q = 2), the extent
of the central region is stable as R ! 1, ✏ ! 0.

sitions. Adding a logarithmic confining potential to the
2D GFF allows to establish an exact correspondence be-
tween the disorder averaged Gibbs measure in 2D and
the LFT 4-point function. When carried through the
freezing transition, this result leads to predictions for the
probability distribution of the positions of the extrema in
2D and also extends to curved surfaces and higher order
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2

Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.
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Pierre Le Doussal
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The problem of a thermal particle embedded in a log-
correlated random potential (log-REMs) plays a key role
in many physical systems ranging from 2D localisation
[1–4] to spin-glasses [5–7], branching process [8–12], and
random matrices [13–18]. As a result of the competi-
tion between the deep minima of the log-potential and
the entropic spreading of the particle, the system under-
goes a second order freezing transition between a high-
temperature delocalized phase and a low-temperature
glassy phase where the particle is frozen in few minima
[5, 8]. In the simplest realization of such disordered sys-
tems, the random potential is sampled from a 2D Gaus-
sian free field (2D GFF). This allowed for exact predic-
tions of free energy and Gibbs measure statistics [19],
in cases where the particle is restricted to simple 1D
curves drawn on the 2D GFF potential [20–26]. Unfor-
tunately, no results are known in 2D, despite powerful
tools of integrability and conformal field theory, e.g. the
Dotsenko-Fateev integrals [27] generalizing the Selberg
integrals used for 1D curves.

One of the most studied 2D conformal field theories
is the Liouville field theory (LFT) that describes the 2D
quantum gravity [28–30], and plays an important rôle in
the holography correspondence with (2 + 1)-D gravity,
see e.g. [31, 32] and references therein. Although LFT is
an interacting theory, it has strong connections to the 2D
GFF. Indeed, this is a general feature of conformal field
theories as it is manifest, for instance, in the Coulomb gas
approach to critical statistical models [27, 33]. This view-
point underlies also recent mathematical developments
[34–37].

Ideas of relating the Gibbs measure statistics in the
2D GFF and the c � 25-LFT go back to [1, 5] (see
[38] for earlier work on LFT–disordered system connec-
tions). Links were found between LFT features (scaling
dimension, c = 25 barrier) and disordered-system phe-
nomena (multifractal exponents, freezing, respectively).
However, as pointed out in [5], these ideas were not fully
exploited, because the asymptotic behaviour of the LFT
field is subtle to implement in the statistical model un-
der consideration. This Letter reopens the problem us-
ing more powerful methods, based on recent progresses
in LFT and in understanding of log-REM freezing tran-
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Figure 1. The map of connections considered in this work.
Building on known relations between LFT and 2D GFF, we
establish exact mappings between LFT and logREMs defined
by 2D GFF (eq. (9) and (13)). Then we exploit the universal-
ity of the logREM class to extend Liouville OPE predictions
to all logREMs, e.g. eq. (19).
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Figure 2. (Colour online) a. Colour plot of a 2D GFF (4)
sample plus the log confining potential U(z) (3) with a1,2 =
.8, .6. The two singularities z = 0, 1 are indicated by dots.
The domain has lattice spacing ✏ = 2�5 and size R = 8,
with periodic boundary condition. b. Top: When eq. (8)
is violated (a1,2 = .1, Q = 2), the particle is not confined,
the R ! 1 limit is ill-defined. Middle: When eq. (7) is
violated (a1,2 = 2, Q = 2), the particle is trapped and the
Gibbs measure becomes a � peak as ✏ ! 0. Bottom: When
both eq. (7) and 8 are met (a1,2 = .8, .6, Q = 2), the extent
of the central region is stable as R ! 1, ✏ ! 0.

sitions. Adding a logarithmic confining potential to the
2D GFF allows to establish an exact correspondence be-
tween the disorder averaged Gibbs measure in 2D and
the LFT 4-point function. When carried through the
freezing transition, this result leads to predictions for the
probability distribution of the positions of the extrema in
2D and also extends to curved surfaces and higher order
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Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
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CNRS-Laboratoire de Physique Théorique de l’École Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex, France

An exact mapping is established between the c � 25 Liouville field theory (LFT) and the Gibbs
measure statistics of a thermal particle in a 2D Gaussian Free Field plus a logarithmic confining
potential. The probability distribution of the position of the minimum of the energy landscape is
obtained exactly by combining the conformal bootstrap and one-step replica symmetry breaking
methods. Operator product expansions in LFT allow to unveil novel universal behaviours of the
log-correlated Random Energy class. High precision numerical tests are given.

The problem of a thermal particle embedded in a log-
correlated random potential (log-REMs) plays a key role
in many physical systems ranging from 2D localisation
[1–4] to spin-glasses [5–7], branching process [8–12], and
random matrices [13–18]. As a result of the competi-
tion between the deep minima of the log-potential and
the entropic spreading of the particle, the system under-
goes a second order freezing transition between a high-
temperature delocalized phase and a low-temperature
glassy phase where the particle is frozen in few minima
[5, 8]. In the simplest realization of such disordered sys-
tems, the random potential is sampled from a 2D Gaus-
sian free field (2D GFF). This allowed for exact predic-
tions of free energy and Gibbs measure statistics [19],
in cases where the particle is restricted to simple 1D
curves drawn on the 2D GFF potential [20–26]. Unfor-
tunately, no results are known in 2D, despite powerful
tools of integrability and conformal field theory, e.g. the
Dotsenko-Fateev integrals [27] generalizing the Selberg
integrals used for 1D curves.

One of the most studied 2D conformal field theories
is the Liouville field theory (LFT) that describes the 2D
quantum gravity [28–30], and plays an important rôle in
the holography correspondence with (2 + 1)-D gravity,
see e.g. [31, 32] and references therein. Although LFT is
an interacting theory, it has strong connections to the 2D
GFF. Indeed, this is a general feature of conformal field
theories as it is manifest, for instance, in the Coulomb gas
approach to critical statistical models [27, 33]. This view-
point underlies also recent mathematical developments
[34–37].

Ideas of relating the Gibbs measure statistics in the
2D GFF and the c � 25-LFT go back to [1, 5] (see
[38] for earlier work on LFT–disordered system connec-
tions). Links were found between LFT features (scaling
dimension, c = 25 barrier) and disordered-system phe-
nomena (multifractal exponents, freezing, respectively).
However, as pointed out in [5], these ideas were not fully
exploited, because the asymptotic behaviour of the LFT
field is subtle to implement in the statistical model un-
der consideration. This Letter reopens the problem us-
ing more powerful methods, based on recent progresses
in LFT and in understanding of log-REM freezing tran-
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Figure 1. The map of connections considered in this work.
Building on known relations between LFT and 2D GFF, we
establish exact mappings between LFT and logREMs defined
by 2D GFF (eq. (9) and (13)). Then we exploit the universal-
ity of the logREM class to extend Liouville OPE predictions
to all logREMs, e.g. eq. (19).
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Figure 2. (Colour online) a. Colour plot of a 2D GFF (4)
sample plus the log confining potential U(z) (3) with a1,2 =
.8, .6. The two singularities z = 0, 1 are indicated by dots.
The domain has lattice spacing ✏ = 2�5 and size R = 8,
with periodic boundary condition. b. Top: When eq. (8)
is violated (a1,2 = .1, Q = 2), the particle is not confined,
the R ! 1 limit is ill-defined. Middle: When eq. (7) is
violated (a1,2 = 2, Q = 2), the particle is trapped and the
Gibbs measure becomes a � peak as ✏ ! 0. Bottom: When
both eq. (7) and 8 are met (a1,2 = .8, .6, Q = 2), the extent
of the central region is stable as R ! 1, ✏ ! 0.

sitions. Adding a logarithmic confining potential to the
2D GFF allows to establish an exact correspondence be-
tween the disorder averaged Gibbs measure in 2D and
the LFT 4-point function. When carried through the
freezing transition, this result leads to predictions for the
probability distribution of the positions of the extrema in
2D and also extends to curved surfaces and higher order
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obtained exactly by combining the conformal bootstrap and one-step replica symmetry breaking
methods. Operator product expansions in LFT allow to unveil novel universal behaviours of the
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The problem of a thermal particle embedded in a log-
correlated random potential (log-REMs) plays a key role
in many physical systems ranging from 2D localisation
[1–4] to spin-glasses [5–7], branching process [8–12], and
random matrices [13–18]. As a result of the competi-
tion between the deep minima of the log-potential and
the entropic spreading of the particle, the system under-
goes a second order freezing transition between a high-
temperature delocalized phase and a low-temperature
glassy phase where the particle is frozen in few minima
[5, 8]. In the simplest realization of such disordered sys-
tems, the random potential is sampled from a 2D Gaus-
sian free field (2D GFF). This allowed for exact predic-
tions of free energy and Gibbs measure statistics [19],
in cases where the particle is restricted to simple 1D
curves drawn on the 2D GFF potential [20–26]. Unfor-
tunately, no results are known in 2D, despite powerful
tools of integrability and conformal field theory, e.g. the
Dotsenko-Fateev integrals [27] generalizing the Selberg
integrals used for 1D curves.

One of the most studied 2D conformal field theories
is the Liouville field theory (LFT) that describes the 2D
quantum gravity [28–30], and plays an important rôle in
the holography correspondence with (2 + 1)-D gravity,
see e.g. [31, 32] and references therein. Although LFT is
an interacting theory, it has strong connections to the 2D
GFF. Indeed, this is a general feature of conformal field
theories as it is manifest, for instance, in the Coulomb gas
approach to critical statistical models [27, 33]. This view-
point underlies also recent mathematical developments
[34–37].

Ideas of relating the Gibbs measure statistics in the
2D GFF and the c � 25-LFT go back to [1, 5] (see
[38] for earlier work on LFT–disordered system connec-
tions). Links were found between LFT features (scaling
dimension, c = 25 barrier) and disordered-system phe-
nomena (multifractal exponents, freezing, respectively).
However, as pointed out in [5], these ideas were not fully
exploited, because the asymptotic behaviour of the LFT
field is subtle to implement in the statistical model un-
der consideration. This Letter reopens the problem us-
ing more powerful methods, based on recent progresses
in LFT and in understanding of log-REM freezing tran-
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Figure 1. The map of connections considered in this work.
Building on known relations between LFT and 2D GFF, we
establish exact mappings between LFT and logREMs defined
by 2D GFF (eq. (9) and (13)). Then we exploit the universal-
ity of the logREM class to extend Liouville OPE predictions
to all logREMs, e.g. eq. (19).
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Figure 2. (Colour online) a. Colour plot of a 2D GFF (4)
sample plus the log confining potential U(z) (3) with a1,2 =
.8, .6. The two singularities z = 0, 1 are indicated by dots.
The domain has lattice spacing ✏ = 2�5 and size R = 8,
with periodic boundary condition. b. Top: When eq. (8)
is violated (a1,2 = .1, Q = 2), the particle is not confined,
the R ! 1 limit is ill-defined. Middle: When eq. (7) is
violated (a1,2 = 2, Q = 2), the particle is trapped and the
Gibbs measure becomes a � peak as ✏ ! 0. Bottom: When
both eq. (7) and 8 are met (a1,2 = .8, .6, Q = 2), the extent
of the central region is stable as R ! 1, ✏ ! 0.

sitions. Adding a logarithmic confining potential to the
2D GFF allows to establish an exact correspondence be-
tween the disorder averaged Gibbs measure in 2D and
the LFT 4-point function. When carried through the
freezing transition, this result leads to predictions for the
probability distribution of the positions of the extrema in
2D and also extends to curved surfaces and higher order
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The problem of a thermal particle embedded in a log-
correlated random potential (log-REMs) plays a key role
in many physical systems ranging from 2D localisation
[1–4] to spin-glasses [5–7], branching process [8–12], and
random matrices [13–18]. As a result of the competi-
tion between the deep minima of the log-potential and
the entropic spreading of the particle, the system under-
goes a second order freezing transition between a high-
temperature delocalized phase and a low-temperature
glassy phase where the particle is frozen in few minima
[5, 8]. In the simplest realization of such disordered sys-
tems, the random potential is sampled from a 2D Gaus-
sian free field (2D GFF). This allowed for exact predic-
tions of free energy and Gibbs measure statistics [19],
in cases where the particle is restricted to simple 1D
curves drawn on the 2D GFF potential [20–26]. Unfor-
tunately, no results are known in 2D, despite powerful
tools of integrability and conformal field theory, e.g. the
Dotsenko-Fateev integrals [27] generalizing the Selberg
integrals used for 1D curves.

One of the most studied 2D conformal field theories
is the Liouville field theory (LFT) that describes the 2D
quantum gravity [28–30], and plays an important rôle in
the holography correspondence with (2 + 1)-D gravity,
see e.g. [31, 32] and references therein. Although LFT is
an interacting theory, it has strong connections to the 2D
GFF. Indeed, this is a general feature of conformal field
theories as it is manifest, for instance, in the Coulomb gas
approach to critical statistical models [27, 33]. This view-
point underlies also recent mathematical developments
[34–37].

