Steady state of the KPZ equation on an interval

and Liouville quantum mechanics

Pierre Le Doussal
(LPENS, Paris)

G. Barraquand, PLD

Steady state of the KPZ equation on an interval and Liouville quantum mechanics, arXiv2105.15178, EPL 2022

Stationary measures of the KPZ equation on an interval from Enaud-Derrida's matrix product ansatz representation, arXiv2209.03131

+ more .. Liouville CFT !! (gourmet dish)
distribution of exponential functional of Brownian motion integrals of geometric Brownian motion $\quad Z_{L}^{w}=\int_{0}^{L} d x e^{B(x)-w x}$

$$
\mathbb{E}\left[e^{-p Z_{L}^{w}}\right]=
$$

$$
\int_{-\infty}^{+\infty} d U_{L} \int_{U(0)=0}^{U(L)=U_{L}} \mathcal{D} U(x) e^{-\int_{0}^{L} d x \frac{1}{2}\left(\frac{d U}{d x}+w\right)^{2}+p e^{U(x)}}
$$

=> Liouville quantum mechanics
distribution of exponential functional of Brownian motion
integrals of geometric Brownian motion $\quad Z_{L}^{w}=\int_{0}^{L} d x e^{B(x)-w x}$

$$
\mathbb{E}\left[e^{-p Z_{L}^{w}}\right]=
$$

$$
\int_{-\infty}^{+\infty} d U_{L} \int_{U(0)=0}^{U(L)=U_{L}} \mathcal{D} U(x) e^{-\int_{0}^{L} d x \frac{1}{2}\left(\frac{d U}{d x}+w\right)^{2}+p e^{U(x)}}
$$

=> Liouville quantum mechanics

$$
=e^{-\frac{w^{2} L}{2}} \int_{-\infty}^{+\infty} d U_{L} e^{-w U_{L}}\left\langle U_{L}\right| e^{-L H_{p}}\left|U_{0}=0\right\rangle \quad \quad H_{p}=-\frac{1}{2} \frac{d^{2}}{d U^{2}}+p e^{U}
$$

$$
=\int_{0}^{+\infty} d k \int_{-\infty}^{+\infty} d U_{L} \psi_{k}\left(U_{L}\right) \psi_{k}^{*}(0) e^{-w U_{L}-\frac{L}{8}\left(k^{2}+4 w^{2}\right)}
$$

$$
H_{p} \psi_{k}(U)=\frac{k^{2}}{8} \psi_{k}(U)
$$

$$
\psi_{k}(U)=\frac{1}{\pi} \sqrt{k \sinh (\pi k)} K_{i k}\left(2 \sqrt{2 p e} e^{U / 2}\right)
$$

Comtet, Texier (1998) Matsumoto-Yor (2005)

Comtet, Monthus, Yor (1998)
Comtet, Monthus (1994)
Tsvelik, Majumdar,..
weak universality
weak asymmetry limit
convergence to the KPZ equation
asymmetric exclusion process on \mathbb{Z}

height at time τ

$\mathrm{h}(i, \tau)-\mathrm{h}(i-1, \tau)= \begin{cases}1 & \text { site } i \text { occupied } \\ -1 & \text { site } i \text { empty }\end{cases}$
$q=e^{-\epsilon}$
$\epsilon \rightarrow 0$
ASEP height function converges to a solution of the KPZ equation

$$
\exp \left(\frac{\epsilon}{2} \mathrm{~h}\left(4 \epsilon^{-2} x, 16 \epsilon^{-4} t\right)+c_{\epsilon} t\right) \underset{\epsilon \rightarrow 0}{\longrightarrow} Z(x, t) \text { solution of the SHE }
$$

weak universality
weak asymmetry limit
convergence to the KPZ equation
asymmetric exclusion process on \mathbb{Z}

$$
\begin{aligned}
& \text { height at time } \tau \\
& \mathrm{h}(i, \tau)-\mathrm{h}(i-1, \tau)= \begin{cases}1 & \text { site } i \text { occupied } \\
-1 & \text { site } i \text { empty }\end{cases}
\end{aligned}
$$

$$
q=e^{-\epsilon}
$$

$$
\epsilon \rightarrow 0
$$

ASEP height function converges to a solution of the KPZ equation

$$
\exp \left(\frac{\epsilon}{2} \mathrm{~h}\left(4 \epsilon^{-2} x, 16 \epsilon^{-4} t\right)+c_{\epsilon} t\right) \underset{\epsilon \rightarrow 0}{\longrightarrow} Z(x, t) \text { solution of the SHE }
$$

to KPZ equation on an interval Corwin-Shen 2016
stationary measure for the KPZ equation invariant measure
denote $H(x)$ stationary height field if at $\mathrm{t}=\mathrm{+} \mathbf{0} \quad h\left(x, t_{0}\right)-h\left(0, t_{0}\right) \equiv H(x)$ \Rightarrow it remains true for all $\dagger>+0$
since $h(x, t)$ grows $h(0, t) \simeq v_{\infty} t+\chi t^{1 / 3}$
only height differences can be stationary
expect that $h(x, t)-h(y, t)$ becomes stationary $|x-y| \ll t^{2 / 3}$
stationary measure for the KPZ equation invariant measure
denote $H(x)$ stationary height field

$$
\text { if at t=to } \quad h\left(x, t_{0}\right)-h\left(0, t_{0}\right) \equiv H(x)
$$

=> it remains true for all $\dagger>+0$

- on the full line $x \in \mathbb{R}$
$H(x)=B(x)+a x$
Funaki-Quastel 2014
since $h(x, t)$ grows

$$
h(0, t) \simeq v_{\infty} t+\chi t^{1 / 3}
$$

only height differences can be stationary
expect that $h(x, t)-h(y, t)$
becomes stationary $|x-y| \ll t^{2 / 3}$
full line ASEP stationary
measures are i.i.d Bernoulli sites occupied independently
w probability $0<\rho<1$
stationary measure for the KPZ equation invariant measure
denote $H(x)$ stationary height field

$$
\text { if at t=to } \quad h\left(x, t_{0}\right)-h\left(0, t_{0}\right) \equiv H(x)
$$

=> it remains true for all $\dagger>+0$

- on the full line $x \in \mathbb{R}$

$$
H(x)=B(x)+a x
$$

Funaki-Quastel 2014
since $h(x, t)$ grows

$$
h(0, t) \simeq v_{\infty} t+\chi t^{1 / 3}
$$

only height differences can be stationary
expect that $h(x, t)-h(y, t)$
becomes stationary $|x-y| \ll t^{2 / 3}$
full line ASEP stationary measures are i.i.d Bernoulli sites occupied independently
w probability $0<\rho<1$

