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Aim of the talk

 What are Schramm-Loewner Evolutions (SLE)?
* What’s the natural parametrisation?
 Why are we interested in SLE on Liouville Quantum Gravity (LQG)?

* Quantum length of SLE: how to construct it and we care



Schramm-Loewner Evolution
(SLE)
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Mot

o Statistical mechanics models at

critical point of continuous phase

transition should satisfy conformal

invariance in the scaling limit

or other
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* Can study correlations

» Scaling limits of interfaces should be

conformally invariant and satisfy a

domain Markov property

Critical Percolation Interface (Schramm)
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Motivation

 Statistical mechanics models at
critical point of continuous phase
transition should satisfy conformal
invariance in the scaling limit

* Can study correlations, or other
macroscopic observables such as
interfaces

» Scaling limits of interfaces should be
conformally invariant and satisfy a
domain Markov property
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Critical Ising Interface (Kennedy)



Motivation

 Statistical mechanics models at
critical point of continuous phase
transition should satisfy conformal
invariance in the scaling limit

» Can study correlations, or other
macroscopic observables such as
interfaces

» Scaling limits of interfaces should be
conformally invariant and satisfy a
domain Markov property

Loop-Erased Random Walk (Karrila-Kytola-Peltola)



Motivation

 Statistical mechanics models at
critical point of continuous phase "y
transition should satisfy conformal » { X
invariance in the scaling limit g "y | -

* Can study correlations, or other ’
macroscopic observables such as ot
interfaces o :

» Scaling limits of interfaces should be

conformally invariant and satisfy a
domain Markov property

Self-Avoiding Random Walk (Kennedy)



SLE2

SLE4

Definition: SLE

« Schramm defined (chordal) SLE, for k > 0

as a family of laws
D,a,b
K

on curves in simply connected domains D
froma € 0D to b € 0D

* These laws satisfy conformal invariance
(Cl) and domain Markov property (DMP)

« When (D, a, b) = (H,0,00), the curve is
described via the Loewner equation with
driving function

(\/’_<Br)zzo



Scaling limits

» Schramm proved that any collection of laws on curves
satisfying Cl and DMP must be an SLE

« = SLE are only candidates for scaling limits of critical
discrete interfaces

* Proven for

(x = 2,8) Loop-Erased Random Walk & Uniform Spanning
Tree (Lawler, Sheffield & Werner)

(x = 6) Percolation Interface (Smirnov)

GFF level line ©Aru

(x = 3,16/3) Ising Interface (Chelkak, Hongler, Duminil-Copin,
Kempainnen & Smirnov) and FK Ising (Garban & Wu)

(k = 4) Level line of discrete GFF (Schramm & Sheffield)



Scaling limits

» Schramm proved that any collection of laws on curves
satisfying Cl and DMP must be an SLE

« = SLE are only candidates for scaling limits of critical
discrete interfaces

* Proven for

(x = 2,8) Loop-Erased Random Walk & Uniform Spanning
Tree (Lawler, Sheffield & Werner)

(x = 6) Percolation Interface (Smirnov)

GFF level line ©Aru

(x = 3,16/3) Ising Interface (Chelkak, Hongler, Duminil-Copin,

Kempainnen & Smirnov) and FK Ising (Garban & Wu) Al other k: open!

(k = 4) Level line of discrete GFF (Schramm & Sheffield)



Percolation Interface ©Schramm-Steif

Natural Length: |

« SLE, a.s. has Hausdorff dim
d = d>F = min(2,1 + x/8)

« On e-diameter grid, expect discrete interfaces to
have O(e %) “steps”.

* Reparametrise time so g4 steps made in time
interval length one

— parametrised limit curve?

* This should be SLE in the “natural
parametrisation”



Natural length: |

* The natural parametrisation of SLE (if it exists)
can be defined by an axiomatic characterisation
(Lawler & Sheffield)

» Existence was first shown by Lawler & Sheffield for
K<Ky~ )5S

 Then extended to all k < 8 by Lawler & Zhou

dSLE_
K

« Shown by Lawler & Rezael to coincide with
Minkowski content

* Convergence of LERW in natural parametrisation
shown by Lawler & Viklund

Loop Erased Random Walk (Red) ©Viklund



SLE on Liouville Quantum Gravity
(LQG)



Motivation

Critical statistical physics models... ... on random graphs “maps”

Uniform Spanning
Tree © Kassel

T
AQ#H% LriL

Map + percolation Map + spanning tree

i y Ismg model

©Curien ©Budd
Bond percolation “Random planar map” has law
OWIK weighted by the partition function of
the model

Random cluster
model ©Pete



Conjecture

In an appropriate scaling limit...