Ideas of relating the Gibbs measure statistics in the
2D GFF and the c � 25-LFT go back to [1, 5] (see
[38] for earlier work on LFT–disordered system connec-
tions). Links were found between LFT features (scaling
dimension, c = 25 barrier) and disordered-system phe-
nomena (multifractal exponents, freezing, respectively).
However, as pointed out in [5], these ideas were not fully
exploited, because the asymptotic behaviour of the LFT
field is subtle to implement in the statistical model un-
der consideration. This Letter reopens the problem us-
ing more powerful methods, based on recent progresses
in LFT and in understanding of log-REM freezing tran-
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Figure 1. The map of connections considered in this work.
Building on known relations between LFT and 2D GFF, we
establish exact mappings between LFT and logREMs defined
by 2D GFF (eq. (9) and (13)). Then we exploit the universal-
ity of the logREM class to extend Liouville OPE predictions
to all logREMs, e.g. eq. (19).
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Figure 2. (Colour online) a. Colour plot of a 2D GFF (4)
sample plus the log confining potential U(z) (3) with a1,2 =
.8, .6. The two singularities z = 0, 1 are indicated by dots.
The domain has lattice spacing ✏ = 2�5 and size R = 8,
with periodic boundary condition. b. Top: When eq. (8)
is violated (a1,2 = .1, Q = 2), the particle is not confined,
the R ! 1 limit is ill-defined. Middle: When eq. (7) is
violated (a1,2 = 2, Q = 2), the particle is trapped and the
Gibbs measure becomes a � peak as ✏ ! 0. Bottom: When
both eq. (7) and 8 are met (a1,2 = .8, .6, Q = 2), the extent
of the central region is stable as R ! 1, ✏ ! 0.

sitions. Adding a logarithmic confining potential to the
2D GFF allows to establish an exact correspondence be-
tween the disorder averaged Gibbs measure in 2D and
the LFT 4-point function. When carried through the
freezing transition, this result leads to predictions for the
probability distribution of the positions of the extrema in
2D and also extends to curved surfaces and higher order
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Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.
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Pierre Le Doussal
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The problem of a thermal particle embedded in a log-
correlated random potential (log-REMs) plays a key role
in many physical systems ranging from 2D localisation
[1–4] to spin-glasses [5–7], branching process [8–12], and
random matrices [13–18]. As a result of the competi-
tion between the deep minima of the log-potential and
the entropic spreading of the particle, the system under-
goes a second order freezing transition between a high-
temperature delocalized phase and a low-temperature
glassy phase where the particle is frozen in few minima
[5, 8]. In the simplest realization of such disordered sys-
tems, the random potential is sampled from a 2D Gaus-
sian free field (2D GFF). This allowed for exact predic-
tions of free energy and Gibbs measure statistics [19],
in cases where the particle is restricted to simple 1D
curves drawn on the 2D GFF potential [20–26]. Unfor-
tunately, no results are known in 2D, despite powerful
tools of integrability and conformal field theory, e.g. the
Dotsenko-Fateev integrals [27] generalizing the Selberg
integrals used for 1D curves.

One of the most studied 2D conformal field theories
is the Liouville field theory (LFT) that describes the 2D
quantum gravity [28–30], and plays an important rôle in
the holography correspondence with (2 + 1)-D gravity,
see e.g. [31, 32] and references therein. Although LFT is
an interacting theory, it has strong connections to the 2D
GFF. Indeed, this is a general feature of conformal field
theories as it is manifest, for instance, in the Coulomb gas
approach to critical statistical models [27, 33]. This view-
point underlies also recent mathematical developments
[34–37].

Ideas of relating the Gibbs measure statistics in the
2D GFF and the c � 25-LFT go back to [1, 5] (see
[38] for earlier work on LFT–disordered system connec-
tions). Links were found between LFT features (scaling
dimension, c = 25 barrier) and disordered-system phe-
nomena (multifractal exponents, freezing, respectively).
However, as pointed out in [5], these ideas were not fully
exploited, because the asymptotic behaviour of the LFT
field is subtle to implement in the statistical model un-
der consideration. This Letter reopens the problem us-
ing more powerful methods, based on recent progresses
in LFT and in understanding of log-REM freezing tran-
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Figure 1. The map of connections considered in this work.
Building on known relations between LFT and 2D GFF, we
establish exact mappings between LFT and logREMs defined
by 2D GFF (eq. (9) and (13)). Then we exploit the universal-
ity of the logREM class to extend Liouville OPE predictions
to all logREMs, e.g. eq. (19).
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Figure 2. (Colour online) a. Colour plot of a 2D GFF (4)
sample plus the log confining potential U(z) (3) with a1,2 =
.8, .6. The two singularities z = 0, 1 are indicated by dots.
The domain has lattice spacing ✏ = 2�5 and size R = 8,
with periodic boundary condition. b. Top: When eq. (8)
is violated (a1,2 = .1, Q = 2), the particle is not confined,
the R ! 1 limit is ill-defined. Middle: When eq. (7) is
violated (a1,2 = 2, Q = 2), the particle is trapped and the
Gibbs measure becomes a � peak as ✏ ! 0. Bottom: When
both eq. (7) and 8 are met (a1,2 = .8, .6, Q = 2), the extent
of the central region is stable as R ! 1, ✏ ! 0.

sitions. Adding a logarithmic confining potential to the
2D GFF allows to establish an exact correspondence be-
tween the disorder averaged Gibbs measure in 2D and
the LFT 4-point function. When carried through the
freezing transition, this result leads to predictions for the
probability distribution of the positions of the extrema in
2D and also extends to curved surfaces and higher order
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Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.
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Gibbs measure correlations. More generally, we use the
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dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1
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justed to vanish, i.e.
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If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
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too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
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bound phases, in which the Gibbs measure is a trivial �,
by requiring
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Moreover, the potential must also confine the particle at
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non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or
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non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
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cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
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troduce some notations. Let h
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�1. The
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case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
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2

Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.

2

Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.

2

Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.

rigorous probabilistic construction of LCFT path integral 

axiomatic construction of LCFT 

5

[1] I. I. Kogan, C. Mudry, and A. M. Tsvelik, Phys. Rev.
Lett. 77, 707 (1996).

[2] C. Chamon, C. Mudry, and X. Wen, Phys. Rev. Lett.
77, 4194 (1996).

[3] H. E. Castillo, C. de C. Chamon, E. Fradkin, P. M. Gold-
bart, and C. Mudry, Phys. Rev. B 56, 10668 (1997).

[4] B. Horovitz and P. Le Doussal, Phys. Rev. B 65, 125323
(2002).

[5] D. Carpentier and P. Le Doussal, Phys. Rev E 63, 026110
(2001).

[6] Y. V. Fyodorov and H.-J. Sommers, Nuclear Physics B
764, 128 (2007).

[7] Y. V. Fyodorov and J.-P. Bouchaud, JETP Letters 86,
487 (2007); Journal of Physics A: Mathematical and The-
oretical 41, 324009 (2008).

[8] B. Derrida and H. Spohn, Journal of Statistical Physics
51, 817 (1988).

[9] P. L. Krapivsky and S. N. Majumdar, Phys. Rev. Lett.
85, 5492 (2000).
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Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.
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all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
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Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
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[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].
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deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
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happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring
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Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or
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divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
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field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
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1.
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sphere with the curvature concentrated at 1 and van-
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�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.

2

Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.

2

Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.

2

Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.

rigorous probabilistic construction of LCFT path integral 

axiomatic construction of LCFT 

5

[1] I. I. Kogan, C. Mudry, and A. M. Tsvelik, Phys. Rev.
Lett. 77, 707 (1996).

[2] C. Chamon, C. Mudry, and X. Wen, Phys. Rev. Lett.
77, 4194 (1996).

[3] H. E. Castillo, C. de C. Chamon, E. Fradkin, P. M. Gold-
bart, and C. Mudry, Phys. Rev. B 56, 10668 (1997).

[4] B. Horovitz and P. Le Doussal, Phys. Rev. B 65, 125323
(2002).

[5] D. Carpentier and P. Le Doussal, Phys. Rev E 63, 026110
(2001).

[6] Y. V. Fyodorov and H.-J. Sommers, Nuclear Physics B
764, 128 (2007).

[7] Y. V. Fyodorov and J.-P. Bouchaud, JETP Letters 86,
487 (2007); Journal of Physics A: Mathematical and The-
oretical 41, 324009 (2008).

[8] B. Derrida and H. Spohn, Journal of Statistical Physics
51, 817 (1988).

[9] P. L. Krapivsky and S. N. Majumdar, Phys. Rev. Lett.
85, 5492 (2000).
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Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.

we show 
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too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
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(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:
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where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:
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where we noted K4
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better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.
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Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
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2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
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When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F
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bound phases, in which the Gibbs measure is a trivial �,
by requiring
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Moreover, the potential must also confine the particle at
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non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or
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When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
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sphere with the curvature concentrated at 1 and van-
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dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
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illustrated in Fig. 1
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Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.
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Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.

we show 

2

Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.

2

Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.
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ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1
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2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.
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�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:
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When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1
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justed to vanish, i.e.
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a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:
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where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
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�a'(w), also called vertex operators. The 4-
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tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
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2

Gibbs measure correlations. More generally, we use the
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dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1
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representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.
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Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring
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b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
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16⇡
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1
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�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
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d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.

2

Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.

rigorous probabilistic construction of LCFT path integral 

axiomatic construction of LCFT 

5

[1] I. I. Kogan, C. Mudry, and A. M. Tsvelik, Phys. Rev.
Lett. 77, 707 (1996).

[2] C. Chamon, C. Mudry, and X. Wen, Phys. Rev. Lett.
77, 4194 (1996).

[3] H. E. Castillo, C. de C. Chamon, E. Fradkin, P. M. Gold-
bart, and C. Mudry, Phys. Rev. B 56, 10668 (1997).

[4] B. Horovitz and P. Le Doussal, Phys. Rev. B 65, 125323
(2002).

[5] D. Carpentier and P. Le Doussal, Phys. Rev E 63, 026110
(2001).

[6] Y. V. Fyodorov and H.-J. Sommers, Nuclear Physics B
764, 128 (2007).

[7] Y. V. Fyodorov and J.-P. Bouchaud, JETP Letters 86,
487 (2007); Journal of Physics A: Mathematical and The-
oretical 41, 324009 (2008).

[8] B. Derrida and H. Spohn, Journal of Statistical Physics
51, 817 (1988).

[9] P. L. Krapivsky and S. N. Majumdar, Phys. Rev. Lett.
85, 5492 (2000).
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Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.
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dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.
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Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.
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Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.

3

mode [52] (see [36] for recent rigorous work in a related
setting). Accordingly, the functional integral is written
as

R
D' =

R
R d'0

R
D'̃. Once we performed the inte-

gration over '0, the one over '̃ can be written as an
expectation over the 2D GFF without zero mode, i.e.,
over � defined in eq. (4), that is, for any observable O,

we have
R
D'̃e

�
R

1
16⇡ (r'̃)

2
d
2
z
O['̃] = O[�]. With these

considerations one can obtain

µbK4 = e�a1�(0)�a2�(1)+(a1+a2)�(1)�b�(z)/Z0 , (12)

where Z0 =
R
C e

�b�(z)d2z. The choice of a3 in (9) is

crucial for the apparition of Z
�1

0
. Then, a complete-

the-square trick allows to identify the average in (12) to
p�(z), leading to (9) (see [45] for details).

The above steps generalize easily to the multi-point
correlations of powers of the Gibbs measure p

qi

�
(zi) =

(p�(zi))qi , qi � 0, with U(z) =
P

k

j=1
4aj ln |z � wj | such

that 8aj < Q/2 and ak+1

def
= Q �

P
k

j=1
aj < Q/2 (com-

pare to (7) and (8)). The result is stated as

nY

i=1

p
qi

�
(zi)

�<1

/

*
k+1Y

j=1

Vaj (wj)
nY

i=1

V�qi(zi)

+

b

(13)

where wk+1 = 1 and 8qi < Q/(2�) [45]. Moreover, (13)
holds, in general closed surfaces [45]. While mapping
Gibbs measure correlations onto LFT correlations on a
sphere requires a potential with � 3 singular points (e.g.,
0, 1 and 1 for (3)), on a torus the potential is unneces-
sary. In general, the sum of the charges must be equal to
Q�/2, where � is the Euler characteristics of the surface
(� = 2 for the sphere and 0 the torus) [45].

We now use known properties of LFT to obtain new
results for our log-REM model, and beyond.

� > 1 phase–The 4-point function in (9) is invari-
ant under the transform b ! 1/b [53]. Hence, from
the freezing-duality conjecture [20, 22], we expect that
p�>1 = p1 freezes, so the prediction (9) still holds thanks
to the notation b = min(1,�); this can be also shown
by replica symmetry breaking (RSB) [21, 54]. Taking
the � ! 1 limit gives the position distribution of the
minimum of �(z) + U(z). Note that the freezing of p�
does not imply that of p� , as revealed by its multi-point
correlations. Indeed, p�>1 develops � peaks, which are
absent when � < 1, and which give rise to a � contact
singularity in 2-point correlations of p�>1. For example,
an RSB calculation as in [21, 54] gives

p�(z1)p�(z2) = (1�T )�1,2 p1(z1)+T p1(z1)p1(z2) , (14)

where �1,2 = �(z1�z2) and T = 1/� < 1. We will further
apply and discuss this result below, see eq. (19).

At � ! 1, the positions of the deepest minima of
the 2D GFF can be also studied by RSB [54] (see also
some rigorous results [55]). That allows us to show, for
instance, that the joint probability distribution of the
first and second minima positions (⇠1,2) is (see [45]):

P (⇠1, ⇠2) = c0�(⇠1�⇠2)p1(⇠1)+(1�c0)p1(⇠1)p1(⇠2) (15)
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Figure 3. (Color online) Test of (9) on the segment z 2 [0, 1].
(a) High-T regime (� = .4). (b) Minimum position dis-
tribution versus LFT with b = 1. Numerical parameters:
L = 212, ✏ = 2�9, 5⇥ 106 independent samples.

and thus also relates to LFT using (13). Here c0 = 1� g

is the probability that the two lowest minima belong to
the same “cluster” and g is the energy gap between them,
which depends on model-specific details at the ⇠ ✏ scale.
Numerical test– The LFT 4-point functions are ex-

actly calculated by the conformal bootstrap [45, 53], im-
plemented by the code-base [56], extended to take into
account the discrete terms (they have important conse-
quences, see below). The LHS of (9) is measured on
extensive simulations of discrete 2D GFF, as shown in
Figure 2. The results validate unambiguously the pre-
dictions, see Figure 3. Now that the advocated relation
has been confirmed in a particular setting, the next goal
is to extract more universal physical consequences from
LFT.
Liouville OPE–As can be seen in Fig. 3, p�(z) diverges

as z comes near a log singularity of the potential U(z),
say as z ! 0 where U(z) ⇡ 4a1 ln |z|. This asymptotic
behaviour depends only on � and a1, and can be obtained
from an operator product expansion (OPE) V↵(0)V↵0(z)
[57]. Such OPE’s have been obtained by conformal boot-
strap [45] and read as follows:

hVa(0)Va0(z) . . . ib
z!0
⇠

8
><

>:

|z|
�2�0

, a
00 def
= a+ a

0
<

Q

2
,

|z|
�2�0 ln�

1
2 |1/z| , a00 = Q

2
,

|z|
�2�1 ln�

3
2 |1/z| , a00 > Q

2
,

�0 = 2aa0, �1 = �a +�a0 ��Q
2
, �a = a(Q� a) (16)

These asymptotic behaviours hold for generic LFT cor-
relations, as long as the distance |z| is much smaller than
that to the other operators (as well as R). Note moreover
that field theory predictions break down when |z| ⇠ ✏. To
obtain the divergence of p�(z ! 0) shown in Fig. 3 from
(9), we must set a = a1 and a

0 = b in (16).
The abrupt behaviour change as the parameters cross

the line a + a
0 = Q/2 comes from a peculiar feature of

LFT and corresponds to the presence/absence of the dis-
crete terms [30, 58–60] (see also [57], Ex. 3.3 and [45]).
To discuss the physical consequences of this feature, we
consider two independent thermal particles in one reali-

Fyodorov, Le Doussal, Rosso 2009

invariant under duality 

freezing duality conjecture 

2

Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
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8⇡
QR̂'+ µe

�b'

�
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where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4
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=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4
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= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.
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Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1
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ory connection below, we now discuss the ✏ ! 0, R ! 1,
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justed to vanish, i.e.
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If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
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bound phases, in which the Gibbs measure is a trivial �,
by requiring
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Moreover, the potential must also confine the particle at
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we require F + U(R) ! +1 as R ! +1, or
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non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
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3

mode [52] (see [36] for recent rigorous work in a related
setting). Accordingly, the functional integral is written
as

R
D' =

R
R d'0

R
D'̃. Once we performed the inte-

gration over '0, the one over '̃ can be written as an
expectation over the 2D GFF without zero mode, i.e.,
over � defined in eq. (4), that is, for any observable O,

we have
R
D'̃e

�
R

1
16⇡ (r'̃)

2
d
2
z
O['̃] = O[�]. With these

considerations one can obtain

µbK4 = e�a1�(0)�a2�(1)+(a1+a2)�(1)�b�(z)/Z0 , (12)

where Z0 =
R
C e

�b�(z)d2z. The choice of a3 in (9) is

crucial for the apparition of Z
�1

0
. Then, a complete-

the-square trick allows to identify the average in (12) to
p�(z), leading to (9) (see [45] for details).