- on the circle $x \in[0,1]$
$H(x)$ is Brownian bridge is unique invariant measure

$$
H(0)=H(1)=0
$$

$$
\frac{Z(x, t)}{Z(y, t)}=e^{h(x, t)-h(y, t)} \underset{t \rightarrow+\infty}{\rightarrow} e^{B(x)-B(y)-a(x-y)}
$$

$$
|x-y|=O(1)
$$

KPZ equation on the half-line $=$ directed polymer in half-space

$$
\begin{aligned}
& h(x, t)=\log Z(x, t) \quad x>0 \\
& \partial_{t} Z(x, t)=\partial_{x}^{2} Z(x, t)+\sqrt{2} \eta(x, t) Z(x, t) \\
& \left.\partial_{x} Z(x, t)\right|_{x=0}=A Z(0, t) \\
& A>0 \text { repulsive wall } \\
& A<0 \text { attractive wall }
\end{aligned}
$$

KPZ equation on the half-line $=$ directed polymer in half-space
$h(x, t)=\log Z(x, t) \quad x>0$
$\partial_{t} Z(x, t)=\partial_{x}^{2} Z(x, t)+\sqrt{2} \eta(x, t) Z(x, t)$
$\left.\partial_{x} Z(x, t)\right|_{x=0}=A Z(0, t) \quad$ Kardar 1985
$A>0$ repulsive wall replica Bethe Ansatz
$A<0$ attractive wall
ground state \longrightarrow binding transition

$A<-1 / 2$ polymer bound to wall
$A>-1 / 2$. polymer unbound

KPZ equation on the half-line $=$ directed polymer in half-space
$h(x, t)=\log Z(x, t) \quad x>0$
$\partial_{t} Z(x, t)=\partial_{x}^{2} Z(x, t)+\sqrt{2} \eta(x, t) Z(x, t)$
$\left.\partial_{x} Z(x, t)\right|_{x=0}=A Z(0, t) \quad$ Kardar 1985
$A>0$ repulsive wall replica Bethe Ansatz
$A<0$ attractive wall
ground state \longrightarrow binding transition

$A<-1 / 2$ polymer bound to wall
$A>-1 / 2$. polymer unbound

Barraquand, Krajenbrink, PLD 2020

$$
\frac{Z(x, t)}{Z(0, t)}=e^{B(x)+\left(A+\frac{1}{2}\right) x}
$$

is stationary in bound phase
\longrightarrow stationary endpoint distribution $\quad p(x)=\frac{e^{B(x)+\left(A+\frac{1}{2}\right) x}}{\int_{0}^{+\infty} d y e^{B(y)+\left(A+\frac{1}{2}\right) y}}$

KPZ equation on the half-line $=$ directed polymer in half-space

$h(x, t)=\log Z(x, t) \quad x>0$
$\partial_{t} Z(x, t)=\partial_{x}^{2} Z(x, t)+\sqrt{2} \eta(x, t) Z(x, t)$
$\left.\partial_{x} Z(x, t)\right|_{x=0}=A Z(0, t) \quad$ Kardar 1985
$A>0$ repulsive wall replica Bethe Ansatz
$A<0$ attractive wall
ground state \longrightarrow binding transition

$A<-1 / 2$ polymer bound to wall
$A>-1 / 2$. polymer unbound
Barraquand, Krajenbrink, PLD $2020 \quad \frac{Z(x, t)}{Z(0, t)}=e^{B(x)+\left(A+\frac{1}{2}\right) x}$
is stationary
\longrightarrow stationary endpoint distribution $\quad p(x)=\frac{e^{B(x)+\left(A+\frac{1}{2}\right) x}}{\int_{0}^{+\infty} d y e^{B(y)+\left(A+\frac{1}{2}\right) y}}$
Barraquand, PLD 2020
formula for $\overline{p\left(x_{1}\right) \ldots p\left(x_{k}\right)}$ using Liouville QM

$$
\overline{\left\langle x^{k}\right\rangle^{c}}=-(-2)^{k} \psi^{(k)}(-2 \epsilon) \quad \overline{\langle x\rangle} \simeq \frac{1}{2 \epsilon^{2}} \quad \overline{\left\langle x^{2}\right\rangle^{c}} \simeq \frac{1}{\epsilon^{3}} \quad \overline{\langle x\rangle^{k}} \simeq c_{k} \epsilon^{-2 k} \quad \epsilon=A+\frac{1}{2}
$$

KPZ stationary height profile on the interval

$$
\begin{array}{lll}
\text { for any to } \\
h\left(x, t_{0}\right)-h\left(0, t_{0}\right) \equiv H(x) & \{H(x)\}_{x \in[0, L]} & \left.\partial_{x} h\right|_{x=0}=u=A+\frac{1}{2} \\
& H(0)=0 & \left.\partial_{x} h\right|_{x=L}=-v
\end{array}
$$

KPZ stationary height profile on the interval

$$
\begin{array}{lll}
\text { for any to } \\
h\left(x, t_{0}\right)-h\left(0, t_{0}\right) \equiv H(x) & \{H(x)\}_{x \in[0, L]} & \left.\partial_{x} h\right|_{x=0}=u=A+\frac{1}{2} \\
& H(0)=0 & \left.\partial_{x} h\right|_{x=L}=-v
\end{array}
$$

Main result $\quad H(x)=\frac{1}{\sqrt{2}} W(x)+X(x) \searrow_{\downarrow} \searrow_{\text {independent of } \mathrm{W}}$

$$
\begin{aligned}
& W(0)=0 \\
& W(L) \text { free }
\end{aligned}
$$

one-sided standard
Brownian motion
measure of $X(x)$ given by path integral
first form
any (u, v)

$$
X(0)=0
$$

$$
\frac{\mathcal{D} X}{\mathcal{Z}_{u, v}} e^{-\int_{0}^{L} d x\left(\frac{d X(x)}{d x}\right)^{2}} e^{-2 v X(L)}\left(\int_{0}^{L} \mathrm{~d} x e^{-2 X(x)}\right)^{-(u+v)}
$$

KPZ stationary height profile on the interval

$$
\begin{array}{lll}
\begin{array}{ll}
\text { for any to } \\
h\left(x, t_{0}\right)-h\left(0, t_{0}\right) \equiv H(x) & \{H(x)\}_{x \in[0, L]}
\end{array} & \left.\partial_{x} h\right|_{x=0}=u=A+\frac{1}{2} \\
& H(0)=0 & \left.\partial_{x} h\right|_{x=L}=-v
\end{array}
$$

Main result $H(x)=\frac{1}{\sqrt{2}} W(x)+X(x) \searrow_{\text {independent of } \mathrm{W}}$

$$
\begin{aligned}
& W(0)=0 \\
& W(L) \text { free }
\end{aligned}
$$

one-sided standard
Brownian motion
measure of $X(x)$ given by path integral
first form
any (u, v)

$$
\frac{\mathcal{D} X}{\mathcal{Z}_{u, v}} e^{-\int_{0}^{L} d x\left(\frac{d X(x)}{d x}\right)^{2}} e^{-2 v X(L)}\left(\int_{0}^{L} \mathrm{~d} x e^{-2 X(x)}\right)^{-(u+v)}
$$

