Quantum Length of SLE

KPZ meets KPZ, Fields Institute, Toronto

4th March 2024

Ellen Powell, *Durham University*. Based on joint work with Avelio Sepúlveda

Aim of the talk

- What are Schramm-Loewner Evolutions (SLE)?
- What's the **natural parametrisation**?
- Why are we interested in SLE on Liouville Quantum Gravity (LQG)?
- Quantum length of SLE: how to construct it and we care

Schramm-Loewner Evolution (SLE)

- Statistical mechanics models at critical point of continuous phase transition should satisfy conformal invariance in the scaling limit
- Can study correlations, or other macroscopic observables such as interfaces
- Scaling limits of interfaces should be conformally invariant and satisfy a domain Markov property

Critical Percolation Interface (Schramm)

- Statistical mechanics models at critical point of continuous phase transition should satisfy conformal invariance in the scaling limit
- Can study correlations, or other macroscopic observables such as interfaces
- Scaling limits of interfaces should be conformally invariant and satisfy a domain Markov property

Critical Ising Interface (Kennedy)

- Statistical mechanics models at critical point of continuous phase transition should satisfy conformal invariance in the scaling limit
- Can study correlations, or other macroscopic observables such as interfaces
- Scaling limits of interfaces should be conformally invariant and satisfy a domain Markov property

Loop-Erased Random Walk (Karrila-Kytola-Peltola)

- Statistical mechanics models at critical point of continuous phase transition should satisfy conformal invariance in the scaling limit
- Can study correlations, or other macroscopic observables such as interfaces
- Scaling limits of interfaces should be conformally invariant and satisfy a domain Markov property

Self-Avoiding Random Walk (Kennedy)

©Kennedy

Definition: SLE

- Schramm defined (chordal) ${\rm SLE}_\kappa$ for $\kappa\geq 0$ as a family of laws $\mu^{D,a,b}_\kappa$

on curves in simply connected domains D from $a\in\partial D$ to $b\in\partial D$

- These laws satisfy conformal invariance (CI) and domain Markov property (DMP)
- When $(D, a, b) = (\mathbb{H}, 0, \infty)$, the curve is described via the **Loewner equation** with driving function

$$(\sqrt{\kappa}B_t)_{t\geq 0}$$

Scaling limits

- Schramm proved that any collection of laws on curves satisfying CI and DMP must be an SLE
- → SLE are only candidates for scaling limits of critical discrete interfaces
- Proven for

($\kappa = 2,8$) Loop-Erased Random Walk & Uniform Spanning Tree (Lawler, Sheffield & Werner)

($\kappa = 6$) **Percolation Interface** (Smirnov)

($\kappa = 3,16/3$) Ising Interface (Chelkak, Hongler, Duminil-Copin, Kempainnen & Smirnov) and FK Ising (Garban & Wu)

 $(\kappa = 4)$ Level line of discrete GFF (Schramm & Sheffield)

GFF level line ©Aru

Scaling limits

- Schramm proved that any collection of laws on curves satisfying CI and DMP must be an SLE
- → SLE are only candidates for scaling limits of critical discrete interfaces
- Proven for

($\kappa = 2,8$) Loop-Erased Random Walk & Uniform Spanning Tree (Lawler, Sheffield & Werner)

($\kappa = 6$) **Percolation Interface** (Smirnov)

($\kappa = 3,16/3$) Ising Interface (Chelkak, Hongler, Duminil-Copin, Kempainnen & Smirnov) and FK Ising (Garban & Wu)

 $(\kappa = 4)$ Level line of discrete GFF (Schramm & Sheffield)

GFF level line ©Aru

All other κ : open!