The above steps generalize easily to the multi-point
correlations of powers of the Gibbs measure p

qi

�
(zi) =

(p�(zi))qi , qi � 0, with U(z) =
P

k

j=1
4aj ln |z � wj | such

that 8aj < Q/2 and ak+1

def
= Q �

P
k

j=1
aj < Q/2 (com-

pare to (7) and (8)). The result is stated as

nY

i=1

p
qi

�
(zi)

�<1

/

*
k+1Y

j=1

Vaj (wj)
nY

i=1

V�qi(zi)

+

b

(13)

where wk+1 = 1 and 8qi < Q/(2�) [45]. Moreover, (13)
holds, in general closed surfaces [45]. While mapping
Gibbs measure correlations onto LFT correlations on a
sphere requires a potential with � 3 singular points (e.g.,
0, 1 and 1 for (3)), on a torus the potential is unneces-
sary. In general, the sum of the charges must be equal to
Q�/2, where � is the Euler characteristics of the surface
(� = 2 for the sphere and 0 the torus) [45].

We now use known properties of LFT to obtain new
results for our log-REM model, and beyond.

� > 1 phase–The 4-point function in (9) is invari-
ant under the transform b ! 1/b [53]. Hence, from
the freezing-duality conjecture [20, 22], we expect that
p�>1 = p1 freezes, so the prediction (9) still holds thanks
to the notation b = min(1,�); this can be also shown
by replica symmetry breaking (RSB) [21, 54]. Taking
the � ! 1 limit gives the position distribution of the
minimum of �(z) + U(z). Note that the freezing of p�
does not imply that of p� , as revealed by its multi-point
correlations. Indeed, p�>1 develops � peaks, which are
absent when � < 1, and which give rise to a � contact
singularity in 2-point correlations of p�>1. For example,
an RSB calculation as in [21, 54] gives

p�(z1)p�(z2) = (1�T )�1,2 p1(z1)+T p1(z1)p1(z2) , (14)

where �1,2 = �(z1�z2) and T = 1/� < 1. We will further
apply and discuss this result below, see eq. (19).

At � ! 1, the positions of the deepest minima of
the 2D GFF can be also studied by RSB [54] (see also
some rigorous results [55]). That allows us to show, for
instance, that the joint probability distribution of the
first and second minima positions (⇠1,2) is (see [45]):

P (⇠1, ⇠2) = c0�(⇠1�⇠2)p1(⇠1)+(1�c0)p1(⇠1)p1(⇠2) (15)
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Figure 3. (Color online) Test of (9) on the segment z 2 [0, 1].
(a) High-T regime (� = .4). (b) Minimum position dis-
tribution versus LFT with b = 1. Numerical parameters:
L = 212, ✏ = 2�9, 5⇥ 106 independent samples.

and thus also relates to LFT using (13). Here c0 = 1� g

is the probability that the two lowest minima belong to
the same “cluster” and g is the energy gap between them,
which depends on model-specific details at the ⇠ ✏ scale.
Numerical test– The LFT 4-point functions are ex-

actly calculated by the conformal bootstrap [45, 53], im-
plemented by the code-base [56], extended to take into
account the discrete terms (they have important conse-
quences, see below). The LHS of (9) is measured on
extensive simulations of discrete 2D GFF, as shown in
Figure 2. The results validate unambiguously the pre-
dictions, see Figure 3. Now that the advocated relation
has been confirmed in a particular setting, the next goal
is to extract more universal physical consequences from
LFT.
Liouville OPE–As can be seen in Fig. 3, p�(z) diverges

as z comes near a log singularity of the potential U(z),
say as z ! 0 where U(z) ⇡ 4a1 ln |z|. This asymptotic
behaviour depends only on � and a1, and can be obtained
from an operator product expansion (OPE) V↵(0)V↵0(z)
[57]. Such OPE’s have been obtained by conformal boot-
strap [45] and read as follows:
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,
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2
, �a = a(Q� a) (16)

These asymptotic behaviours hold for generic LFT cor-
relations, as long as the distance |z| is much smaller than
that to the other operators (as well as R). Note moreover
that field theory predictions break down when |z| ⇠ ✏. To
obtain the divergence of p�(z ! 0) shown in Fig. 3 from
(9), we must set a = a1 and a

0 = b in (16).
The abrupt behaviour change as the parameters cross

the line a + a
0 = Q/2 comes from a peculiar feature of

LFT and corresponds to the presence/absence of the dis-
crete terms [30, 58–60] (see also [57], Ex. 3.3 and [45]).
To discuss the physical consequences of this feature, we
consider two independent thermal particles in one reali-

2

Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.

=>  
predicts PDF of position of the minimum of 

2

�(z) + U(z) (39)

zn(t) (40)

z̃n(t) (41)

WeW = ⇤ (42)

a(�), b(�), ã(�), b̃(�) (43)

� (44)

G(�) (45)

�(H) (46)

(47)



3

mode [52] (see [36] for recent rigorous work in a related
setting). Accordingly, the functional integral is written
as

R
D' =

R
R d'0

R
D'̃. Once we performed the inte-

gration over '0, the one over '̃ can be written as an
expectation over the 2D GFF without zero mode, i.e.,
over � defined in eq. (4), that is, for any observable O,

we have
R
D'̃e

�
R

1
16⇡ (r'̃)

2
d
2
z
O['̃] = O[�]. With these

considerations one can obtain

µbK4 = e�a1�(0)�a2�(1)+(a1+a2)�(1)�b�(z)/Z0 , (12)

where Z0 =
R
C e

�b�(z)d2z. The choice of a3 in (9) is

crucial for the apparition of Z
�1

0
. Then, a complete-

the-square trick allows to identify the average in (12) to
p�(z), leading to (9) (see [45] for details).

The above steps generalize easily to the multi-point
correlations of powers of the Gibbs measure p

qi

�
(zi) =

(p�(zi))qi , qi � 0, with U(z) =
P

k

j=1
4aj ln |z � wj | such

that 8aj < Q/2 and ak+1

def
= Q �

P
k

j=1
aj < Q/2 (com-

pare to (7) and (8)). The result is stated as

nY

i=1

p
qi

�
(zi)

�<1

/

*
k+1Y

j=1

Vaj (wj)
nY

i=1

V�qi(zi)

+

b

(13)

where wk+1 = 1 and 8qi < Q/(2�) [45]. Moreover, (13)
holds, in general closed surfaces [45]. While mapping
Gibbs measure correlations onto LFT correlations on a
sphere requires a potential with � 3 singular points (e.g.,
0, 1 and 1 for (3)), on a torus the potential is unneces-
sary. In general, the sum of the charges must be equal to
Q�/2, where � is the Euler characteristics of the surface
(� = 2 for the sphere and 0 the torus) [45].

We now use known properties of LFT to obtain new
results for our log-REM model, and beyond.

� > 1 phase–The 4-point function in (9) is invari-
ant under the transform b ! 1/b [53]. Hence, from
the freezing-duality conjecture [20, 22], we expect that
p�>1 = p1 freezes, so the prediction (9) still holds thanks
to the notation b = min(1,�); this can be also shown
by replica symmetry breaking (RSB) [21, 54]. Taking
the � ! 1 limit gives the position distribution of the
minimum of �(z) + U(z). Note that the freezing of p�
does not imply that of p� , as revealed by its multi-point
correlations. Indeed, p�>1 develops � peaks, which are
absent when � < 1, and which give rise to a � contact
singularity in 2-point correlations of p�>1. For example,
an RSB calculation as in [21, 54] gives

p�(z1)p�(z2) = (1�T )�1,2 p1(z1)+T p1(z1)p1(z2) , (14)

where �1,2 = �(z1�z2) and T = 1/� < 1. We will further
apply and discuss this result below, see eq. (19).

At � ! 1, the positions of the deepest minima of
the 2D GFF can be also studied by RSB [54] (see also
some rigorous results [55]). That allows us to show, for
instance, that the joint probability distribution of the
first and second minima positions (⇠1,2) is (see [45]):

P (⇠1, ⇠2) = c0�(⇠1�⇠2)p1(⇠1)+(1�c0)p1(⇠1)p1(⇠2) (15)
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Figure 3. (Color online) Test of (9) on the segment z 2 [0, 1].
(a) High-T regime (� = .4). (b) Minimum position dis-
tribution versus LFT with b = 1. Numerical parameters:
L = 212, ✏ = 2�9, 5⇥ 106 independent samples.

and thus also relates to LFT using (13). Here c0 = 1� g

is the probability that the two lowest minima belong to
the same “cluster” and g is the energy gap between them,
which depends on model-specific details at the ⇠ ✏ scale.
Numerical test– The LFT 4-point functions are ex-

actly calculated by the conformal bootstrap [45, 53], im-
plemented by the code-base [56], extended to take into
account the discrete terms (they have important conse-
quences, see below). The LHS of (9) is measured on
extensive simulations of discrete 2D GFF, as shown in
Figure 2. The results validate unambiguously the pre-
dictions, see Figure 3. Now that the advocated relation
has been confirmed in a particular setting, the next goal
is to extract more universal physical consequences from
LFT.
Liouville OPE–As can be seen in Fig. 3, p�(z) diverges

as z comes near a log singularity of the potential U(z),
say as z ! 0 where U(z) ⇡ 4a1 ln |z|. This asymptotic
behaviour depends only on � and a1, and can be obtained
from an operator product expansion (OPE) V↵(0)V↵0(z)
[57]. Such OPE’s have been obtained by conformal boot-
strap [45] and read as follows:
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, �a = a(Q� a) (16)

These asymptotic behaviours hold for generic LFT cor-
relations, as long as the distance |z| is much smaller than
that to the other operators (as well as R). Note moreover
that field theory predictions break down when |z| ⇠ ✏. To
obtain the divergence of p�(z ! 0) shown in Fig. 3 from
(9), we must set a = a1 and a

0 = b in (16).
The abrupt behaviour change as the parameters cross

the line a + a
0 = Q/2 comes from a peculiar feature of

LFT and corresponds to the presence/absence of the dis-
crete terms [30, 58–60] (see also [57], Ex. 3.3 and [45]).
To discuss the physical consequences of this feature, we
consider two independent thermal particles in one reali-
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mode [52] (see [36] for recent rigorous work in a related
setting). Accordingly, the functional integral is written
as

R
D' =

R
R d'0

R
D'̃. Once we performed the inte-

gration over '0, the one over '̃ can be written as an
expectation over the 2D GFF without zero mode, i.e.,
over � defined in eq. (4), that is, for any observable O,

we have
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O['̃] = O[�]. With these

considerations one can obtain
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where Z0 =
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�b�(z)d2z. The choice of a3 in (9) is

crucial for the apparition of Z
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0
. Then, a complete-

the-square trick allows to identify the average in (12) to
p�(z), leading to (9) (see [45] for details).

The above steps generalize easily to the multi-point
correlations of powers of the Gibbs measure p
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where wk+1 = 1 and 8qi < Q/(2�) [45]. Moreover, (13)
holds, in general closed surfaces [45]. While mapping
Gibbs measure correlations onto LFT correlations on a
sphere requires a potential with � 3 singular points (e.g.,
0, 1 and 1 for (3)), on a torus the potential is unneces-
sary. In general, the sum of the charges must be equal to
Q�/2, where � is the Euler characteristics of the surface
(� = 2 for the sphere and 0 the torus) [45].

We now use known properties of LFT to obtain new
results for our log-REM model, and beyond.

� > 1 phase–The 4-point function in (9) is invari-
ant under the transform b ! 1/b [53]. Hence, from
the freezing-duality conjecture [20, 22], we expect that
p�>1 = p1 freezes, so the prediction (9) still holds thanks
to the notation b = min(1,�); this can be also shown
by replica symmetry breaking (RSB) [21, 54]. Taking
the � ! 1 limit gives the position distribution of the
minimum of �(z) + U(z). Note that the freezing of p�
does not imply that of p� , as revealed by its multi-point
correlations. Indeed, p�>1 develops � peaks, which are
absent when � < 1, and which give rise to a � contact
singularity in 2-point correlations of p�>1. For example,
an RSB calculation as in [21, 54] gives

p�(z1)p�(z2) = (1�T )�1,2 p1(z1)+T p1(z1)p1(z2) , (14)

where �1,2 = �(z1�z2) and T = 1/� < 1. We will further
apply and discuss this result below, see eq. (19).