$X(0)=0$
second form $\quad X(x)=U(x)-U(0)$
$u+v>0$

$$
\frac{\mathcal{D} U}{\widetilde{\mathcal{Z}}_{u, v}} \exp \left(-2 u U(0)-2 v U(L)-\int_{0}^{L} d x\left[\left(\frac{d U(x)}{d x}\right)^{2}+e^{-2 U(x)}\right]\right)
$$

first obtained from second by integration over zero mode $U(0)$
how was that result obtained?
from open ASEP
stationary measure
from matrix product ansatz (MPA)

Derrida, Evans, Hakim, Pasquier, 1993
$P(\tau)=\frac{1}{Z_{\ell}(q)}\langle W| \prod_{i=1}^{\ell}\left(D \tau_{i}+E\left(1-\tau_{i}\right)\right)|V\rangle$
how was that result obtained?
from open ASEP
stationary measure from matrix product ansatz (MPA)

Derrida, Evans, Hakim, Pasquier, 1993
$P(\tau)=\frac{1}{Z_{\ell}(q)}\langle W| \prod_{i=1}^{\ell}\left(D \tau_{i}+E\left(1-\tau_{i}\right)\right)|V\rangle$

$\longrightarrow \quad$ representations of E, D, V, W using Askey-Wilson orthogonal polynomials Uchiyama,Sasamoto,Wadati 2003
average of observables in open ASEP from a Askey-Wilson (AW) process

Corwin-Knizel 2021 KPZ limit of ASEP BW formula

$$
\mathbb{E}\left(\prod_{i=1}^{k} e^{-s_{i}\left(H\left(x_{i}\right)-H\left(x_{i-1}\right)\right)}\right) \quad u+v>0
$$

how was that result obtained?
from open ASEP

stationary measure

from matrix product ansatz (MPA)
Derrida, Evans, Hakim, Pasquier, 1993
$P(\tau)=\frac{1}{Z_{\ell}(q)}\langle W| \prod_{i=1}^{\ell}\left(D \tau_{i}+E\left(1-\tau_{i}\right)\right)|V\rangle$

$\longrightarrow \quad$ representations of E, D, V, W using Askey-Wilson orthogonal polynomials Uchiyama,Sasamoto,Wadati 2003
average of observables in open ASEP from a Askey-Wilson (AW) process

Barraquand, PLD 2021
recognized formula from Liouville QM allows to perform inverse Laplace transform

Corwin-Knizel 2021 KPZ limit of ASEP BW formula

$$
\mathbb{E}\left(\prod_{i=1}^{k} e^{-s_{i}\left(H\left(x_{i}\right)-H\left(x_{i-1}\right)\right)}\right) \quad u+v>0
$$

how was that result obtained?

from open ASEP stationary measure from matrix product ansatz (MPA)
Derrida, Evans, Hakim, Pasquier, 1993

$$
P(\tau)=\frac{1}{Z_{\ell}(q)}\langle W| \prod_{i=1}^{\ell}\left(D \tau_{i}+E\left(1-\tau_{i}\right)\right)|V\rangle
$$

\longrightarrow representations of E,D,V,W using Askey-Wilson orthogonal polynomials Uchiyama,Sasamoto,Wadati 2003
average of observables in open ASEP from a Askey-Wilson (AW) process

Barraquand, PLD 2021
recognized formula from Liouville QM allows to perform inverse Laplace transform

Barraquand, PLD 2022 more direct derivation using Enaud-Derrida representation of the MPA in terms of random walks

Corwin-Knizel 2021 KPZ limit of ASEP BW formula

$$
\mathbb{E}\left(\prod_{i=1}^{k} e^{-s_{i}\left(H\left(x_{i}\right)-H\left(x_{i-1}\right)\right)}\right) \quad u+v>0
$$

Inverse Laplace from stochastic analysis Markov process with transition proba Bryc,Kuznetsov,Wang,Wesolowski 2021

Bryc,Kuznetsov, 2021
proved quivalence of the two $u+v>0$

some formula..

$$
\begin{aligned}
& \mathbb{E}\left[e^{-\sum_{j=1}^{m} s_{j}\left(H\left(x_{j}\right)-H\left(x_{j-1}\right)\right)}\right]=e^{\frac{1}{4} \sum_{j=1}^{m+1} s_{j}^{2}\left(x_{j}-x_{j-1}\right)} \frac{J(\vec{s})}{J(0)} \\
& \tilde{J}(\vec{s})= \\
& \frac{1}{2} \prod_{j=1}^{m+1} \int_{0}^{+\infty} \frac{d k_{j}}{4 \pi\left|\Gamma\left(i k_{j}\right)\right|^{2}} \prod_{j=1}^{m} \frac{\Gamma_{4}\left(\frac{s_{j}-s_{j+1}}{2} \pm \frac{i k_{j}}{2} \pm \frac{i k_{j+1}}{2}\right)}{\Gamma\left(s_{j}-s_{j+1}\right)} \\
& \times\left|\Gamma\left(u-\frac{s_{1}}{2}+\frac{i k_{1}}{2}\right) \Gamma\left(v+\frac{i k_{m+1}}{2}\right)\right|^{2} e^{\sum_{j=1}^{m+1} \frac{-k_{j}^{2}}{4}\left(x_{j}-x_{j-1}\right)} \\
& \Gamma_{4}(\alpha \pm x \pm y):=\prod_{\sigma, \tau= \pm 1} \Gamma(a+\sigma x+\tau y) \\
& \langle k| e^{-2 \alpha \hat{U}}\left|k^{\prime}\right\rangle=\frac{N_{k} N_{k^{\prime}}}{8 \Gamma(2 \alpha)} \Gamma_{4}\left(\alpha \pm \frac{i k}{2} \pm \frac{i k^{\prime}}{2}\right)
\end{aligned}
$$

The scaled process

$$
\tilde{x}=x / L \in[0,1]
$$

$$
\begin{aligned}
X(x) & =\sqrt{L} \widetilde{X}(\tilde{x}) \\
W(x) & =\sqrt{L} \widetilde{W}(\tilde{x}) \\
H(x) & =\sqrt{L} \widetilde{H}(\widetilde{x})
\end{aligned}
$$

$\widetilde{W}(\widetilde{x})$
also a one-sided standard Brownian motion

$$
\begin{aligned}
& u=\tilde{u} / \sqrt{L} \\
& v=\tilde{v} / \sqrt{L}
\end{aligned}
$$