« Random map — Liouville quantum
gravity surface (LQG)

» Loops/interfaces — SLE or
conformal loop ensemble (CLE)

* Independent of each other!

FK-cluster model weighted map ©Bettinelli-Laslier



LQG

« Random metricon D = C,D, H, S?. ..

D, = exp(yh(z))dz*; y € (0,2]

for h a Gaussian free field (GFF) on D Approximation of a Gaussian free field on a square
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LQG

« Random metricon D = C,D, H, S?. ..

D, = exp(yh(z))dz*; y € (0,2]

for h a Gaussian free field (GFF) on D Approximation of a Gaussian free field on a square

 Associated (LQG) volume measure i, defined first using Gaussian multiplicative chaos
regularisation (Kahane, Robert & Vargas, Duplantier & Sheffield, Berestycki ...)

« Similarly boundary length measure v, = "e""?"®dx" can be defined on a linear section
of dD if h is a “free boundary GFF” (Duplantier & Sheffield)

« Now, metric D, also defined (Ding, Dunlap, Dubédat & Falconet, Gwynne & Miller)

« D, has dimension d}QG > 2,and y,is a dyLQG-dimI Minkowski content measure for D,
(Ang, Falconet & Sun, Gwynne & Sung)



Back to conjecture

» Conformally embed the random map plus
interfaces in C, D, H, S2. ..

» Consider images of interfaces plus
o Rescaled counting measure on faces/vertices

© Rescaled graph distance between points

» Should be y-LQG metric-measure space built
from a GFF-type field h, plus independent SLE,

- ¥ depends on discrete model and x = y* or 16/y>

LQG density ©OMiller



Back to conjecture

» Conformally embed the random map plus
interfaces in C, D, H, S2. ..

» Consider images of interfaces plus
o Rescaled counting measure on faces/vertices

© Rescaled graph distance between points

» Should be y-LQG metric-measure space built
from a GFF-type field h, plus independent SLE,

- ¥ depends on discrete model and x = y* or 16/y>

LQG density ©OMiller

Now proven in some special cases: Holden & Sun, Gwynne & Miller, Gwynne
& Miller & Sheffield



Quantum Length of SLE



Quantum Length

* |If discrete interface is naturally
parameterised by # “steps” in the graph...

e Limit after rescaling — SLE in “quantum
length parametrisation”

> d-diml content measure with respect to
the LQG metric D,,?

(KPZ: implies d = d,"2°/2))

Percolation on random planar map ©Angel

» 4Dy (d7) for m natural length
measure on the SLE and /& the LQG field?

Can any of this be made sense of directly in the continuum?



Sheffield’s Approach

Conformal Covariance

Suppose # is a free boundary GFF-type field on D C C (e M LK)
with (D, ) its LQG metric-measure space for some 7, = MO ()

and ¢ : D — D’ conformal.

Then ¢>x<//lh = M¢(h) with

—1 2 Y —1y/
¢ph) =he¢ +(?+5)10g|(¢ )|
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Sheffield’s Approach

Conformal Covariance

Suppose # is a free boundary GFF-type field on D C C (e M LK)
with (D, ) its LQG metric-measure space for some 7, = MO ()

and ¢ : D — D’ conformal.

Then ¢>x<//lh = M¢(h) with
_ —1 2 Y -1y
$p(h) =he¢ +(;+5)10g|(¢ )|

* Also holds for v, & v, on linear sections of dD, 0D’

* Holds for D), & D, if D = C and ¢ is translation/scaling. Expected to hold in general.
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Sheffield’s Approach

Construction for x € (0,4)

- Define ¢p*(h), pX(h) as previously

* Define the quantum length on the left and the
right sides of the SLE via v,y and vz,

* Question: Do the left/right measures agree??
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Sheffield’s Approach

Construction for x € (0,4)

- Define ¢p*(h), pX(h) as previously

* Define the quantum length on the left and the
right sides of the SLE via v,y and vz,

* Question: Do the left/right measures agree??

* Theorem (Sheffield): Yes!
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Sheffield’s Approach

Construction for x € (0,4)

- Define ¢p*(h), pX(h) as previously

Define the quantum length on the left and the
right sides of the SLE via v,y and vz,

Question: Do the left/right measures agree??

Theorem (Sheffield): Yes!

Gives nice definition of quantum length ...



Sheffield’s Approach

Construction for x € (0,4)

= SLEk h=6FF

H" nCo1 H® « Define ¢pX(h), p*(h) as previously

Define the quantum length on the left and the
right sides of the SLE via v,y and vz,

"o \ ¢

PR = hol@ T EE)leg 104y R = hol@Y'e (&%) 1eg 1032

Question: Do the left/right measures agree??