Percolation Interface ©Schramm-Steif

Natural Length: I

• ${\rm SLE}_{\kappa}$ a.s. has Hausdorff dim

$$d = d_{\kappa}^{\text{SLE}} = \min(2, 1 + \kappa/8)$$

- On ε -diameter grid, expect discrete interfaces to have $O(\varepsilon^{-d})$ "steps".
- Reparametrise time so ε^{-d} steps made in time interval length one
- → **parametrised** limit curve?
- This should be **SLE in the "natural** parametrisation"

Natural length: II

- The **natural parametrisation** of SLE (if it exists) can be defined by an **axiomatic characterisation** (Lawler & Sheffield)
- Existence was first shown by Lawler & Sheffield for $\kappa \leq \kappa_0 \approx 5$
- Then extended to all $\kappa < 8$ by Lawler & Zhou
- Shown by Lawler & Rezaei to coincide with d_{κ}^{SLE} -Minkowski content
- Convergence of LERW in natural parametrisation shown by Lawler & Viklund

Loop Erased Random Walk (Red) ©Viklund

SLE on Liouville Quantum Gravity (LQG)

Critical statistical physics models... ... on random graphs "maps"

Ising model ©Cerf

Random cluster model ©Pete

"Random planar map" has law weighted by the partition function of the model

©Wiki

Conjecture

In an appropriate scaling limit...

- Random map → Liouville quantum gravity surface (LQG)
- Loops/interfaces → SLE or conformal loop ensemble (CLE)
- Independent of each other!

FK-cluster model weighted map ©Bettinelli-Laslier

• Random metric on $D = \mathbb{C}, \mathbb{D}, \mathbb{H}, \mathbb{S}^2 \dots$

$$D_h = \exp(\gamma h(z)) dz^2; \quad \gamma \in (0,2]$$

for h a $\mbox{Gaussian}$ free field (GFF) on D

Approximation of a Gaussian free field on a square

• Random metric on $D = \mathbb{C}, \mathbb{D}, \mathbb{H}, \mathbb{S}^2 \dots$

$$D_h = \exp(\gamma h(z)) dz^2; \quad \gamma \in (0,2]$$

for h a $\mbox{Gaussian}$ free field (GFF) on D

Approximation of a Gaussian free field on a square

• Associated (LQG) volume measure μ_h defined first using Gaussian multiplicative chaos regularisation (Kahane, Robert & Vargas, Duplantier & Sheffield, Berestycki ...)

• Random metric on $D = \mathbb{C}, \mathbb{D}, \mathbb{H}, \mathbb{S}^2 \dots$

 $D_h = \exp(\gamma h(z)) dz^2; \quad \gamma \in (0,2]$

for h a Gaussian free field (GFF) on D

Approximation of a Gaussian free field on a square

- Associated (LQG) volume measure μ_h defined first using Gaussian multiplicative chaos regularisation (Kahane, Robert & Vargas, Duplantier & Sheffield, Berestycki ...)
- Similarly **boundary length measure** $\nu_h = "e^{(\gamma/2)h(x)}dx"$ can be defined on a linear section of ∂D if h is a "free boundary GFF" (Duplantier & Sheffield)

• Random metric on $D = \mathbb{C}, \mathbb{D}, \mathbb{H}, \mathbb{S}^2 \dots$

 $D_h = \exp(\gamma h(z)) dz^2; \quad \gamma \in (0,2]$

for h a **Gaussian free field** (GFF) on D

Approximation of a Gaussian free field on a square

- Associated (LQG) volume measure μ_h defined first using Gaussian multiplicative chaos regularisation (Kahane, Robert & Vargas, Duplantier & Sheffield, Berestycki ...)
- Similarly **boundary length measure** $\nu_h = "e^{(\gamma/2)h(x)}dx"$ can be defined on a linear section of ∂D if *h* is a "free boundary GFF" (Duplantier & Sheffield)
- Now, metric D_h also defined (Ding, Dunlap, Dubédat & Falconet, Gwynne & Miller)

• Random metric on $D = \mathbb{C}, \mathbb{D}, \mathbb{H}, \mathbb{S}^2 \dots$

 $D_h = \exp(\gamma h(z)) dz^2; \quad \gamma \in (0,2]$

for h a Gaussian free field (GFF) on D

Approximation of a Gaussian free field on a square

- Associated (LQG) volume measure μ_h defined first using Gaussian multiplicative chaos regularisation (Kahane, Robert & Vargas, Duplantier & Sheffield, Berestycki ...)
- Similarly **boundary length measure** $\nu_h = "e^{(\gamma/2)h(x)}dx"$ can be defined on a linear section of ∂D if *h* is a "free boundary GFF" (Duplantier & Sheffield)
- Now, metric D_h also defined (Ding, Dunlap, Dubédat & Falconet, Gwynne & Miller)
- D_h has dimension $d_{\gamma}^{LQG} > 2$, and μ_h is a d_{γ}^{LQG} -diml Minkowski content measure for D_h (Ang, Falconet & Sun, Gwynne & Sung)