$S[\widetilde{X}]=\int_{0}^{1} d \tilde{x}\left(\frac{d \widetilde{X}(\tilde{x})}{d \tilde{x}}\right)^{2}+\frac{\tilde{u}}{\sqrt{L}} \log \left(\int_{0}^{1} \mathrm{~d} \tilde{x} e^{-2 \sqrt{L} \widetilde{X}(\tilde{x})}\right)+\frac{\tilde{v}}{\sqrt{L}} \log \left(\int_{0}^{1} \mathrm{~d} \tilde{x} e^{2 \sqrt{L}(\widetilde{X}(1)-\widetilde{X}(\tilde{x}))}\right)$
$L \gg 1 \mathrm{KPZ}$ fixed point limit

$$
\tilde{X}(0)=0 \quad \tilde{X}(1) \text { free }
$$

$\longrightarrow \mathcal{D} \widetilde{X} e^{-\int_{0}^{1} d \tilde{x}\left(\frac{d \tilde{X}(\tilde{x})}{d \tilde{x}}\right)^{2}} e^{2 \tilde{u} \min _{\tilde{x}}\{\widetilde{X}(\tilde{x})\}+2 \tilde{v} \min _{\tilde{x}}\{\widetilde{X}(\tilde{x})-\widetilde{X}(1)\}}$

$$
\begin{array}{lll}
\tilde{u}, \tilde{v} \rightarrow+\infty(u, v>0) & \begin{array}{l}
\min _{\tilde{x}} \tilde{X}(\tilde{x})=0 \\
\min _{\tilde{x}}(\tilde{X}(\tilde{x})-\widetilde{X}(1))=0
\end{array} & \longrightarrow \tilde{X}(x) \geq 0 \\
\tilde{X}(0)-\tilde{X}(1) \geq 0 \\
\tilde{X}(\tilde{x}) \Rightarrow \frac{1}{\sqrt{2}} E(\tilde{x})
\end{array} \quad \longrightarrow \quad \widetilde{X}(\tilde{x}) \Longrightarrow \frac{1}{\sqrt{2}} \widetilde{W}(\tilde{x})+\frac{1}{\sqrt{2}} E(\tilde{x}) \quad \longrightarrow \begin{gathered}
\longrightarrow \tilde{X}(1) \leq 0
\end{gathered}
$$

Stationary measures for half-line KPZ equation

Take the
$L \rightarrow \infty$ limit

$$
H(x)-H(0)=\frac{1}{\sqrt{2}} W(x)+X(x) \quad Z_{L}[X]=\int_{0}^{L} d x e^{-2 X(x)}
$$

with $x=O$ (1) fixed

$$
\text { of } \quad \frac{\mathcal{D} X}{\mathcal{Z}_{u, v}} e^{-\int_{0}^{L} d x\left(\frac{d X(x)}{d x}\right)^{2}} e^{-2 v X(L)} Z_{L}[X]^{-(u+v)}
$$

the hard work is already done!
Limiting distributions associated with moments of exponential Brownian functionals Stud. Sci. Math. Hung. 41193 (2004)

Stationary measures for half-line KPZ equation

$u=$ boundary parameter
$v=$ drift parameter such that $h(x, 0)$ has drift $-v$ at infinity

Stationary measures for half-line KPZ fixed point

look at large scale $\quad x \rightarrow+\infty$
define scaled field/parameters $\quad u=\frac{\tilde{u}}{\sqrt{x}} \quad v=\frac{\tilde{v}}{\sqrt{x}}$

$$
\tilde{H}(y)=\frac{1}{\sqrt{x}} H(x y)
$$

Matrix product ansatz

Consider ASEP on $\{0,1\}^{\ell}$ with boundary parameters $\alpha, \beta, \gamma, \delta$.

We describe the state of the system by $\eta \in\{0,1\}^{\ell}$. The stationary measure \mathbb{P} can be written as [Derrida-Evans-Hakim-Pasquier 1993]

$$
\mathbb{P}(\eta)=\frac{1}{Z_{\ell}}\langle w| \prod_{i=1}^{\ell}\left(\eta_{i} D+\left(1-\eta_{i}\right) E\right)|v\rangle
$$

where

$$
Z_{\ell}=\langle w|(E+D)^{\ell}|v\rangle
$$

and E, D are infinite matrices, and $\langle w|,|v\rangle$ are row/column vectors such that

$$
\begin{aligned}
D E-q E D & =D+E \\
\langle w|(\alpha E-\gamma D) & =\langle w| \\
(\beta D-\delta E)|v\rangle & =|v\rangle
\end{aligned}
$$

Enaud-Derrida's representation

Enaud-Derrida found a very simple representation for any parameters $q, \alpha, \beta, \gamma, \delta$. Under Liggett's condition, it becomes :
$D=\left(\begin{array}{cccccc}{[1]_{q}} & {[1]_{q}} & 0 & 0 & 0 & \cdots \\ 0 & {[2]_{q}} & {[2]_{q}} & 0 & 0 & \cdots \\ 0 & 0 & {[3]_{q}} & {[3]_{q}} & 0 & \cdots \\ \vdots & \vdots & 0 & \ddots & \ddots & \ddots\end{array}\right), \quad E=\left(\begin{array}{cccc}{[1]_{q}} & 0 & 0 & 0 \\ {[2]_{q}} & {[2]_{q}} & 0 & 0 \\ 0 & {[3]_{q}} & {[3]_{q}} & 0 \\ 0 & 0 & \ddots & \ddots\end{array}\right.$
where $[n]_{q}=\frac{1-q^{n}}{1-q}$.
Denoting by $\{|n\rangle\}_{n \geqslant 1}$ the vectors of the associated basis, let

$$
\langle w|=\sum_{n \geqslant 1}\left(\frac{1-\varrho_{0}}{\varrho_{0}}\right)^{n}\langle n|, \quad|v\rangle=\sum_{n \geqslant 1}\left(\frac{\varrho_{\ell}}{1-\varrho_{\ell}}\right)^{n}[n]_{q}|n\rangle .
$$

Then, $E, D,\langle w|,|v\rangle$ satisfy

$$
\begin{aligned}
D E-q E D & =D+E \\
\langle w|(\alpha E-\gamma D) & =\langle w| \\
(\beta D-\delta E)|v\rangle & =|v\rangle
\end{aligned}
$$

Sum over paths

Due to the bidiagonal structure, the normalization constant $Z_{\ell}=\langle w|(D+E)^{\ell}|v\rangle$ can be written as a sum over lattice paths $\vec{n}=\left(n_{0}, n_{1}, \ldots, n_{\ell}\right) \in \mathbb{N}^{\ell}$ of the form

$$
Z_{\ell}=\sum_{\vec{n}} \Omega(\vec{n})
$$

where

$$
\Omega(\vec{n})=\left(\frac{1-\varrho_{0}}{\varrho_{0}}\right)^{n_{0}}\left(\frac{\varrho_{\ell}}{1-\varrho_{\ell}}\right)^{n_{\ell}} \prod_{i=1}^{\ell} v\left(n_{i-1}, n_{i}\right) \prod_{i=0}^{\ell}\left[n_{i}\right]_{q},
$$

with

$$
v\left(n, n^{\prime}\right)= \begin{cases}2 & \text { if } n=n^{\prime} \\ 1 & \text { if }\left|n-n^{\prime}\right|=1 \\ 0 & \text { else }\end{cases}
$$

- This introduces a natural probability measure on random walk paths \vec{n}. The stationary measure $\mathbb{P}(\eta)$ can be recovered from this measure.