At � ! 1, the positions of the deepest minima of
the 2D GFF can be also studied by RSB [54] (see also
some rigorous results [55]). That allows us to show, for
instance, that the joint probability distribution of the
first and second minima positions (⇠1,2) is (see [45]):

P (⇠1, ⇠2) = c0�(⇠1�⇠2)p1(⇠1)+(1�c0)p1(⇠1)p1(⇠2) (15)
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Figure 3. (Color online) Test of (9) on the segment z 2 [0, 1].
(a) High-T regime (� = .4). (b) Minimum position dis-
tribution versus LFT with b = 1. Numerical parameters:
L = 212, ✏ = 2�9, 5⇥ 106 independent samples.

and thus also relates to LFT using (13). Here c0 = 1� g

is the probability that the two lowest minima belong to
the same “cluster” and g is the energy gap between them,
which depends on model-specific details at the ⇠ ✏ scale.
Numerical test– The LFT 4-point functions are ex-

actly calculated by the conformal bootstrap [45, 53], im-
plemented by the code-base [56], extended to take into
account the discrete terms (they have important conse-
quences, see below). The LHS of (9) is measured on
extensive simulations of discrete 2D GFF, as shown in
Figure 2. The results validate unambiguously the pre-
dictions, see Figure 3. Now that the advocated relation
has been confirmed in a particular setting, the next goal
is to extract more universal physical consequences from
LFT.
Liouville OPE–As can be seen in Fig. 3, p�(z) diverges

as z comes near a log singularity of the potential U(z),
say as z ! 0 where U(z) ⇡ 4a1 ln |z|. This asymptotic
behaviour depends only on � and a1, and can be obtained
from an operator product expansion (OPE) V↵(0)V↵0(z)
[57]. Such OPE’s have been obtained by conformal boot-
strap [45] and read as follows:
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These asymptotic behaviours hold for generic LFT cor-
relations, as long as the distance |z| is much smaller than
that to the other operators (as well as R). Note moreover
that field theory predictions break down when |z| ⇠ ✏. To
obtain the divergence of p�(z ! 0) shown in Fig. 3 from
(9), we must set a = a1 and a

0 = b in (16).
The abrupt behaviour change as the parameters cross

the line a + a
0 = Q/2 comes from a peculiar feature of

LFT and corresponds to the presence/absence of the dis-
crete terms [30, 58–60] (see also [57], Ex. 3.3 and [45]).
To discuss the physical consequences of this feature, we
consider two independent thermal particles in one reali-

2

Gibbs measure correlations. More generally, we use the
short-distance behaviour of LFT correlators to give pre-
dictions that go beyond the previous setup and apply to
all log-REMs. This is possible thanks to the well-known
dimension independence (universality) of many proper-
ties of logREMs [5, 39] and mappings between them. In
particular, our results extend to arbitrary temperature
a recent work of Derrida and Mottishaw [40] on the di-
rected polymer on a Cayley tree. The above outline is
illustrated in Fig. 1

Set up– Our central object is the normalized Gibbs
measure of a particle on the plane:

p�(z)
def
=

1

Z
e
��(�(z)+U(z))

, z 2 C , (1)

Z
def
=

Z

C
e
��(�(z)+U(z))d2z . (2)

Here, Z is the canonical partition function at tempera-
ture 1/�, U(z) is a confining potential defined as the sum
of two logarithms:

U(z)
def
= 4a1 ln |z|+ 4a2 ln |z � 1| , a1, a2 > 0 (3)

and �(z) is the 2D GFF. The latter is well-defined only
in a finite geometry of size R with a lattice spacing ✏. In
the regime ✏ ⌧ |z � w| ⌧ R, the covariance is

�(z)�(w) = 4 ln(R/ |z � w|) , (4)

supplemented by �(z)2 = 4 ln(R/✏) and �(z) = 0. Figure
2 shows a simulation of �+U . To prepare for the field the-
ory connection below, we now discuss the ✏ ! 0, R ! 1,
thermodynamic limit of the model. For later convenience,
the zero mode, immaterial for the Gibbs measure, is ad-
justed to vanish, i.e.

R
�(z) d2z = 0 for each realisation.

If one sets U(z) = 0, the model belongs to the class
of standard log-REMs, for which the mean free energy
is universal (modulo an O(1) correction) and displays a
freezing transition at � = 1 [5, 8, 19]:

F = �Q lnM + ⌘ ln lnM +O(1) , M = (R/✏)2 , (5)

Q = b+ b
�1

, b = min(1,�) . (6)

Here, ⌘ ln lnM is the universal sub-leading correction
[5, 8, 41]. In the � < 1 phase, it is absent (⌘ = 0).
At the critical point � = 1, the sub-leading term appears
with ⌘ = 1

2
. In the glassy phase � > 1, the leading

term �2 lnM displays freezing, and the correction coef-
ficient becomes ⌘ = 3

2
. Note that the leading behaviours

are shared by the uncorrelated Random Energy Model
(REM) [42], the first signature of the log-correlated uni-
versality being the sub-leading term 3

2
ln lnM [43, 44].

When U(z) is turned on, eq. (5) may not persist. In-
deed, when a log-singularity of U(z) (say at z = 0) is
too deep, there can be a binding transition [5, 20] dom-
inating the free energy (see Fig. 2. b/middle). This
happens when the energy at its bottom is 4a1 ln ✏ ⌧ F

as ✏ ! 0, i.e. when a1 > Q/2. This work excludes such

bound phases, in which the Gibbs measure is a trivial �,
by requiring

a1, a2 < Q/2 . (7)

Moreover, the potential must also confine the particle at
z ⇠ O(1) in the R ! +1 limit; otherwise p� would be
non–normalizable in that limit (see Fig. 2 b./top). Thus,
we require F + U(R) ! +1 as R ! +1, or

a1 + a2 > Q/2 . (8)

When (7) and (8) are satisfied, p�(z) has a well-defined
non-trivial limit (in law) as ✏ ! 0, R ! 1 (see Fig. 2
b./bottom). Thus, adding a confining potential is su�-
cient to make the position problem well-posed. By con-
trast, the free energy distribution is dominated by long-
wave-length fluctuations of � and su↵ers from an R ! 1

divergence, whose proper subtraction is an open question
(see however discussions in 1D [20, 21, 23]).
Connection to LFT in � < 1 phase– Let us first in-

troduce some notations. Let h
Q

n

i=1
Vai(zi)ib be the Eu-

clidean n-point correlation function of the LFT defined
on the complex plane plus a point at 1, C [ {1}, and
with central charge c = 1 + 6Q2

, Q = b+ b
�1. The

field Va(z) is a primary field with scaling dimension
�a = a(Q � a)[29, 45]. We first demonstrate the con-
nection between the Gibbs measure statistics and LFT
on the simplest example. We claim:

p�(z)
�<1

/ hVa1(0)Va2(1)Vb(z)Va3(1)i
b

(9)

where a3 = Q� a1 � a2
1.

In order to show the above identity, we will use the
LFT functional integral representation. This is defined,
on any closed surface ⌃, from the action Sb:

Sb =

Z

⌃


1

16⇡
(r')2 �

1

8⇡
QR̂'+ µe

�b'

�
dA , (10)

where µ is the coupling constant, R̂ is the Ricci cur-
vature and dA the surface element. Note that in our
case, the surface ⌃ = C [ {1} has the topology of a
sphere with the curvature concentrated at 1 and van-
ishing elsewhere: R̂(z) = 8⇡�2(z�1), dA = d2z. In this
representation, the primary fields are exponential fields,
Va(w)  e

�a'(w), also called vertex operators. The 4-
point correlation function in (9) can be written as:

K4

def
=

Z
D' e

�Sb�b'(z)�a1'(0)�a2'(1)�a3'(1)
, (11)

where we noted K4

def
= hVa1(0)Va2(1)Vb(z)Va3(1)i

b
for

better readability. To derive (9), we recall that the Li-
ouville field is decomposed into a zero mode and a fluc-
tuating part, '(z) = '0 + '̃(z), where '0 is the zero

1 Since
R
d2z p�(z) = 1, the proportionality constant can be eval-

uated once the LFT correlation is known.
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2

�(z) + U(z) (39)

zn(t) (40)

z̃n(t) (41)

WeW = ⇤ (42)
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� (44)

G(�) (45)

�(H) (46)

(47)
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Fig. 1. Tracy-Widom distribution function P⇤(f)

2. More on the KPZ equation

2.1. The KPZ equation with various initial conditions

In the previous section we have seen that the statistical mechanics of a directed polymer
in a random potential, which is an optimisation problem, is related to the Kardar-Parisi-
Zhang (KPZ) equation12 which describes the stochastic growth of an interface. This
connection holds in any dimension, i.e. directed polymers in D = d+ 1 dimension, can
be mapped to the growth of a d dimensional interface. Much analytical progress was
achieved for one dimensional interfaces, i.e. d = 1, and we will continue to focus on this
case. Let us define h(x, t) the height at time t and position x 2 R of an interface (for
instance separating two phases of a liquid crystal as in the experiments35). By a choice
of units of x, t, h the KPZ equation can always be written as a

@th(x, t) = @2
xh(x, t) + (@xh(x, t))

2 +
p
2 ⌘(x, t) (1.22)

where ⌘(x, t) is the noise which drives the growth. Under the Cole-Hopf transformation

h(x, t) = logZ(x, t) (1.23)

it is mapped to the so-called stochastic heat equation (SHE)

@tZ(x, t) = @2
xZ(x, t) +

p
2 ⌘(x, t)Z(x, t) (1.24)

where here the noise acts multiplicatively. As explained in the previous section Z(x, t)
can be seen as the canonical partition function of a continuum directed polymer in
dimension D = 1 + 1, with one endpoint at (x, t), and ⌘(x, t) is proportional to the
random potential. Although other types of noises have been studied36 , we focus here on
the case of a standard space-time Gaussian white noise, ⌘(x, t)⌘(x0, t0) = �(x�x0)�(t�t0),
for which exact results can be obtained. Eq. (1.24) is then understood in Ito sense, and
Z(x, t) thus satisfies the standard heat equation.

aCompared to the previous section we define h = ��F and �V = �
p
2c̄⌘ hence �2u = 2c̄, and we set

� = 1/2, hence  = c̄, and finally c̄ = 1.

August 17, 2022 11:18 ws-rv10x7-10x7 Book Title Ledouv2 page 10

10 Pierre Le Doussal

behavior. Interestingly, the single space point finite time solutions of the KPZ equa-
tion described here, obtained with the replica Bethe ansatz method, have by now been
confirmed by rigorous methods.

2.5. Two-time correlations and memory

The joint distribution of the KPZ height at two di↵erent times, e.g. of h(0, t1) and
h(0, t2), with both t1, t2 large with a fixed ratio u = t2/t1 > 1, is believed to be
universal, but is notably di�cult to calculate using the replica Bethe ansatz.64 A so-
lution for the tail (when only one of the heights, h(0, t1), is large), was obtained65 for
droplet initial conditions, and found in good agreement with experiments.66 The com-
plete solution was obtained67 by a di↵erent method from a discrete polymer model,
assuming universality. An interesting quantity is the universal dimensionless ratio
R = limu!+1 limt1!+1 Cov(h(0, t1), h(0, ut1))/Var(h(0, t1)) which quantifies ergod-
icity breaking and persitent memory at infinitely separated times. It was obtained ana-
lytically for droplet initial conditions in,68 with R = 0.623 in agreement with numerics
and experiments.37,66

2.6. Polymer in a half-space and KPZ equation on the half-line

Consider now a directed polymer of trajectory (�(⌧), ⌧) constrained to remain in the
half-space �(⌧) � 0, with endpoint at �(t) = x � 0. It is described by a partition
sum Z(x, t), which still satisfies the SHE (1.24) on the half-line x > 0. The Cole-Hopf
map h(x, t) = logZ(x, t) then defines the KPZ equation on the half-line. Consider
first the case of ”absorbing” boundary conditions Z(0, t) = 0, which corresponds to an
infinite hard wall at x = 0 (the polymer paths cannot touch the wall). The integer
moments ZN (x, t) can still be expressed using the delta Bose gas model (1.17) for
x > 0 with Dirichlet boundary conditions. For these boundary conditions there is
again a replica Bethe ansatz solution. The calculation can be performed to the end
and for any t in the case of the ”droplet” initial condition, i.e. when the polymer
starts and ends near the wall. One finds69 that the height defined (in that case) as
h(0, t) := log(Z(✏, t|✏, 0)/✏2)|✏=0+ obeys again the large time behavior (1.27), with now

Prob(⇠ < s) =
p

Det(I � PsK) , K(!,!0) = KAi(!,!
0)� 1

2
Ai(!)

Z +1

0
duAi(!0+u)

(1.35)
This is nothing but the Tracy Widom distribution of the Gaussian symplectic ensemble
(GSE), the last of the three classical Wigner-Dyson ensembles, i.e. ⇠ = �4 with Prob(⇠ <
s) = F4(s) =

1
2 (F1(s) +

F2(s)
F1(s)

) (using the definition of F4 in70).

The half-space polymer model can be extended71 to a ”soft wall” of parameter A,
with the boundary condition @xZ(x, t)|x=0 = AZ(0, t). The wall is repulsive for A > 0
(A = +1 being the infinite hard wall) and attractive for A < 0. Indeed, for A < 0
the delta Bose gas with N = 1 has a bound state to the wall, which corresponds to
the particular solution Z(x, t) = eAx+A2t. The replica Bethe ansatz can still be used
for any N and indicates that for the quenched problem, i.e. for logZ(x, t) and N ! 0,
there is a phase transition:71 for A < �1/2 the polymer is bound to the wall, while
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behavior. Interestingly, the single space point finite time solutions of the KPZ equa-
tion described here, obtained with the replica Bethe ansatz method, have by now been
confirmed by rigorous methods.