Theorem (Sheffield): Yes!

. = ‘ . Gives nice definition of quantum length ...
... but proof not so easy, uses the quantum
gravity zipper



Applications

» Conformal welding: Sheffield also
showed that an LQG surface with an
independent SLE can be viewed as the
conformal welding according to
quantum boundary length of two
independent LQG surfaces

» Generalisations developed in mating-
of-trees theory of Duplantier & Miller &
Sheffields makes scaling limit intuition
that “independent SLE/CLE
decomposes LQG into small
independent pieces” rigorous

* Powerful tool for studying LQG
surfaces and for studying SLE!

SLE exploration of LQG ©Miller



Direct approaches: for x < 4

Questions

* Can we construct quantum length of an SLE with respect to an independent GFF /1 as a
(d;“QG/ 2)-dimensional Minkowski content measure wrt metric D, ?

* Or as “e®@m(dz)” (defined via regularisation) where m is the natural length of the SLE?



Direct approaches: for x < 4

Questions

* Can we construct quantum length of an SLE with respect to an independent GFF /1 as a
(d;“QG/ 2)-dimensional Minkowski content measure wrt metric D, ?

* Or as “e®@m(dz)” (defined via regularisation) where m is the natural length of the SLE?
Answers
* Not known ?7?

* Yes! First shown by Benoist with & = y/2 (same as the boundary length measure for D,) and

kK € (0,4).

[Drawback: Benoist’s proof of (2) relies on the delicate stationary quantum zipper
construction of Sheffield, plus an ergodicity argument. Equivalence with Sheffield’s quantum

length up to an unknown multiplicative constant.]



(Even more) direct approach for k < 4
With Avelio Sepulveda

* Elementary construction of the quantum length

for SLE, (x < 4) with respect to an independent =5t o heere

GFF h H" neel H®
(I’?l) —_ ( /2)h(X) > ”, —_
v, = e\’ m(dx)”; y—\/; .
via standard Gaussian multiplicative chaos o ; \q p°
theory. m = cm conformal Minkowski content
P = hol@* T EE)leg 108 YY) B = he@™'e &) leg [(3%)]

* Direct proof that after conformal mapping with
o, pX, for any subset A of the SLE ) : : i

Vgt )= Ygean L )

4 —x

Uyt PHA) = vy BRA) = ——1P(A)



(Even more) direct approach for k < 4
With Avelio Sepulveda

* Elementary construction of the quantum length

for SLE, (x < 4) with respect to an independent =5t o heere

GFF h H" Aee1 HE
7 S {1 /2 h ~ ”, —
via standard Gaussian multiplicative chaos o D/ \q p°

theory. m = cm conformal Minkowski content
P = hol@* T EE)leg 108 YY) B = he@™'e &) leg [(3%)]

 Direct proof that after conformal mapping with
o, pX, for any subset A of the SLE ) : : i

Mﬁh)( )= U¢¢Q\-’( )

4 —x

Uyt PHA) = vy BRA) = ——1P(A)

* That is, equivalence with Sheffield’s length up to a known multiplicative constant



(Even more) direct approach for k < 4

With Avelio Sepulveda

* Ingredient: new approximation

m(dx) = 2 }slfé SCR(z, D\np)*®®=1%01__,.

to m for bothi = L, R

 This approximation transforms very well
under applying ¢~ or % ...

e ... it becomes an approximation of Lebesgue
measure on the boundary

’[=3LEK h=6FF

HL qu.t’J 'HR

"o \ ¢

PR = hel@' e £%F) g 10 Y] ERW) = ho@™'e EYE)leg 1Qs2y )]

Mﬁh)( )= U¢"Q{)( )



(Even more) direct approach for k < 4

With Avelio Sepulveda
* Ingredient: new approximation 15t 5 heceF
i(dx) = 2 }siné SCR(z, D\np)*®®=1%01__,. H- qCead H®
to i forbothi = L, R . .
s s

 This approximation transforms very well

H ¥ = ho L—"(' J_E_ 2P ¢ = ho R—[t' JE{ oP)
under applying ¢* or ¢ ... B = he@)'e §)ig 106y E )= ey Rk 1065
e ... it becomes an approximation of Lebesgue o : + .
measure on the boundary V) = Ugega L D

« Identifying the ratio with Sheffield’s quantum length explicitly allows us to take y 1 2, k 1 4
and get same result fory =2, k = 4



Thanks!