Open ASEP invariant measure

Following arguments similar as [Derrida-Enaud-Lebowitz 2004], one arrives at

Theorem ([B.-Le Doussal 2022])

Under the stationary measure $\mathbb{P}(\tau)$, ASEP height function $H(x)=\sum_{j=1}^{x}\left(2 \eta_{i}-1\right)$ is such that

$$
(H(i))_{1 \leqslant i \leqslant \ell} \stackrel{(d)}{=}\left(n_{i}-n_{0}+m_{i}\right)_{1 \leqslant i \leqslant \ell},
$$

where $\left(n_{i}, m_{i}\right)_{0 \leqslant i \leqslant \ell}$ is a two dimensional random walk on \mathbb{Z}^{2}, starting from $\left(n_{0}, 0\right)$, distributed as

$$
P(\vec{n}, \vec{m})=\frac{\mathbb{1}_{n_{0}>0}}{4^{-\ell} Z_{\ell}}\left(\frac{1-\varrho_{0}}{\varrho_{0}}\right)^{n_{0}}\left(\frac{\varrho_{\ell}}{1-\varrho_{\ell}}\right)^{n_{\ell}} \prod_{i=0}^{\ell}\left[n_{i}\right]_{q} \times P_{n_{0}, 0}^{S S R W}(\vec{n}, \vec{m})
$$

where $P_{n_{0}, 0}^{S S R W}$ denotes the probability measure of the symmetric simple random walk $(S S R W)$ on \mathbb{Z}^{2} starting from $\left(n_{0}, 0\right)$.

Scaling limit to the KPZ equation

Under the scalings such that ASEP's height function converges to KPZ, in particular

$$
q=1-\varepsilon, \quad \ell=\varepsilon^{-2}, \varrho_{0}=\frac{1}{2}(1+u \varepsilon), \quad \varrho_{\ell}=\frac{1}{2}(1-v \varepsilon)
$$

we find, denoting by Y_{x} the rescaled version of the random walk n_{i}

$$
\begin{aligned}
\prod_{i=0}^{\ell}\left[n_{i}\right]_{q} & \rightarrow e^{-\int_{0}^{L} e^{-2 \gamma_{s}} d s} \\
\left(\frac{1-\varrho_{a}}{\varrho_{a}}\right)^{n_{0}}\left(\frac{\varrho_{b}}{1-\varrho_{b}}\right)^{n_{\ell}} & \rightarrow e^{-2 u Y_{0}-2 v Y_{L}}
\end{aligned}
$$

so that

$$
\left(m_{i}, n_{i}\right) \Longrightarrow\left(W_{x}, Y_{x}\right)
$$

where W_{x} is a Brownian motion and Y_{x} is absolutely continuous to the Brownian measure with Radon Nikodym derivative

$$
\frac{1}{\mathcal{Z}_{u, v}} e^{-2 u Y_{0}-2 v Y_{L}} e^{-\int_{0}^{L} e^{-2 Y_{s}} d s}
$$

Liouville field theory in dimension 1

Theorem

The KPZ equation on $[0, L]$ with boundary parameters u and v with $u+v>0$ has a unique stationary measure

$$
h_{u, v}^{L}(x)=W_{x}+Y_{x}-Y_{0},
$$

where

- W is a Brownian motion,
- Y is independent from W, and its law is absolutely continuous w.r.t. to that of a Brownian motion with free starting point. The Radon-Nikodym derivative is

$$
\frac{1}{\mathcal{Z}_{u, v}} \exp \left(-2 u Y_{0}-2 v Y_{L}-\int_{0}^{L} e^{-2 Y_{s}} d s\right)
$$

It was originally proved by [Bryc-Kuznetsov-Wang-Wesołowski 2021], [B.Le Doussal 2021] using results from [Corwin-Knizel 2021]. Uniqueness was later proved by [Knizel-Matetski 2022].
stationary measure for 2 non-crossing polymers?
on real line
stationary measure for 2 non-crossing polymers
in a random potential (on the line)
G. Barraquand,PLD, arXiv:2205.08023

1 polymer $\quad Z_{1}^{\text {stat }}(y)=e^{B(y)}$

$$
B(0)=0 \quad d B(y)^{2}=d y
$$

2 NC polymers

$$
\begin{aligned}
& Z_{2}^{\text {stat }}\left(y_{1}, y_{2}\right)=e^{B_{1}\left(y_{1}\right)+B_{1}\left(y_{2}\right)} \int_{y_{1}}^{y_{1}<y_{2}} d z e^{-B_{1}(z)+B_{2}(z)}
\end{aligned}
$$

equal to partition sum of

$$
\begin{gathered}
t \rightarrow+\infty \\
\frac{Z_{\ell}(\vec{x} ;-t \mid \vec{y} ; 0)}{Z_{\ell}(\vec{x} ;-t \mid \vec{z} ; 0)} \stackrel{(d)}{\sim} \frac{Z_{\ell}^{\text {stat }}(\vec{y})}{Z_{\ell}^{\text {stat }}(\vec{z})}
\end{gathered}
$$

2 NC semi-discrete O'Connel-Yor polymers

stationary measure for ℓ non-crossing polymers

3 NC polymers

$$
\begin{aligned}
& Z_{3}^{\text {stat }}\left(y_{1}, y_{2}, y_{3}\right)=e^{B_{1}\left(y_{1}\right)+B_{1}\left(y_{2}\right)+B_{1}\left(y_{3}\right)} \\
& \times \int_{y_{1}<z_{1}^{2}<y_{2}<z_{2}^{2}<y_{3}} d z_{1}^{2} d z_{2}^{2} e^{B_{2}\left(z_{1}^{2}\right)-B_{1}\left(z_{1}^{2}\right)+B_{2}\left(z_{2}^{2}\right)-B_{1}\left(z_{2}^{2}\right)} \int_{z_{1}^{2}<z_{1}^{1}<z_{2}^{2}} d z_{1}^{1} e^{B_{3}\left(z_{1}^{1}\right)-B_{2}\left(z_{1}^{1}\right)}
\end{aligned}
$$