Back to conjecture

- Conformally embed the random map plus interfaces in $\mathbb{C}, \mathbb{D}, \mathbb{H}, \mathbb{S}^2 \dots$
- Consider images of interfaces plus
 - Rescaled **counting measure** on faces/vertices
 - Rescaled graph distance between points
- Should be γ -LQG metric-measure space built from a GFF-type field *h*, plus **independent** SLE_{κ}
- γ depends on discrete model and $\kappa = \gamma^2$ or $16/\gamma^2$

LQG density ©Miller

Back to conjecture

- Conformally embed the random map plus interfaces in $\mathbb{C}, \mathbb{D}, \mathbb{H}, \mathbb{S}^2 \dots$
- Consider images of interfaces plus
 - Rescaled **counting measure** on faces/vertices
 - Rescaled graph distance between points
- Should be γ -LQG metric-measure space built from a GFF-type field *h*, plus **independent** SLE_{κ}
- γ depends on discrete model and $\kappa = \gamma^2$ or $16/\gamma^2$

LQG density ©Miller

Now proven in some special cases: Holden & Sun, Gwynne & Miller, Gwynne & Miller, Gwynne & Miller & Sheffield

Quantum Length of SLE

Percolation on random planar map ©Angel

Quantum Length

- If discrete interface is naturally parameterised by # "steps" in the graph...
- Limit after rescaling → SLE in "quantum length parametrisation"
 - d-diml content measure with respect to the LQG metric D_h?
 (KPZ: implies d = d_γ^{LQG}/2!)
 - "e^{αh(z)}m(dz)" for m natural length measure on the SLE and h the LQG field?

Can any of this be made sense of directly in the continuum?

Sheffield's Approach Conformal Covariance

Suppose *h* is a free boundary GFF-type field on $D \subset \mathbb{C}$ with (D_h, μ_h) its LQG metric-measure space for some γ , and $\phi : D \to D'$ conformal.

Then $\phi_*\mu_h = \mu_{\phi(h)}$ with

$$\phi(h) = h \circ \phi^{-1} + (\frac{2}{\gamma} + \frac{\gamma}{2}) \log |(\phi^{-1})'|$$

Sheffield's Approach Conformal Covariance

Suppose *h* is a free boundary GFF-type field on $D \subset \mathbb{C}$ with (D_h, μ_h) its LQG metric-measure space for some γ , and $\phi : D \to D'$ conformal.

Then $\phi_*\mu_h = \mu_{\phi(h)}$ with

$$\phi(h) = h \circ \phi^{-1} + (\frac{2}{\gamma} + \frac{\gamma}{2}) \log |(\phi^{-1})'|$$

* Also holds for $\nu_h \& \nu_{\phi(h)}$ on linear sections of $\partial D, \partial D'$

Sheffield's Approach Conformal Covariance

Suppose *h* is a free boundary GFF-type field on $D \subset \mathbb{C}$ with (D_h, μ_h) its LQG metric-measure space for some γ , and $\phi : D \to D'$ conformal.

Then $\phi_*\mu_h = \mu_{\phi(h)}$ with

$$\phi(h) = h \circ \phi^{-1} + (\frac{2}{\gamma} + \frac{\gamma}{2}) \log |(\phi^{-1})'|$$

- * Also holds for ν_h & $\nu_{\phi(h)}$ on linear sections of $\partial D, \partial D'$
- * Holds for $D_h \& D_{\phi(h)}$ if $D = \mathbb{C}$ and ϕ is translation/scaling. Expected to hold in general.

- Define $\phi^L(h), \phi^R(h)$ as previously
- Define the **quantum length** on the **left** and the **right** sides of the SLE via $\nu_{\phi^L(h)}$ and $\nu_{\phi^R(h)}$
- **Question:** Do the left/right measures agree??