2.5. Two-time correlations and memory

The joint distribution of the KPZ height at two di↵erent times, e.g. of h(0, t1) and
h(0, t2), with both t1, t2 large with a fixed ratio u = t2/t1 > 1, is believed to be
universal, but is notably di�cult to calculate using the replica Bethe ansatz.64 A so-
lution for the tail (when only one of the heights, h(0, t1), is large), was obtained65 for
droplet initial conditions, and found in good agreement with experiments.66 The com-
plete solution was obtained67 by a di↵erent method from a discrete polymer model,
assuming universality. An interesting quantity is the universal dimensionless ratio
R = limu!+1 limt1!+1 Cov(h(0, t1), h(0, ut1))/Var(h(0, t1)) which quantifies ergod-
icity breaking and persitent memory at infinitely separated times. It was obtained ana-
lytically for droplet initial conditions in,68 with R = 0.623 in agreement with numerics
and experiments.37,66

2.6. Polymer in a half-space and KPZ equation on the half-line

Consider now a directed polymer of trajectory (�(⌧), ⌧) constrained to remain in the
half-space �(⌧) � 0, with endpoint at �(t) = x � 0. It is described by a partition
sum Z(x, t), which still satisfies the SHE (1.24) on the half-line x > 0. The Cole-Hopf
map h(x, t) = logZ(x, t) then defines the KPZ equation on the half-line. Consider
first the case of ”absorbing” boundary conditions Z(0, t) = 0, which corresponds to an
infinite hard wall at x = 0 (the polymer paths cannot touch the wall). The integer
moments ZN (x, t) can still be expressed using the delta Bose gas model (1.17) for
x > 0 with Dirichlet boundary conditions. For these boundary conditions there is
again a replica Bethe ansatz solution. The calculation can be performed to the end
and for any t in the case of the ”droplet” initial condition, i.e. when the polymer
starts and ends near the wall. One finds69 that the height defined (in that case) as
h(0, t) := log(Z(✏, t|✏, 0)/✏2)|✏=0+ obeys again the large time behavior (1.27), with now

Prob(⇠ < s) =
p

Det(I � PsK) , K(!,!0) = KAi(!,!
0)� 1

2
Ai(!)

Z +1

0
duAi(!0+u)

(1.35)
This is nothing but the Tracy Widom distribution of the Gaussian symplectic ensemble
(GSE), the last of the three classical Wigner-Dyson ensembles, i.e. ⇠ = �4 with Prob(⇠ <
s) = F4(s) =

1
2 (F1(s) +

F2(s)
F1(s)

) (using the definition of F4 in70).

The half-space polymer model can be extended71 to a ”soft wall” of parameter A,
with the boundary condition @xZ(x, t)|x=0 = AZ(0, t). The wall is repulsive for A > 0
(A = +1 being the infinite hard wall) and attractive for A < 0. Indeed, for A < 0
the delta Bose gas with N = 1 has a bound state to the wall, which corresponds to
the particular solution Z(x, t) = eAx+A2t. The replica Bethe ansatz can still be used
for any N and indicates that for the quenched problem, i.e. for logZ(x, t) and N ! 0,
there is a phase transition:71 for A < �1/2 the polymer is bound to the wall, while
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for A � �1/2 it wanders in the whole half-space. The structure of the replica bound
states for generic A becomes quite complicated.72 Nevertheless it is possible to obtain
a solution for any A. For droplet initial conditions72–75 it is found that for A � �1/2
Eq. (1.27) holds, where the scaled height fluctuations ⇠ are still GSE Tracy Widom
for A > �1/2, while at the transition, for A = 1/2, they are GOE Tracy Widom.
For A < �1/2, in the bound phase, one has h(0, t) = v01t + |2A + 1|!t1/2 where !
has a Gaussian distribution. The free energy per unit length of the polymer shows an
anomalous behavior �F/t = v01 � v1 = (A + 1

2 )
2. For flat initial conditions76 the

phase diagram is the same, however the height fluctuations at x = 0 are now GUE-TW
in the unbound phase A > �1/2, and of BBP type at the transition. Remarkably, a
similar transition scenario was obtained well before, by totally di↵erent methods, in the
study of symmetrized random permutations,77 which can indeed be seen as a discrete
version of a polymer problem. This is yet another manifestation of the universality
of the height distributions obtained at large time for the KPZ equation, here on the
half-line. A promising method to observe them in future experiments was proposed.78

2.7. Stationary measures for the KPZ equation

The KPZ equation describes a growth process and is intrinsically non-equilibrium. Nev-
ertheless, while the height at one point grows linearly in time with non trivial t1/3 fluc-
tuations as in (1.27), the height di↵erences between any two points, h(x, t) � h(y, t),
reaches a stationary distribution at large time. It was noticed long ago3,12,79,80 that the
KPZ equation on the full line admits the Brownian motion B(x) as a stationary measure,
i.e. for any given t, h(x, t) � h(0, t) ⌘ B(x), i.e. the two processes in x have the same
law. This was proved in.81,82 With periodic boundary conditions (on the circle) the
stationary measure is a Brownian bridge.83 In the case of the half-line and the interval,
the stationary measure is more complicated, not translationally invariant, generically
non Gaussian, and was obtained only recently. In fact there is a two-parameter family
of such measures. One case is simpler though, and can be inferred using replica from
the ground state of the delta Bose gas. Going back to the previous paragraph and
the half-line with a soft wall at x = 0, one shows84 that in the bound phase, i.e. for
A < �1/2, a stationary measure is in law a Brownian motion with drift

Z(x, t)

Z(0, t)
= eh(x,t)�h(0,t) ⌘ eB(x)+(A+ 1

2 )x (1.36)

for any given t. On the other hand in the bound phase one expects that the large time
behavior is dominated by the ground state  0 of the delta Bose gas. The latter has a
simple expression in this geometry71,72 and one thus infers that (for 0  x1  · · ·  xN )

Z(x1, t) . . . Z(xN , t) ' Z(0, t)N ⇥ 0(~x) ,  0(~x) = e
PN

j=1(A�j+1)xj (1.37)

This expression contains a bit more information than the stationary measure (1.36)
since it also depends on the correlations between logZ(0, t) and the ratios Z(x,t)

Z(0,t) . One
can study the probability distribution of the endpoint �(t) = x of a polymer, p(x, t) =
eh(x,t)�h(0,t)/[

R1
0 dyeh(y,t)�h(0,t)], which becomes stationary for a very long polymer.

Remarquably, one finds85 that (1.36) and (1.37) lead to the same results for the cumu-
lants of p(x), e.g. the noise average (thermal cumulants) hxkic = �(�2)k (k)(�2A� 1)

2

t ! +1 (42)

Z(x, t)

Z(y, t)
= eh(x,t)�h(y,t) ! eB(x)�B(y)

(43)

Z(x, t)

Z(y, t)
= eh(x,t)�h(y,t) ! eB(x)�B(y)�a(x�y)

(44)

�at (45)

t ! +1 (46)

Z(x, t|y, 0) = (47)

Z x(t)=x

x(0)=y
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e�
R t
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4 (
dx(⌧)
d⌧ )2
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e�
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4 (
dx(⌧)
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FIG. 1. (a) Directed polymer path in 1 + 1 dimensions in
a half-space, pinned at the boundary wall at the point (0, 0),
with free endpoint (x, t) (point to line problem) in presence of
a bulk white noise random potential

√
2ξ(x, t). We will discuss

the fluctuations of the position of the polymer endpoint. By
reversing time, this corresponds to the line to point partition
function Zf

A(y = 0, t) in (3), which maps to the KPZ field
at time t with flat IC. (b) We will also consider the position
of the midpoint of a DP with both endpoints pinned at the
boundary.

conditions. Some details are provided in the Appendix
A. We also obtain the large time asymptotics, the details
being provided in Appendix B. In Section IV we study
the stationary measure of the KPZ equation on the half-
line and apply it to obtain a detailed description of the
statistics of the endpoint in the polymer problem. The
connection with the replica method is given in Appendix
E and the calculations of the mean endpoint probability
and its correlations using Liouville quantum mechanics
are described in Appendix F. In Section V we generalize
the identity in distribution obtained in Section III, re-
lating solutions of half-space KPZ equation to solutions
with the full-space KPZ equation with different initial
data, some of the details are presented in Appendix C.
The matching with full space KPZ equation distributions
uses the statistical tilt symmetry recalled in Appendix D.
In Section VI we point out the features which we believe
are universal near the unbinding transition and in rela-
tion to the conjectured half-space KPZ fixed point.

II. HALF-SPACE KPZ EQUATION

Let us recall the KPZ equation for the height h(x, t)
field of an interface

∂th(x, t) = ν∂2
xh +

λ

2
(∂xh)2 +

√
Dξ(x, t) (1)

where ξ(x, t) is a space-time white noise. We use space-
time units so that ν = 1 and λ = D = 2. Here we study
the problem in a half-line x ! 0 with boundary conditions

∂xh = A depending on a parameter A. From the Cole-
Hopf mapping it can be equivalently defined as h(x, t) =
log ZA(x, t) where ZA(x, t) satisfies the stochastic heat
equation (SHE)

∂tZA(x, t) = ∂2
xZA(x, t) +

√
2ZA(x, t)ξ(x, t), x ! 0, (2)

with boundary condition ∂xZA(x, t) = AZA(x, t) at x =
0 and as yet unspecified initial condition at t = 0.

Let us denote by ZA(x, t|y, 0) the partition function
of a continuous DP of length t in a white noise random
potential in dimension d = 1 + 1 (at unit temperature),
in the half-space x ! 0, with endpoints at (y, 0) and
(x, t), see Fig. 1. In particular ZA(x, t|y, 0) satisfies the
equation (2) with initial condition at t = 0 given by a
delta mass at the point y.

III. FLAT INITIAL CONDITION

A. Finite-time solution

In this Section, we are interested in the solution of the
KPZ equation (1) with a flat initial condition h(x, 0) = 0.
This is equivalent to studying (2) with ZA(x, 0) = 1, i.e.
a polymer with one fixed endpoint at (y, t) and one free
endpoint, of partition function

Zf
A(y, t) =

∫ ∞

0
ZA(y, t|x, 0)dx. (3)

the KPZ field being retrieved as h(y, t) = log Zf
A(y, t),

where the superscript f stands for flat IC.
Consider now the case where the fixed endpoint is at

the position of the wall y = 0. We will calculate the
moments of Zf

A(0, t) which will allow us to obtain an
expression for the Laplace transform of its distribution.
From (3) and by symmetry, we can write the n-th integer
moment of the partition sum as

E

[
Zf

A(0, t)n
]

= n!

∫

x1!...!xn!0
E

[
n∏

i=1

ZA(xi, t|0, 0)

]

.

(4)
where here and below, E denote expectation with respect
to the noise ξ. As shown in [38] the moments appearing in
the RHS can be expressed as a multiple contour integral.
We have that, for general endpoint positions x1 ! . . . !
xn ! 0,

E

[
n∏

i=1

ZA(xi, t|0, 0)

]

= 2n

∫

r1+iR

dz1

2iπ
· · ·
∫

rn+iR

dzn

2iπ
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i=1

zi

zi + A
etz2

i −xizi
∏

1"a<b"n

za − zb

za − zb − 1

za + zb

za + zb − 1
, (5)

where the contours are chosen so that r1 > r2 +1 > · · · >
rn +n−1 > max{n−1−A, n−1}, i.e. all contours are to
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on the Weyl chamber

W! =
{

!y ∈ R
!; y1 < y2 < · · · < y!

}

, (7)

with the boundary condition that Z! = 0 whenever any yj = yj+1. The formula (4) is well
defined for a smooth spatial noise correlator, but there are some mathematical issues in defining
the white noise limit. We refer to [30, 39, 40] for a more precise mathematical discussion on the
well-posedness of such stochastic PDEs.

1.4 Main results. We can now state our main result for the continuum model described in
the previous section. We find that the generalization of (3) to " non-crossing directed polymers
is the following. For !x, !y, !z ∈ W!,

lim
t→+∞

Z!(!x; −t|!y; 0)

Z!(!x; −t|!z; 0)

(d)
=

Zstat
! (!y)

Zstat
! (!z)

(8)

where the partition function Zstat
! is now defined by

Zstat
! (!y) =

∫

GT ("y)

!
∏

k=1

k
∏

i=1

eB!−k+1(zk
i )−B!−k+1(zk−1

i−1 )
!−1
∏

k=1

k
∏

i=1

dzk
i , (9)

where the Bk(z), k = 1, . . . , " are " independent standard Brownian motions (we will assume for
convenience that Bk(0) = 0, although it does not matters since (9) only involves increments of
the Brownian motions). We use the convention that zk

0 = 0 for 0 ! k ! ", and the integration
is performed on the interlaced set of "(" − 1)/2 independent auxiliary variables (which form a
Gelfand-Tsetlin pattern)

GT (!y) = {(zk
i )1!i!k!! : zk+1

i ! zk
i ! zk+1

i+1 for 1 ! i ! k ! "− 1, and z!
i = yi for 1 ! i ! "}.

(10)
Note that for any x ! y1,

Zstat
! (!y) = e

∑!

i=1
Bi(x)Zstat

! (!y − x!1). (11)

Remark 1.1. We expect that as t goes to infinity,

Z!(!x; −t|!y; 0)

Z!(!x; −t|!z; 0)

(d)
#

Zstat
! (!y)

Zstat
! (!z)

(12)

as long as |yi − zj | $ t2/3 for all 1 ! i, j ! ".

1.4.1 Graphical interpretation. For " = 2 one has, with z = z1
1 and y1 < y2

Zstat
2 (y1, y2) = eB1(y1)+B1(y2)

∫ y2

y1

dze−B1(z)+B2(z), (13)

which can be seen as the partition function of two non-intersecting semi-discrete polymers as
shown in Fig. 1. The polymer paths live on two horizontal lines. The two polymers start at
the horizontal coordinate 0, and end on the second line at horizontal coordinates y1 and y2

respectively. The energy collected by a given polymer path is the sum of increments of two
independent standard Brownian motions B1 and B2 along each horizontal line.
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1.4.2 Generalizations. We may consider the case when both endpoints and starting points
vary. In that case, we obtain

lim
t→+∞

Z!(!x; −t|!y; 0)

Z!(!r; −t|!z; 0)

(d)
=

Zstat
! (!y)

Zstat
! (!z)

Z̃stat
! (!x)

Z̃stat
! (!r)

, (16)

where Zstat
! is defined with respect to Brownian motions B1, . . . , B! and Z̃stat

! is defined with
respect to another independent set of Brownian motions B̃1, . . . , B̃!.

It is also natural to consider now very long non intersecting polymers which come from
different directions, i.e. with starting points at time −t equal to xi = ait, where a1 ! . . . ! a!.
In that case we conjecture that 1

lim
t→+∞

Z!(!x; −t|!y; 0)

Z!(!x; −t|!z; 0)
=

Zstat
! (!y;!a)

Zstat
! (!z;!a)

(17)

where Zstat
! (!y;!a) is defined as in (9) except that now the Brownian motion Bi have drifts ai.