ℓ NC polymers $\quad Z_{\ell}^{\text {stat }}(\vec{y})=\int_{G T(\vec{y})} \prod_{k=1}^{\ell} \prod_{i=1}^{k} e^{B_{\ell-k+1}\left(z_{i}^{k}\right)-B_{\ell-k+1}\left(z_{i-1}^{k-1}\right)} \prod_{k=1}^{\ell-1} \prod_{i=1}^{k} \mathrm{~d} z_{i}^{k}$

$$
G T(\vec{y})=\left\{\left(z_{i}^{k}\right)_{1 \leqslant i \leqslant k \leqslant \ell}: z_{i}^{k+1} \leqslant z_{i}^{k} \leqslant z_{i+1}^{k+1} \text { for } 1 \leqslant i \leqslant k \leqslant \ell-1, \text { and } z_{i}^{\ell}=y_{i} \text { for } 1 \leqslant i \leqslant \ell\right\}
$$

Gelfand-Tsetlin pattern
interlaced set of $\ell(\ell-1) / 2$
auxiliary variables

Liouville field theory and log-correlated Random Energy Models

X. Cao, A. Rosso, R. Santachiara, P. Le Doussal arXiv:1611.02193

An exact mapping is established between the $c \geq 25$ Liouville field theory (LFT) and the Gibbs measure statistics of a thermal particle in a 2D Gaussian Free Field plus a logarithmic confining potential. The probability distribution of the position of the minimum of the energy landscape is obtained exactly by combining the conformal bootstrap and one-step replica symmetry breaking methods. Operator product expansions in LFT allow to unveil novel universal behaviours of the log-correlated Random Energy class. High precision numerical tests are given.

Liouville field theory and log-correlated Random Energy Models

X. Cao, A. Rosso, R. Santachiara, P. Le Doussal arXiv:1611.02193

An exact mapping is established between the $c \geq 25$ Liouville field theory (LFT) and the Gibbs measure statistics of a thermal particle in a 2D Gaussian Free Field plus a logarithmic confining potential. The probability distribution of the position of the minimum of the energy landscape is obtained exactly by combining the conformal bootstrap and one-step replica symmetry breaking methods. Operator product expansions in LFT allow to unveil novel universal behaviours of the log-correlated Random Energy class. High precision numerical tests are given.

Log-Random Energy Model(REM)

normalized Gibbs measure of a particle in log-correlated field

$$
\begin{aligned}
& p_{\beta}(z) \stackrel{\text { def }}{=} \frac{1}{Z} e^{-\beta(\phi(z)+U(z))}, z \in \mathbb{C} \\
& Z \stackrel{\text { def }}{=} \int_{\mathbb{C}} e^{-\beta(\phi(z)+U(z))} \mathrm{d}^{2} z
\end{aligned}
$$

$$
\overline{\phi(z) \phi(w)}=4 \ln (R /|z-w|)
$$

$$
\overline{\phi(z)^{2}}=4 \ln (R / \epsilon) \quad \epsilon \rightarrow 0, R \rightarrow \infty
$$

$U(z) \stackrel{\text { def }}{=} 4 a_{1} \ln |z|+4 a_{2} \ln |z-1|, a_{1}, a_{2}>0$

Liouville field theory and log-correlated Random Energy Models

X. Cao, A. Rosso, R. Santachiara, P. Le Doussal arXiv:1611.02193

An exact mapping is established between the $c \geq 25$ Liouville field theory (LFT) and the Gibbs measure statistics of a thermal particle in a 2D Gaussian Free Field plus a logarithmic confining potential. The probability distribution of the position of the minimum of the energy landscape is obtained exactly by combining the conformal bootstrap and one-step replica symmetry breaking methods. Operator product expansions in LFT allow to unveil novel universal behaviours of the log-correlated Random Energy class. High precision numerical tests are given.

Log-Random Energy Model(REM)

normalized Gibbs measure of a particle in log-correlated field

$$
\begin{aligned}
& p_{\beta}(z) \stackrel{\text { def }}{=} \frac{1}{Z} e^{-\beta(\phi(z)+U(z))}, z \in \mathbb{C} \\
& Z \stackrel{\text { def }}{=} \int_{\mathbb{C}} e^{-\beta(\phi(z)+U(z))} \mathrm{d}^{2} z \\
& \overline{\phi(z) \phi(w)}=4 \ln (R /|z-w|) \\
& \overline{\phi(z)^{2}}=4 \ln (R / \epsilon) \quad \epsilon \rightarrow 0, R \rightarrow \infty \\
& U(z) \stackrel{\text { def }}{=} 4 a_{1} \ln |z|+4 a_{2} \ln |z-1|, a_{1}, a_{2}>0
\end{aligned}
$$

Liouville field theory and log-correlated Random Energy Models

X. Cao, A. Rosso, R. Santachiara, P. Le Doussal arXiv:1611.02193

An exact mapping is established between the $c \geq 25$ Liouville field theory (LFT) and the Gibbs measure statistics of a thermal particle in a 2D Gaussian Free Field plus a logarithmic confining potential. The probability distribution of the position of the minimum of the energy landscape is obtained exactly by combining the conformal bootstrap and one-step replica symmetry breaking methods. Operator product expansions in LFT allow to unveil novel universal behaviours of the log-correlated Random Energy class. High precision numerical tests are given.

Log-Random Energy Model(REM)

normalized Gibbs measure of a particle in log-correlated field

$$
p_{\beta}(z) \stackrel{\text { def }}{=} \frac{1}{Z} e^{-\beta(\phi(z)+U(z))}, z \in \mathbb{C}
$$

$$
Z \stackrel{\text { def }}{=} \int_{\mathbb{C}} e^{-\beta(\phi(z)+U(z))} \mathrm{d}^{2} z
$$

$$
\overline{\phi(z) \phi(w)}=4 \ln (R /|z-w|)
$$

$$
\overline{\phi(z)^{2}}=4 \ln (R / \epsilon) \quad \epsilon \rightarrow 0, R \rightarrow \infty
$$

$$
U(z) \stackrel{\text { def }}{=} 4 a_{1} \ln |z|+4 a_{2} \ln |z-1|, a_{1}, a_{2}>0
$$

A. M. Polyakov, Physics Letters B 103, 207 (1981)

Liouville CFT

$$
\mathcal{S}_{b}=\int_{\Sigma}\left[\frac{1}{16 \pi}(\nabla \varphi)^{2}-\frac{1}{8 \pi} Q \hat{R} \varphi+\mu e^{-b \varphi}\right] \mathrm{d} A \quad \hat{R}(z)=8 \pi \delta^{2}(z-\infty), \mathrm{d} A=\mathrm{d}^{2} z
$$

$$
Q=b+b^{-1} \quad c=1+6 Q^{2}
$$

rigorous probabilistic construction of LCFT path integral David, Kupiainen, Rhodes, Vargas, arXiv:1410.7318
$\mathcal{V}_{a}(w) \rightsquigarrow e^{-a \varphi(w)} \quad \Delta_{a}=a(\dot{Q}-a)$ axiomatic construction of LCFT