We also conjecture that the processes Zstat
! (!y;!a) constitute the set of all extremal stationary

measures of the stochastic PDE (6).

1.4.3 Limits. There are two natural limits of the stationary partition function Zstat
! (!y) to

consider, corresponding respectively to its short distance behavior (dense limit) and its large
distance behavior (dilute limit).

Consider the short distance limit where all the yj are almost equal, yj ≈ y. In that case one
can approximate all the Brownian motions Bi(z!

i ) in (9) by Bi(y), and one gets

Zstat
! (!y) #

!
∏

i=1

eBi(y)

(i − 1)!
∆(!y) (18)

where ∆(!y) :=
∏

i<j(yj − yi), as easily obtained from (15) using (11) and the fact that

ZOY[(0, i)|(yj − y1, 1)] # (yj−y1)i−1

(i−1)! . The Vandermonde determinant ∆(!y) is indeed the equi-

librium measure for " non-crossing Brownian motions (i.e. directed polymers in the absence of
random potential). Equivalently, the Vandermonde is a harmonic function for the Laplacian
with vanishing boundary condition on the border of the Weyl chamber W!.

Consider now the large distance limit, that is the case where all yi − yj $ 1. The integrals
of exponentials in (9) are dominated by the maximum over the Gelfand-Tsetlin pattern. More
precisely one has

lim
x→∞

1√
x

log Zstat
! (x!y) = sup

z∈GT ("y)

{

!
∑

k=1

k
∑

i=1

B!−k+1(zk
i ) − B!−k+1(zk−1

i−1 )

}

. (19)

1.4.4 The case of two non-intersecting polymers. When " = 2, (9) can be rewritten as, see
(13)

Zstat
2 (y1, y2) = eB1(y1)+B2(y1)ZOY[(y1, 2)|(y2, 1)] (20)

where ZOY((y1, 2)|(y2, 1)) is, again, a semi-discrete polymer partition function (see Fig. 1
(left)). The random variable B1(y1) + B2(y1) is independent from ZOY[(y1, 2)|(y2, 1)], whose
distribution depends only on the difference y2 − y1, that is

ZOY((y1, 2)|(y2, 1))
(d)
= ZOY[(0, 2)|(y2 − y1, 1)]. (21)

1when all drifts are identical, ai = a, this can be deduced by taking a continuous limit of the results in Section
2.5.
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(left)). The random variable B1(y1) + B2(y1) is independent from ZOY[(y1, 2)|(y2, 1)], whose
distribution depends only on the difference y2 − y1, that is

ZOY((y1, 2)|(y2, 1))
(d)
= ZOY[(0, 2)|(y2 − y1, 1)]. (21)
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The law of ZOY[(0, 2)|(y2 −y1, 1)] is known very explicitly, its Laplace transform and its density
are given respectively in Corollary 4.2 and in Theorem 5.1 of [44]. This allows to obtain the law
of Zstat

2 (y1, y2). Moreover the multipoint correlations of ZOY[(0, 2)|(y, 1)] are also known [29,
Section 5.2.2]. At large distance (dilute limit), one has

lim
x→∞

1√
x

log Zstat
2 (xy1, xy2)

(d)
= B1(y2) + B1(y1) + max

z∈[y1,y2]
{B2(z) − B1(z)} , (22)

where B1 and B2 are independent Brownian motions. As a process in y2, for fixed y1, it is also
equal in law to

B1(y1) + B2(y1) + Λ1(y2 − y1) (23)

where Λ1(y) is independent of B1,2(y1) and has the distribution of the largest eigenvalue of the
GUE(2) Dyson Brownian motion (see (96) for a precise definition). This can be seen as the
zero-temperature limit of (20). In Section 1.6 below, we give an application of (20) where some
explicit calculations are possible.

Remark 1.3. The stochastic heat equation (2) on R+ also admits stationary distributions,
studied in [45] (see also [46]), depending on two parameters, the boundary parameter u and the
drift at infinity −v. Denoting by Zhs the solution in the case of Dirichlet boundary conditions
(which corresponds to u → +∞ in [45]) and droplet initial condition (v = +∞) Zhs(x, 0|y, t =
0) = δ(y − x), the associated stationary measure for the polymer partition function in half
space is given by an O’Connell-Yor polymer partition function (this can be seen from Eq. (34)
in [45]). In particular, using the relation (20) we obtain that

lim
t→+∞

Zhs(x, −t|y, 0)

Zhs(x, −t|z, 0)

(d)
=

Zstat
2 (0, y)

Zstat
2 (0, z)

(24)

Hence there is a relation between the steady-state of the partition function of a single polymer
in a half-space and the steady-state of the partition function of two non-intersecting polymers
in full space. Moreover, for v < 0, Zstat

2 (0, y; v, −v) (recall that Zstat
! ("y;"a) was defined in Section

1.4.2) is also a stationary measure (with drift −v) for the polymer partition function in half
space and Dirichlet boundary condition (see Eq. (35) in [45]). We conjecture that for x = −vt,

lim
t→+∞

Zhs(x, −t|y, 0)

Zhs(x, −t|z, 0)

(d)
=

Zstat
2 (0, y; v, −v)

Zstat
2 (0, z; v, −v)

. (25)

1.5 Midpoint. Consider # very long non-crossing polymers and the positions of their mid-
points y1, . . . y! (see Figure 2). The stationary partition sum for the midpoints is simply the
product

Zmidpoint
! ("y) := Zstat

! ("y)Z̃stat
! ("y) (26)

where Zstat
! ("y) is given by formula (9) and Z̃stat

! ("y) is given by the same formula with the set of
Bj(x) are replaced by an independent set of Brownian motions B̃j(x). A graphical description
is given for # = 3 in Fig. 3 (left).

More precisely one has

lim
t→+∞

Z!("x; −t|"y; 0)Z!("y; 0|"x′; t)

Z!("x; −t|"z; 0)Z!("z; 0|"x′; t)

(d)
=

Zstat
! ("y)

Zstat
! ("z)

Z̃stat
! ("y)

Z̃stat
! ("z)

, (27)

Note that the ratio
Z̃stat

! ("y)

Z̃stat
!

("z)
has the same law as

Z̃stat
! (x−y!,...,x−y1)

Z̃stat
!

(x−z!,...,x−z1)
, where x > y!. Thus, the limit

(27) can also be described by the ratios of the partition function

Z̃midpoint
! ("y) := Zstat

! (y1, . . . , y!)Z̃
stat
! (x − y!, . . . , x − y1). (28)
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zero-temperature limit of (20). In Section 1.6 below, we give an application of (20) where some
explicit calculations are possible.

Remark 1.3. The stochastic heat equation (2) on R+ also admits stationary distributions,
studied in [45] (see also [46]), depending on two parameters, the boundary parameter u and the
drift at infinity −v. Denoting by Zhs the solution in the case of Dirichlet boundary conditions
(which corresponds to u → +∞ in [45]) and droplet initial condition (v = +∞) Zhs(x, 0|y, t =
0) = δ(y − x), the associated stationary measure for the polymer partition function in half
space is given by an O’Connell-Yor polymer partition function (this can be seen from Eq. (34)
in [45]). In particular, using the relation (20) we obtain that

lim
t→+∞

Zhs(x, −t|y, 0)

Zhs(x, −t|z, 0)

(d)
=

Zstat
2 (0, y)

Zstat
2 (0, z)

(24)

Hence there is a relation between the steady-state of the partition function of a single polymer
in a half-space and the steady-state of the partition function of two non-intersecting polymers
in full space. Moreover, for v < 0, Zstat

2 (0, y; v, −v) (recall that Zstat
! ("y;"a) was defined in Section

1.4.2) is also a stationary measure (with drift −v) for the polymer partition function in half
space and Dirichlet boundary condition (see Eq. (35) in [45]). We conjecture that for x = −vt,

lim
t→+∞

Zhs(x, −t|y, 0)

Zhs(x, −t|z, 0)

(d)
=

Zstat
2 (0, y; v, −v)

Zstat
2 (0, z; v, −v)

. (25)

1.5 Midpoint. Consider # very long non-crossing polymers and the positions of their mid-
points y1, . . . y! (see Figure 2). The stationary partition sum for the midpoints is simply the
product

Zmidpoint
! ("y) := Zstat

! ("y)Z̃stat
! ("y) (26)

where Zstat
! ("y) is given by formula (9) and Z̃stat

! ("y) is given by the same formula with the set of
Bj(x) are replaced by an independent set of Brownian motions B̃j(x). A graphical description
is given for # = 3 in Fig. 3 (left).

More precisely one has

lim
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Z!("x; −t|"y; 0)Z!("y; 0|"x′; t)

Z!("x; −t|"z; 0)Z!("z; 0|"x′; t)

(d)
=

Zstat
! ("y)

Zstat
! ("z)

Z̃stat
! ("y)

Z̃stat
! ("z)

, (27)

Note that the ratio
Z̃stat

! ("y)

Z̃stat
!

("z)
has the same law as

Z̃stat
! (x−y!,...,x−y1)

Z̃stat
!

(x−z!,...,x−z1)
, where x > y!. Thus, the limit

(27) can also be described by the ratios of the partition function

Z̃midpoint
! ("y) := Zstat

! (y1, . . . , y!)Z̃
stat
! (x − y!, . . . , x − y1). (28)
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short scale behavior

on the Weyl chamber

W! =
{

!y ∈ R
!; y1 < y2 < · · · < y!

}

, (7)

with the boundary condition that Z! = 0 whenever any yj = yj+1. The formula (4) is well
defined for a smooth spatial noise correlator, but there are some mathematical issues in defining
the white noise limit. We refer to [30, 39, 40] for a more precise mathematical discussion on the
well-posedness of such stochastic PDEs.

1.4 Main results. We can now state our main result for the continuum model described in
the previous section. We find that the generalization of (3) to " non-crossing directed polymers
is the following. For !x, !y, !z ∈ W!,

lim
t→+∞

Z!(!x; −t|!y; 0)

Z!(!x; −t|!z; 0)

(d)
=

Zstat
! (!y)

Zstat
! (!z)

(8)

where the partition function Zstat
! is now defined by

Zstat
! (!y) =

∫

GT ("y)

!
∏

k=1

k
∏

i=1

eB!−k+1(zk
i )−B!−k+1(zk−1

i−1 )
!−1
∏

k=1

k
∏

i=1

dzk
i , (9)

where the Bk(z), k = 1, . . . , " are " independent standard Brownian motions (we will assume for
convenience that Bk(0) = 0, although it does not matters since (9) only involves increments of
the Brownian motions). We use the convention that zk

0 = 0 for 0 ! k ! ", and the integration
is performed on the interlaced set of "(" − 1)/2 independent auxiliary variables (which form a
Gelfand-Tsetlin pattern)

GT (!y) = {(zk
i )1!i!k!! : zk+1

i ! zk
i ! zk+1

i+1 for 1 ! i ! k ! "− 1, and z!
i = yi for 1 ! i ! "}.

(10)
Note that for any x ! y1,

Zstat
! (!y) = e

∑!

i=1
Bi(x)Zstat

! (!y − x!1). (11)

Remark 1.1. We expect that as t goes to infinity,

Z!(!x; −t|!y; 0)

Z!(!x; −t|!z; 0)

(d)
#

Zstat
! (!y)

Zstat
! (!z)

(12)

as long as |yi − zj | $ t2/3 for all 1 ! i, j ! ".

1.4.1 Graphical interpretation. For " = 2 one has, with z = z1
1 and y1 < y2

Zstat
2 (y1, y2) = eB1(y1)+B1(y2)

∫ y2

y1

dze−B1(z)+B2(z), (13)

which can be seen as the partition function of two non-intersecting semi-discrete polymers as
shown in Fig. 1. The polymer paths live on two horizontal lines. The two polymers start at
the horizontal coordinate 0, and end on the second line at horizontal coordinates y1 and y2

respectively. The energy collected by a given polymer path is the sum of increments of two
independent standard Brownian motions B1 and B2 along each horizontal line.

4

large scale behavior

back to 2 non-crossing polymers and Dyson BM  
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Two non-crossing polymers in an atypical direction. Consider again the partition sum
of two non-crossing polymers Zstat

! (y1, y2; a, a) with drifts ai = −b with b > 0. We are interested
in the PDF, P (y), of the distance y = y2 − y1 between the two endpoints, in the stationary
state. It can be written as

P (y) =
Z(y)

∫ +∞
0 dyZ(y)

, Z(y) := Zstat
! (0, y; −b, −b) = ZOY((0, 2)|(y, 1)) (33)

Note that the dependence in y1 alone cancels (i.e. y1 can be set to zero). In the second formula
we have used (21), where now in the OY partition sum the two Brownians have drifts −b. As
in (17) P (y) is also the PDF of the distance at time zero of the endpoints of two very long
polymers starting both at −bt at time −t. It is equivalent to conditioning the two polymers
such that the first one (hence both) ends in an atypical direction with space time slope b = x/t.
The nice observation is that upon this conditioning the partition sum Z(y) can be normalized,
i.e. the second polymer is then bound to the first one.

We can compute the thermal cumulants of y as follows. Let us define

Z(α) =
∫ +∞

0
dyZ(y)e−αy (34)

Then the thermal cumulants are given as 〈yp〉c = (−1)p∂p
α log Z(α)|α=0. It turns out that the

full PDF of Z(α) can be obtained from known formula for the OY point to line problem. Using
Theorem 3 in [48] (setting n = 2 there) one finds that

Z(α) = 2W11(W12 + W21) (35)

where the W11, W12, W21 are three i.i.d inverse gamma random variables Gamma−1(2α+2b) with

rate unity. Using that Gamma(c1, 1)+Gamma(c2, 1)
(d)
= Gamma(c1+c2, 1), and E[log Gamma(c, 1)] =

ψ(c1 + c2) one finds

E[log Z(α)] = log 2 + ψ(4α + 4b) − 3ψ(2α + 2b) (36)

Hence one obtains the disorder averaged cumulants

E [〈yp〉c] = (−2)p(2pψp(4b) − 3ψp(2b)). (37)

In the limit of small b $ 1 one finds

E [〈y〉] %
5

4b2
, E

[

〈y2〉 − 〈y〉2
]

%
5

2b3
(38)

and we see that the effect of thermal fluctuations, measured for instance by the ratio
E
[

〈y2〉 − 〈y〉2
]

/ (E [〈y〉])2, become subdominant as b → 0. This is expected since it corresponds
to the large scale limit. Note that these calculations are very similar to the ones performed in
[49] for the problem of a single polymer bound to a wall with wall parameter u = A+ 1

2 = −b < 0.
Once again we find that the two problems are close cousins.