Ribault, arXiv:1406.4290, Ribault, Santachiara, 2015

Liouville CFT

A. M. Polyakov, Physics Letters B 103, 207 (1981)

$$
\mathcal{S}_{b}=\int_{\Sigma}\left[\frac{1}{16 \pi}(\nabla \varphi)^{2}-\frac{1}{8 \pi} Q \hat{R} \varphi+\mu e^{-b \varphi}\right] \mathrm{d} A \quad \hat{R}(z)=8 \pi \delta^{2}(z-\infty), \mathrm{d} A=\mathrm{d}^{2} z
$$

$$
Q=b+b^{-1} \quad c=1+6 Q^{2}
$$

rigorous probabilistic construction of LCFT path integral David, Kupiainen, Rhodes, Vargas, arXiv:1410.7318
$\mathcal{V}_{a}(w) \rightsquigarrow e^{-a \varphi(w)} \quad \Delta_{a}=a(\dot{Q}-a)$ axiomatic construction of LCFT

Ribault, arXiv:1406.4290, Ribault, Santachiara, 2015 we show

$$
\begin{array}{rlr}
\overline{p_{\beta}(z)} & \beta<1 \\
\propto & \left.\mathcal{V}_{a_{1}}(0) \mathcal{V}_{a_{2}}(1) \mathcal{V}_{b}(z) \mathcal{V}_{a_{3}}(\infty)\right\rangle_{b} & p_{\beta}(z) \stackrel{\text { def }}{=} \frac{1}{Z} e^{-\beta(\phi(z)+U(z))} \\
& \stackrel{\text { def }}{=} \int \mathcal{D} \varphi e^{-\mathcal{S}_{b}-b \varphi(z)-a_{1} \varphi(0)-a_{2} \varphi(1)-a_{3} \varphi(\infty)} & a_{3}=Q-a_{1}-a_{2} \\
& \varphi(z)=\varphi_{0}+\tilde{\varphi}(z)
\end{array}
$$

Liouville CFT

A. M. Polyakov, Physics Letters B 103, 207 (1981)

$$
\mathcal{S}_{b}=\int_{\Sigma}\left[\frac{1}{16 \pi}(\nabla \varphi)^{2}-\frac{1}{8 \pi} Q \hat{R} \varphi+\mu e^{-b \varphi}\right] \mathrm{d} A \quad \hat{R}(z)=8 \pi \delta^{2}(z-\infty), \mathrm{d} A=\mathrm{d}^{2} z
$$

$$
Q=b+b^{-1} \quad c=1+6 Q^{2}
$$

rigorous probabilistic construction of LCFT path integral David, Kupiainen, Rhodes, Vargas, arXiv:1410.7318
$\mathcal{V}_{a}(w) \rightsquigarrow e^{-a \varphi(w)} \quad \Delta_{a}=a(\dot{Q}-a)$ axiomatic construction of LCFT

Ribault, arXiv:1406.4290, Ribault, Santachiara, 2015 we show

$$
\begin{array}{rlr}
\overline{p_{\beta}(z)} & \beta<1 & \left.\propto \mathcal{V}_{a_{1}}(0) \mathcal{V}_{a_{2}}(1) \mathcal{V}_{b}(z) \mathcal{V}_{a_{3}}(\infty)\right\rangle_{b} \\
& \stackrel{p_{\beta}(z)}{ } \stackrel{\text { def }}{=} \frac{1}{Z} e^{-\beta(\phi(z)+U(z))} \\
& \int \mathcal{D} \varphi e^{-\mathcal{S}_{b}-b \varphi(z)-a_{1} \varphi(0)-a_{2} \varphi(1)-a_{3} \varphi(\infty)} & a_{3}=Q-a_{1}-a_{2} \\
& \varphi(z)=\varphi_{0}+\tilde{\varphi}(z)
\end{array}
$$

Liouville CFT

A. M. Polyakov, Physics Letters B 103, 207 (1981)

$$
\mathcal{S}_{b}=\int_{\Sigma}\left[\frac{1}{16 \pi}(\nabla \varphi)^{2}-\frac{1}{8 \pi} Q \hat{R} \varphi+\mu e^{-b \varphi}\right] \mathrm{d} A \quad \begin{gathered}
\Sigma=\mathbb{C} \cup\{\infty\} \\
\hat{R}(z)=8 \pi \delta^{2}(z-\infty), \mathrm{d} A=\mathrm{d}^{2} z
\end{gathered}
$$

rigorous probabilistic construction of LCFT path integral
$Q=b+b^{-1} \quad c=1+6 Q^{2}$
David, Kupiainen, Rhodes, Vargas, arXiv:1410.7318
$\mathcal{V}_{a}(w) \rightsquigarrow e^{-a \varphi(w)} \quad \Delta_{a}=a(\dot{Q}-a)$ axiomatic construction of LCFT

Ribault, arXiv:1406.4290, Ribault, Santachiara, 2015 we show

$$
\begin{array}{rlr}
\overline{p_{\beta}(z)} & \beta<1 & \left.\propto \mathcal{V}_{a_{1}}(0) \mathcal{V}_{a_{2}}(1) \mathcal{V}_{b}(z) \mathcal{V}_{a_{3}}(\infty)\right\rangle_{b} \\
\stackrel{\text { def }}{=} \int \mathcal{D} \varphi e^{-\mathcal{S}_{b}-b \varphi(z)-a_{1} \varphi(0)-a_{2} \varphi(1)-a_{3} \varphi(\infty)} \frac{1}{Z} e^{-\beta(\phi(z)+U(z))} \\
& a_{3}=Q-a_{1}-a_{2} \\
& \varphi(z)=\varphi_{0}+\tilde{\varphi}(z)
\end{array}
$$

invariant under duality $b \rightarrow 1 / b$
freezing duality conjecture

$$
\overline{p_{\beta>1}}=\overline{p_{1}} \text { freezes }
$$

Fyodorov, Le Doussal, Rosso 2009
predicts PDF of position of the minimum of $\phi(z)+U(z)$

Left $=$ Test of $\overline{p_{\beta}(z)} \stackrel{\beta<1}{\propto}\left\langle\mathcal{V}_{a_{1}}(0) \mathcal{V}_{a_{2}}(1) \mathcal{V}_{b}(z) \mathcal{V}_{a_{3}}(\infty)\right\rangle_{b}$

Right $=$ Test of PDF of position of the minimum of $\quad \phi(z)+U(z)$

Figure 3. (Color online) Test of (9) on the segment $z \in[0,1]$. (a) High- T regime ($\beta=.4$). (b) Minimum position distribution versus LFT with $b=1$. Numerical parameters: $L=2^{12}, \epsilon=2^{-9}, 5 \times 10^{6}$ independent samples.