Note that the same problem where the two polymers come from different directions, i.e.
have different drifts (a1, a2) = (−b1, −b2) with b1 > b2 can be treated similarly, with W11 =
Γ−1(2α + b1 + b2), W21 = Γ−1(2α + b1), W12 = Γ−1(2α + b2).
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of two non-crossing polymers Zstat

! (y1, y2; a, a) with drifts ai = −b with b > 0. We are interested
in the PDF, P (y), of the distance y = y2 − y1 between the two endpoints, in the stationary
state. It can be written as

P (y) =
Z(y)

∫ +∞
0 dyZ(y)

, Z(y) := Zstat
! (0, y; −b, −b) = ZOY((0, 2)|(y, 1)) (33)

Note that the dependence in y1 alone cancels (i.e. y1 can be set to zero). In the second formula
we have used (21), where now in the OY partition sum the two Brownians have drifts −b. As
in (17) P (y) is also the PDF of the distance at time zero of the endpoints of two very long
polymers starting both at −bt at time −t. It is equivalent to conditioning the two polymers
such that the first one (hence both) ends in an atypical direction with space time slope b = x/t.
The nice observation is that upon this conditioning the partition sum Z(y) can be normalized,
i.e. the second polymer is then bound to the first one.

We can compute the thermal cumulants of y as follows. Let us define

Z(α) =
∫ +∞

0
dyZ(y)e−αy (34)

Then the thermal cumulants are given as 〈yp〉c = (−1)p∂p
α log Z(α)|α=0. It turns out that the

full PDF of Z(α) can be obtained from known formula for the OY point to line problem. Using
Theorem 3 in [48] (setting n = 2 there) one finds that

Z(α) = 2W11(W12 + W21) (35)

where the W11, W12, W21 are three i.i.d inverse gamma random variables Gamma−1(2α+2b) with

rate unity. Using that Gamma(c1, 1)+Gamma(c2, 1)
(d)
= Gamma(c1+c2, 1), and E[log Gamma(c, 1)] =

ψ(c1 + c2) one finds

E[log Z(α)] = log 2 + ψ(4α + 4b) − 3ψ(2α + 2b) (36)

Hence one obtains the disorder averaged cumulants

E [〈yp〉c] = (−2)p(2pψp(4b) − 3ψp(2b)). (37)

In the limit of small b $ 1 one finds

E [〈y〉] %
5

4b2
, E

[

〈y2〉 − 〈y〉2
]

%
5

2b3
(38)

and we see that the effect of thermal fluctuations, measured for instance by the ratio
E
[

〈y2〉 − 〈y〉2
]

/ (E [〈y〉])2, become subdominant as b → 0. This is expected since it corresponds
to the large scale limit. Note that these calculations are very similar to the ones performed in
[49] for the problem of a single polymer bound to a wall with wall parameter u = A+ 1

2 = −b < 0.
Once again we find that the two problems are close cousins.

Note that the same problem where the two polymers come from different directions, i.e.
have different drifts (a1, a2) = (−b1, −b2) with b1 > b2 can be treated similarly, with W11 =
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Limit b → 0 and Dyson’s Brownian motion (DBM). In the limit b → 0 one can rescale the
distances as y = ỹ/b2. Then the variable ỹ is determined by

ỹ = argmaxz∈R+
(Λ1(z) − z) (39)

where Λ1(z) is the largest eigenvalue in a GUE(2) DBM. The explicit formula for the PDF p(t)
of t = ỹ is obtained in the Appendix, see Eq. (109). From this formula one obtains for instance
the behavior of the lowest moments in the limit b # 1 as

E [〈y〉] &
5

4b2
, E

[

〈y2〉
]

&
29

8b4
(40)

where the result for the first moment coincides with the result in (38) although it was obtained
by a completely different method. One sees that the second moment diverges much faster than
the thermal one at small b (O(1/b4) instead as O(1/b3)) consistent with the above discussion.

1.7 Method. The partition function Z!(!x, 0|!y, t) defined in (4) vanishes as soon as some of
the xi are equal or some of the yi are equal. Let us define

M!(t, !x, !y) =
det (Z1(xi, 0|yj , t))!

i,j=1

∆(!x)∆(!y)
, (41)

extended by continuity when some xi or yi are equal (see [30] about mathematical subtleties
related to this continuous extension). When all coordinates are equal, it can be proven [30], at
least for a regularized noise, that

M!(t, x!1, y!1) = c2
n det

(

∂i−1
x ∂j−1

y Z(x, 0|y, t)
)!

i,j=1
(42)

where cn = 1/
∏!−1

j=1 j!, and in that case, M!(t, x!1, y!1) can be identified with the partition
function for # non-intersecting continuous directed polymer paths all starting from x and all
ending at y. The collection of random processes (M1(t, x!1, y!1), . . . , M!(t, x!1, y!1)) is called the
O’Connell-Warren multilayer stochastic heat equation in the mathematical literature. It was
rigorously constructed in [30] through a chaos series expansion. Let us further define the ratios

R!(t, x, y) =
M!(t, x!1, y!1)

M!−1(t, x!1, y!1)
(43)

with the convention that M0 = 1.
While it is obvious that for a fixed !x, the set of all non-intersecting partition functions

{M!(t, !x, !y)}"y∈W!
evolves in a Markovian way as t increases, [30] discovered that for any fixed

#, the time evolution of the much smaller set of partition functions

{R1(t, x, y), R2(t, x, y), . . . , R!(t, x, y)}y∈R
, (44)

is also Markovian. In other terms, the partition functions for non-intersecting polymers ending
at the same point behave in a Markovian way, which is very nontrivial. This property comes
from an analogous result in the discrete setting, where the dynamics of the discrete analogue
of (44) are known as the geometric RSK algorithm, and related to the log-gamma discrete
directed polymer model [1], see Section 2.2 below. These discrete Markovian dynamics are
perfectly explicit and a family of invariant measures is described in [1]. In Section 2, we
interpret these results in terms of partition functions for non-intersecting log-gamma directed
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ỹ = argmaxz∈R+
(Λ1(z) − z) (39)

where Λ1(z) is the largest eigenvalue in a GUE(2) DBM. The explicit formula for the PDF p(t)
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on the Weyl chamber

W! =
{

!y ∈ R
!; y1 < y2 < · · · < y!

}

, (7)

with the boundary condition that Z! = 0 whenever any yj = yj+1. The formula (4) is well
defined for a smooth spatial noise correlator, but there are some mathematical issues in defining
the white noise limit. We refer to [30, 39, 40] for a more precise mathematical discussion on the
well-posedness of such stochastic PDEs.

1.4 Main results. We can now state our main result for the continuum model described in
the previous section. We find that the generalization of (3) to " non-crossing directed polymers
is the following. For !x, !y, !z ∈ W!,

lim
t→+∞

Z!(!x; −t|!y; 0)

Z!(!x; −t|!z; 0)

(d)
=

Zstat
! (!y)

Zstat
! (!z)

(8)

where the partition function Zstat
! is now defined by

Zstat
! (!y) =

∫

GT ("y)

!
∏

k=1

k
∏

i=1

eB!−k+1(zk
i )−B!−k+1(zk−1

i−1 )
!−1
∏

k=1

k
∏

i=1

dzk
i , (9)

where the Bk(z), k = 1, . . . , " are " independent standard Brownian motions (we will assume for
convenience that Bk(0) = 0, although it does not matters since (9) only involves increments of
the Brownian motions). We use the convention that zk

0 = 0 for 0 ! k ! ", and the integration
is performed on the interlaced set of "(" − 1)/2 independent auxiliary variables (which form a
Gelfand-Tsetlin pattern)

GT (!y) = {(zk
i )1!i!k!! : zk+1

i ! zk
i ! zk+1

i+1 for 1 ! i ! k ! "− 1, and z!
i = yi for 1 ! i ! "}.

(10)
Note that for any x ! y1,

Zstat
! (!y) = e

∑!

i=1
Bi(x)Zstat

! (!y − x!1). (11)

Remark 1.1. We expect that as t goes to infinity,

Z!(!x; −t|!y; 0)

Z!(!x; −t|!z; 0)

(d)
#

Zstat
! (!y)

Zstat
! (!z)

(12)

as long as |yi − zj | $ t2/3 for all 1 ! i, j ! ".

1.4.1 Graphical interpretation. For " = 2 one has, with z = z1
1 and y1 < y2

Zstat
2 (y1, y2) = eB1(y1)+B1(y2)

∫ y2

y1

dze−B1(z)+B2(z), (13)

which can be seen as the partition function of two non-intersecting semi-discrete polymers as
shown in Fig. 1. The polymer paths live on two horizontal lines. The two polymers start at
the horizontal coordinate 0, and end on the second line at horizontal coordinates y1 and y2

respectively. The energy collected by a given polymer path is the sum of increments of two
independent standard Brownian motions B1 and B2 along each horizontal line.
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Two non-crossing polymers in an atypical direction. Consider again the partition sum
of two non-crossing polymers Zstat

! (y1, y2; a, a) with drifts ai = −b with b > 0. We are interested
in the PDF, P (y), of the distance y = y2 − y1 between the two endpoints, in the stationary
state. It can be written as

P (y) =
Z(y)

∫ +∞
0 dyZ(y)

, Z(y) := Zstat
! (0, y; −b, −b) = ZOY((0, 2)|(y, 1)) (33)

Note that the dependence in y1 alone cancels (i.e. y1 can be set to zero). In the second formula
we have used (21), where now in the OY partition sum the two Brownians have drifts −b. As
in (17) P (y) is also the PDF of the distance at time zero of the endpoints of two very long
polymers starting both at −bt at time −t. It is equivalent to conditioning the two polymers
such that the first one (hence both) ends in an atypical direction with space time slope b = x/t.
The nice observation is that upon this conditioning the partition sum Z(y) can be normalized,
i.e. the second polymer is then bound to the first one.

We can compute the thermal cumulants of y as follows. Let us define

Z(α) =
∫ +∞

0
dyZ(y)e−αy (34)

Then the thermal cumulants are given as 〈yp〉c = (−1)p∂p
α log Z(α)|α=0. It turns out that the

full PDF of Z(α) can be obtained from known formula for the OY point to line problem. Using
Theorem 3 in [48] (setting n = 2 there) one finds that

Z(α) = 2W11(W12 + W21) (35)

where the W11, W12, W21 are three i.i.d inverse gamma random variables Gamma−1(2α+2b) with

rate unity. Using that Gamma(c1, 1)+Gamma(c2, 1)
(d)
= Gamma(c1+c2, 1), and E[log Gamma(c, 1)] =

ψ(c1 + c2) one finds

E[log Z(α)] = log 2 + ψ(4α + 4b) − 3ψ(2α + 2b) (36)

Hence one obtains the disorder averaged cumulants

E [〈yp〉c] = (−2)p(2pψp(4b) − 3ψp(2b)). (37)

In the limit of small b $ 1 one finds

E [〈y〉] %
5

4b2
, E

[

〈y2〉 − 〈y〉2
]

%
5

2b3
(38)

and we see that the effect of thermal fluctuations, measured for instance by the ratio
E
[

〈y2〉 − 〈y〉2
]

/ (E [〈y〉])2, become subdominant as b → 0. This is expected since it corresponds
to the large scale limit. Note that these calculations are very similar to the ones performed in
[49] for the problem of a single polymer bound to a wall with wall parameter u = A+ 1

2 = −b < 0.
Once again we find that the two problems are close cousins.

Note that the same problem where the two polymers come from different directions, i.e.
have different drifts (a1, a2) = (−b1, −b2) with b1 > b2 can be treated similarly, with W11 =
Γ−1(2α + b1 + b2), W21 = Γ−1(2α + b1), W12 = Γ−1(2α + b2).

10

Two non-crossing polymers in an atypical direction. Consider again the partition sum
of two non-crossing polymers Zstat

! (y1, y2; a, a) with drifts ai = −b with b > 0. We are interested
in the PDF, P (y), of the distance y = y2 − y1 between the two endpoints, in the stationary
state. It can be written as

P (y) =
Z(y)

∫ +∞
0 dyZ(y)

, Z(y) := Zstat
! (0, y; −b, −b) = ZOY((0, 2)|(y, 1)) (33)

Note that the dependence in y1 alone cancels (i.e. y1 can be set to zero). In the second formula
we have used (21), where now in the OY partition sum the two Brownians have drifts −b. As
in (17) P (y) is also the PDF of the distance at time zero of the endpoints of two very long
polymers starting both at −bt at time −t. It is equivalent to conditioning the two polymers
such that the first one (hence both) ends in an atypical direction with space time slope b = x/t.
The nice observation is that upon this conditioning the partition sum Z(y) can be normalized,
i.e. the second polymer is then bound to the first one.

We can compute the thermal cumulants of y as follows. Let us define

Z(α) =
∫ +∞

0
dyZ(y)e−αy (34)

Then the thermal cumulants are given as 〈yp〉c = (−1)p∂p
α log Z(α)|α=0. It turns out that the

full PDF of Z(α) can be obtained from known formula for the OY point to line problem. Using
Theorem 3 in [48] (setting n = 2 there) one finds that

Z(α) = 2W11(W12 + W21) (35)

where the W11, W12, W21 are three i.i.d inverse gamma random variables Gamma−1(2α+2b) with

rate unity. Using that Gamma(c1, 1)+Gamma(c2, 1)
(d)
= Gamma(c1+c2, 1), and E[log Gamma(c, 1)] =

ψ(c1 + c2) one finds

E[log Z(α)] = log 2 + ψ(4α + 4b) − 3ψ(2α + 2b) (36)

Hence one obtains the disorder averaged cumulants

E [〈yp〉c] = (−2)p(2pψp(4b) − 3ψp(2b)). (37)

In the limit of small b $ 1 one finds

E [〈y〉] %
5

4b2
, E

[

〈y2〉 − 〈y〉2
]

%
5

2b3
(38)

and we see that the effect of thermal fluctuations, measured for instance by the ratio
E
[

〈y2〉 − 〈y〉2
]

/ (E [〈y〉])2, become subdominant as b → 0. This is expected since it corresponds
to the large scale limit. Note that these calculations are very similar to the ones performed in
[49] for the problem of a single polymer bound to a wall with wall parameter u = A+ 1

2 = −b < 0.
Once again we find that the two problems are close cousins.