KPZ equation on the half-line $=$ directed polymer in half-space

$h(x, t)=\log Z(x, t) \quad x>0$
$\partial_{t} Z(x, t)=\partial_{x}^{2} Z(x, t)+\sqrt{2} \eta(x, t) Z(x, t)$
$\left.\partial_{x} Z(x, t)\right|_{x=0}=A Z(0, t)$

Kardar 1985

$A>0$ repulsive wall $A<0$ attractive wall
$t \rightarrow+\infty \quad$ binding transition
$A<-1 / 2$ polymer bound to wall
$A>-1 / 2$. polymer unbound
Barraquand, Krajenbrink, PLD 2020
$\frac{Z(x, t)}{Z(0, t)}=e^{B(x)+\left(A+\frac{1}{2}\right) x} \quad \begin{aligned} & \text { is stationary } \\ & \text { in bound phase }\end{aligned} \longrightarrow \frac{\overline{Z\left(x_{1}, t\right)}}{Z(0, t)} \ldots \frac{Z\left(x_{n}, t\right)}{Z(0, t)}=\overline{e^{\sum_{j} B\left(x_{j}\right)+\left(A+\frac{1}{2}\right) x_{j}}}$
stationary endpoint distribution

$$
p(x)=\frac{e^{B(x)+\left(A+\frac{1}{2}\right) x}}{\int_{0}^{+\infty} d y e^{B(y)+\left(A+\frac{1}{2}\right) y}}
$$

formula for $\overline{p\left(x_{1}\right) \ldots p\left(x_{k}\right)}$

$$
\Psi_{0}(\vec{x})=c_{n, A} e^{\sum_{j=1}^{n}(A-j+1) x_{j}}
$$

$$
t \rightarrow+\infty
$$

ground state dominance

$$
\overline{\left\langle x^{k}\right\rangle^{c}}=-(-2)^{k} \psi^{(k)}(-2 \epsilon) \quad \epsilon=A+\frac{1}{2}
$$

$$
\begin{gathered}
0 \leq x_{1} \leq \cdots \leq x_{n} \\
\quad x_{i} \rightarrow x_{i}+y \\
e^{-\frac{n}{2}(n-(1+2 A)) y}
\end{gathered}
$$

$$
\overline{Z\left(x_{1}, t\right) \ldots Z\left(x_{n}, t\right)}=\overline{Z(0, t)^{n}} e^{\sum_{j=1}^{n}(A-j+1) x_{j}}
$$

$$
\longrightarrow \frac{\overline{Z\left(x_{1}, t\right)}}{Z(0, t)} \cdots \frac{Z\left(x_{n}, t\right)}{Z(0, t)}=\overline{e^{\sum_{j} B\left(x_{j}\right)+\left(A+\frac{1}{2}\right) x_{j}}}
$$

$$
=e^{\sum_{j=1}^{n}(A+n-j+1) x_{j}}
$$

Barraquand, PLD 2020
using Liouville QM

$$
\overline{\langle x\rangle} \simeq \frac{1}{2 \epsilon^{2}} \quad \overline{\left\langle x^{2}\right\rangle^{c}} \simeq \frac{1}{\epsilon^{3}} \quad \overline{\langle x\rangle^{k}} \simeq c_{k} \epsilon^{-2 k}
$$

back to 2 non-crossing polymers and Dyson BM

$$
y_{1}<y_{2}
$$

$Z_{2}^{\text {stat }}\left(y_{1}, y_{2}\right)=e^{B_{1}\left(y_{1}\right)+B_{1}\left(y_{2}\right)} \int_{y_{1}}^{y_{2}} d z e^{-B_{1}(z)+B_{2}(z)}$
$\begin{array}{ll}\text { short scale behavior } & Z_{\ell}^{\text {stat }}(\vec{y}) \simeq \prod_{i=1}^{\ell} \frac{e^{B_{i}(y)}}{(i-1)!} \Delta(\vec{y}) \quad \Delta(\vec{y}):=\prod_{i<j}\left(y_{j}-y_{i}\right):\end{array}$
$\begin{aligned} & \text { large scale behavior } \\ & y_{i}-y_{j} \gg 1\end{aligned} \quad \lim _{x \rightarrow \infty} \frac{1}{\sqrt{x}} \log Z_{2}^{\text {stat }}\left(x y_{1}, x y_{2}\right) \stackrel{(d)}{=} B_{1}\left(y_{1}\right)+B_{2}\left(y_{1}\right)+\Lambda_{1}\left(y_{2}-y_{1}\right)$
$\Lambda_{1}(y)$ is independent of $B_{1,2}\left(y_{1}\right)$ largest eigenvalue of the GUE(2) Dyson Brownian motion
if we condition the first polymer to end up in atypical position with slope b => the two endpoints are "bound"

$$
\begin{aligned}
P(y) & =\frac{Z(y)}{\int_{0}^{+\infty} d y Z(y)} \quad y=y_{2}-y_{1} \\
Z(y) & :=Z_{\ell}^{\text {stat }}(0, y ;-b,-b)
\end{aligned}
$$

$b \ll 1 \quad$ small slope $=>$ large scale $\quad y=\tilde{y} / b^{2}$

$$
\tilde{y}=\operatorname{argmax}_{z \in \mathbb{R}_{+}}\left(\Lambda_{1}(z)-z\right)
$$

if we condition the first polymer to end up in atypical position with slope b => the two endpoints are "bound"

$$
\begin{aligned}
P(y) & =\frac{Z(y)}{\int_{0}^{+\infty} d y Z(y)} \quad y=y_{2}-y_{1} \\
Z(y) & :=Z_{\ell}^{\text {stat }}(0, y ;-b,-b)
\end{aligned}
$$

$b \ll 1 \quad$ small slope $=>$ large scale $\quad y=\tilde{y} / b^{2}$

$$
\tilde{y}=\operatorname{argmax}_{z \in \mathbb{R}_{+}}\left(\Lambda_{1}(z)-z\right)
$$

$$
\longrightarrow \mathbb{E}[\langle y\rangle] \simeq \frac{5}{4 b^{2}} \quad \mathbb{E}\left[\left\langle y^{2}\right\rangle\right] \simeq \frac{29}{8 b^{4}} \quad \mathbb{E}\left[\left\langle y^{2}\right\rangle-\langle y\rangle^{2}\right] \simeq \frac{5}{2 b^{3}}
$$

any slope $b=O(1)$

$$
\mathbb{E}\left[\left\langle y^{p}\right\rangle^{c}\right]=(-2)^{p}\left(2^{p} \psi_{p}(4 b)-3 \psi_{p}(2 b)\right)
$$