Note that the same problem where the two polymers come from different directions, i.e.
have different drifts (a1, a2) = (−b1, −b2) with b1 > b2 can be treated similarly, with W11 =
Γ−1(2α + b1 + b2), W21 = Γ−1(2α + b1), W12 = Γ−1(2α + b2).

10

Two non-crossing polymers in an atypical direction. Consider again the partition sum
of two non-crossing polymers Zstat

! (y1, y2; a, a) with drifts ai = −b with b > 0. We are interested
in the PDF, P (y), of the distance y = y2 − y1 between the two endpoints, in the stationary
state. It can be written as

P (y) =
Z(y)

∫ +∞
0 dyZ(y)

, Z(y) := Zstat
! (0, y; −b, −b) = ZOY((0, 2)|(y, 1)) (33)

Note that the dependence in y1 alone cancels (i.e. y1 can be set to zero). In the second formula
we have used (21), where now in the OY partition sum the two Brownians have drifts −b. As
in (17) P (y) is also the PDF of the distance at time zero of the endpoints of two very long
polymers starting both at −bt at time −t. It is equivalent to conditioning the two polymers
such that the first one (hence both) ends in an atypical direction with space time slope b = x/t.
The nice observation is that upon this conditioning the partition sum Z(y) can be normalized,
i.e. the second polymer is then bound to the first one.

We can compute the thermal cumulants of y as follows. Let us define

Z(α) =
∫ +∞

0
dyZ(y)e−αy (34)

Then the thermal cumulants are given as 〈yp〉c = (−1)p∂p
α log Z(α)|α=0. It turns out that the

full PDF of Z(α) can be obtained from known formula for the OY point to line problem. Using
Theorem 3 in [48] (setting n = 2 there) one finds that

Z(α) = 2W11(W12 + W21) (35)

where the W11, W12, W21 are three i.i.d inverse gamma random variables Gamma−1(2α+2b) with

rate unity. Using that Gamma(c1, 1)+Gamma(c2, 1)
(d)
= Gamma(c1+c2, 1), and E[log Gamma(c, 1)] =

ψ(c1 + c2) one finds

E[log Z(α)] = log 2 + ψ(4α + 4b) − 3ψ(2α + 2b) (36)

Hence one obtains the disorder averaged cumulants

E [〈yp〉c] = (−2)p(2pψp(4b) − 3ψp(2b)). (37)

In the limit of small b $ 1 one finds

E [〈y〉] %
5

4b2
, E

[

〈y2〉 − 〈y〉2
]

%
5

2b3
(38)

and we see that the effect of thermal fluctuations, measured for instance by the ratio
E
[

〈y2〉 − 〈y〉2
]

/ (E [〈y〉])2, become subdominant as b → 0. This is expected since it corresponds
to the large scale limit. Note that these calculations are very similar to the ones performed in
[49] for the problem of a single polymer bound to a wall with wall parameter u = A+ 1

2 = −b < 0.
Once again we find that the two problems are close cousins.

Note that the same problem where the two polymers come from different directions, i.e.
have different drifts (a1, a2) = (−b1, −b2) with b1 > b2 can be treated similarly, with W11 =
Γ−1(2α + b1 + b2), W21 = Γ−1(2α + b1), W12 = Γ−1(2α + b2).

10

if we condition the first polymer 

to end up in atypical position with slope b

Two non-crossing polymers in an atypical direction. Consider again the partition sum
of two non-crossing polymers Zstat

! (y1, y2; a, a) with drifts ai = −b with b > 0. We are interested
in the PDF, P (y), of the distance y = y2 − y1 between the two endpoints, in the stationary
state. It can be written as

P (y) =
Z(y)

∫ +∞
0 dyZ(y)

, Z(y) := Zstat
! (0, y; −b, −b) = ZOY((0, 2)|(y, 1)) (33)

Note that the dependence in y1 alone cancels (i.e. y1 can be set to zero). In the second formula
we have used (21), where now in the OY partition sum the two Brownians have drifts −b. As
in (17) P (y) is also the PDF of the distance at time zero of the endpoints of two very long
polymers starting both at −bt at time −t. It is equivalent to conditioning the two polymers
such that the first one (hence both) ends in an atypical direction with space time slope b = x/t.
The nice observation is that upon this conditioning the partition sum Z(y) can be normalized,
i.e. the second polymer is then bound to the first one.

We can compute the thermal cumulants of y as follows. Let us define

Z(α) =
∫ +∞

0
dyZ(y)e−αy (34)

Then the thermal cumulants are given as 〈yp〉c = (−1)p∂p
α log Z(α)|α=0. It turns out that the

full PDF of Z(α) can be obtained from known formula for the OY point to line problem. Using
Theorem 3 in [48] (setting n = 2 there) one finds that

Z(α) = 2W11(W12 + W21) (35)

where the W11, W12, W21 are three i.i.d inverse gamma random variables Gamma−1(2α+2b) with

rate unity. Using that Gamma(c1, 1)+Gamma(c2, 1)
(d)
= Gamma(c1+c2, 1), and E[log Gamma(c, 1)] =

ψ(c1 + c2) one finds

E[log Z(α)] = log 2 + ψ(4α + 4b) − 3ψ(2α + 2b) (36)

Hence one obtains the disorder averaged cumulants

E [〈yp〉c] = (−2)p(2pψp(4b) − 3ψp(2b)). (37)

In the limit of small b $ 1 one finds

E [〈y〉] %
5

4b2
, E

[

〈y2〉 − 〈y〉2
]

%
5

2b3
(38)

and we see that the effect of thermal fluctuations, measured for instance by the ratio
E
[

〈y2〉 − 〈y〉2
]

/ (E [〈y〉])2, become subdominant as b → 0. This is expected since it corresponds
to the large scale limit. Note that these calculations are very similar to the ones performed in
[49] for the problem of a single polymer bound to a wall with wall parameter u = A+ 1

2 = −b < 0.
Once again we find that the two problems are close cousins.

Note that the same problem where the two polymers come from different directions, i.e.
have different drifts (a1, a2) = (−b1, −b2) with b1 > b2 can be treated similarly, with W11 =
Γ−1(2α + b1 + b2), W21 = Γ−1(2α + b1), W12 = Γ−1(2α + b2).

10

Limit b → 0 and Dyson’s Brownian motion (DBM). In the limit b → 0 one can rescale the
distances as y = ỹ/b2. Then the variable ỹ is determined by

ỹ = argmaxz∈R+
(Λ1(z) − z) (39)

where Λ1(z) is the largest eigenvalue in a GUE(2) DBM. The explicit formula for the PDF p(t)
of t = ỹ is obtained in the Appendix, see Eq. (109). From this formula one obtains for instance
the behavior of the lowest moments in the limit b # 1 as

E [〈y〉] &
5

4b2
, E

[

〈y2〉
]

&
29

8b4
(40)

where the result for the first moment coincides with the result in (38) although it was obtained
by a completely different method. One sees that the second moment diverges much faster than
the thermal one at small b (O(1/b4) instead as O(1/b3)) consistent with the above discussion.

1.7 Method. The partition function Z!(!x, 0|!y, t) defined in (4) vanishes as soon as some of
the xi are equal or some of the yi are equal. Let us define

M!(t, !x, !y) =
det (Z1(xi, 0|yj , t))!

i,j=1

∆(!x)∆(!y)
, (41)

extended by continuity when some xi or yi are equal (see [30] about mathematical subtleties
related to this continuous extension). When all coordinates are equal, it can be proven [30], at
least for a regularized noise, that

M!(t, x!1, y!1) = c2
n det

(

∂i−1
x ∂j−1

y Z(x, 0|y, t)
)!

i,j=1
(42)

where cn = 1/
∏!−1

j=1 j!, and in that case, M!(t, x!1, y!1) can be identified with the partition
function for # non-intersecting continuous directed polymer paths all starting from x and all
ending at y. The collection of random processes (M1(t, x!1, y!1), . . . , M!(t, x!1, y!1)) is called the
O’Connell-Warren multilayer stochastic heat equation in the mathematical literature. It was
rigorously constructed in [30] through a chaos series expansion. Let us further define the ratios

R!(t, x, y) =
M!(t, x!1, y!1)

M!−1(t, x!1, y!1)
(43)

with the convention that M0 = 1.
While it is obvious that for a fixed !x, the set of all non-intersecting partition functions

{M!(t, !x, !y)}"y∈W!
evolves in a Markovian way as t increases, [30] discovered that for any fixed

#, the time evolution of the much smaller set of partition functions

{R1(t, x, y), R2(t, x, y), . . . , R!(t, x, y)}y∈R
, (44)

is also Markovian. In other terms, the partition functions for non-intersecting polymers ending
at the same point behave in a Markovian way, which is very nontrivial. This property comes
from an analogous result in the discrete setting, where the dynamics of the discrete analogue
of (44) are known as the geometric RSK algorithm, and related to the log-gamma discrete
directed polymer model [1], see Section 2.2 below. These discrete Markovian dynamics are
perfectly explicit and a family of invariant measures is described in [1]. In Section 2, we
interpret these results in terms of partition functions for non-intersecting log-gamma directed
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least for a regularized noise, that

M!(t, x!1, y!1) = c2
n det

(

∂i−1
x ∂j−1

y Z(x, 0|y, t)
)!

i,j=1
(42)

where cn = 1/
∏!−1

j=1 j!, and in that case, M!(t, x!1, y!1) can be identified with the partition
function for # non-intersecting continuous directed polymer paths all starting from x and all
ending at y. The collection of random processes (M1(t, x!1, y!1), . . . , M!(t, x!1, y!1)) is called the
O’Connell-Warren multilayer stochastic heat equation in the mathematical literature. It was
rigorously constructed in [30] through a chaos series expansion. Let us further define the ratios

R!(t, x, y) =
M!(t, x!1, y!1)

M!−1(t, x!1, y!1)
(43)

with the convention that M0 = 1.
While it is obvious that for a fixed !x, the set of all non-intersecting partition functions

{M!(t, !x, !y)}"y∈W!
evolves in a Markovian way as t increases, [30] discovered that for any fixed

#, the time evolution of the much smaller set of partition functions

{R1(t, x, y), R2(t, x, y), . . . , R!(t, x, y)}y∈R
, (44)

is also Markovian. In other terms, the partition functions for non-intersecting polymers ending
at the same point behave in a Markovian way, which is very nontrivial. This property comes
from an analogous result in the discrete setting, where the dynamics of the discrete analogue
of (44) are known as the geometric RSK algorithm, and related to the log-gamma discrete
directed polymer model [1], see Section 2.2 below. These discrete Markovian dynamics are
perfectly explicit and a family of invariant measures is described in [1]. In Section 2, we
interpret these results in terms of partition functions for non-intersecting log-gamma directed
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E [〈y〉] &
5

4b2
, E
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〈y2〉
]

&
29

8b4
(40)
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at the same point behave in a Markovian way, which is very nontrivial. This property comes
from an analogous result in the discrete setting, where the dynamics of the discrete analogue
of (44) are known as the geometric RSK algorithm, and related to the log-gamma discrete
directed polymer model [1], see Section 2.2 below. These discrete Markovian dynamics are
perfectly explicit and a family of invariant measures is described in [1]. In Section 2, we
interpret these results in terms of partition functions for non-intersecting log-gamma directed
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Two non-crossing polymers in an atypical direction. Consider again the partition sum
of two non-crossing polymers Zstat

! (y1, y2; a, a) with drifts ai = −b with b > 0. We are interested
in the PDF, P (y), of the distance y = y2 − y1 between the two endpoints, in the stationary
state. It can be written as

P (y) =
Z(y)

∫ +∞
0 dyZ(y)

, Z(y) := Zstat
! (0, y; −b, −b) = ZOY((0, 2)|(y, 1)) (33)

Note that the dependence in y1 alone cancels (i.e. y1 can be set to zero). In the second formula
we have used (21), where now in the OY partition sum the two Brownians have drifts −b. As
in (17) P (y) is also the PDF of the distance at time zero of the endpoints of two very long
polymers starting both at −bt at time −t. It is equivalent to conditioning the two polymers
such that the first one (hence both) ends in an atypical direction with space time slope b = x/t.
The nice observation is that upon this conditioning the partition sum Z(y) can be normalized,
i.e. the second polymer is then bound to the first one.

We can compute the thermal cumulants of y as follows. Let us define

Z(α) =
∫ +∞

0
dyZ(y)e−αy (34)

Then the thermal cumulants are given as 〈yp〉c = (−1)p∂p
α log Z(α)|α=0. It turns out that the

full PDF of Z(α) can be obtained from known formula for the OY point to line problem. Using
Theorem 3 in [48] (setting n = 2 there) one finds that

Z(α) = 2W11(W12 + W21) (35)

where the W11, W12, W21 are three i.i.d inverse gamma random variables Gamma−1(2α+2b) with

rate unity. Using that Gamma(c1, 1)+Gamma(c2, 1)
(d)
= Gamma(c1+c2, 1), and E[log Gamma(c, 1)] =

ψ(c1 + c2) one finds

E[log Z(α)] = log 2 + ψ(4α + 4b) − 3ψ(2α + 2b) (36)

Hence one obtains the disorder averaged cumulants

E [〈yp〉c] = (−2)p(2pψp(4b) − 3ψp(2b)). (37)

In the limit of small b $ 1 one finds

E [〈y〉] %
5

4b2
, E

[

〈y2〉 − 〈y〉2
]

%
5

2b3
(38)

and we see that the effect of thermal fluctuations, measured for instance by the ratio
E
[

〈y2〉 − 〈y〉2
]

/ (E [〈y〉])2, become subdominant as b → 0. This is expected since it corresponds
to the large scale limit. Note that these calculations are very similar to the ones performed in
[49] for the problem of a single polymer bound to a wall with wall parameter u = A+ 1

2 = −b < 0.
Once again we find that the two problems are close cousins.

Note that the same problem where the two polymers come from different directions, i.e.
have different drifts (a1, a2) = (−b1, −b2) with b1 > b2 can be treated similarly, with W11 =
Γ−1(2α + b1 + b2), W21 = Γ−1(2α + b1), W12 = Γ−1(2α + b2).
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