- Define $\phi^L(h)$, $\phi^R(h)$ as previously
- Define the **quantum length** on the **left** and the **right** sides of the SLE via $\nu_{\phi^L(h)}$ and $\nu_{\phi^R(h)}$
- **Question:** Do the left/right measures agree??
- Theorem (Sheffield): Yes!

- Define $\phi^L(h)$, $\phi^R(h)$ as previously
- Define the **quantum length** on the **left** and the **right** sides of the SLE via $\nu_{\phi^L(h)}$ and $\nu_{\phi^R(h)}$
- **Question:** Do the left/right measures agree??
- Theorem (Sheffield): Yes!
- Gives nice definition of quantum length ...

- Define $\phi^L(h)$, $\phi^R(h)$ as previously
- Define the **quantum length** on the **left** and the **right** sides of the SLE via $\nu_{\phi^L(h)}$ and $\nu_{\phi^R(h)}$
- **Question:** Do the left/right measures agree??
- Theorem (Sheffield): Yes!
- Gives nice definition of quantum length ...

... but proof not so easy, uses the **quantum** gravity zipper

Applications

- Conformal welding: Sheffield also showed that an LQG surface with an independent SLE can be viewed as the conformal welding according to quantum boundary length of two independent LQG surfaces
- Generalisations developed in matingof-trees theory of Duplantier & Miller & Sheffields makes scaling limit intuition that "independent SLE/CLE decomposes LQG into small independent pieces" rigorous
- **Powerful tool** for studying LQG surfaces and for studying SLE!

SLE exploration of LQG ©Miller

Direct approaches: for $\kappa \leq 4$

Questions

- * Can we construct quantum length of an SLE with respect to an independent GFF h as a $(d_{\gamma}^{LQG}/2)$ -dimensional Minkowski content measure wrt metric D_h ?
- * Or as " $e^{\alpha h(z)}m(dz)$ " (defined via regularisation) where *m* is the natural length of the SLE?

Direct approaches: for $\kappa \leq 4$

Questions

- * Can we construct quantum length of an SLE with respect to an independent GFF h as a $(d_{\gamma}^{LQG}/2)$ -dimensional Minkowski content measure wrt metric D_h ?
- * Or as " $e^{\alpha h(z)}m(dz)$ " (defined via regularisation) where *m* is the natural length of the SLE?

Answers

- * Not known ??
- * Yes! First shown by Benoist with $\alpha = \gamma/2$ (same as the boundary length measure for D_h) and $\kappa \in (0,4)$.

[**Drawback:** Benoist's proof of (2) relies on the delicate **stationary quantum zipper** construction of Sheffield, plus an ergodicity argument. Equivalence with Sheffield's quantum length up to an **unknown multiplicative constant.**]

With Avelio Sepúlveda

• Elementary construction of the quantum length for ${\rm SLE}_\kappa$ (κ < 4) with respect to an independent GFF h

$$\nu_h^{(\hat{m})} = "e^{(\gamma/2)h(x)}\hat{m}(dx)"; \quad \gamma = \sqrt{\kappa}$$

via standard Gaussian multiplicative chaos theory. $\hat{m} = cm$ conformal Minkowski content

• **Direct proof** that after conformal mapping with ϕ^L, ϕ^R , for any subset *A* of the SLE

$$\nu_{\phi^{L}(h)}(\phi^{L}(A)) = \nu_{\phi^{R}(h)}(\phi^{R}(A)) = \frac{4-\kappa}{4}\nu_{h}^{(\hat{m})}(A)$$

With Avelio Sepúlveda

• Elementary construction of the quantum length for ${\rm SLE}_\kappa$ (κ < 4) with respect to an independent GFF h

$$\nu_h^{(\hat{m})} = "e^{(\gamma/2)h(x)}\hat{m}(dx)"; \quad \gamma = \sqrt{\kappa}$$

via standard Gaussian multiplicative chaos theory. $\hat{m} = cm$ conformal Minkowski content

• **Direct proof** that after conformal mapping with ϕ^L, ϕ^R , for any subset *A* of the SLE

$$\nu_{\phi^{L}(h)}(\phi^{L}(A)) = \nu_{\phi^{R}(h)}(\phi^{R}(A)) = \frac{4-\kappa}{4}\nu_{h}^{(\hat{m})}(A)$$

• That is, equivalence with Sheffield's length up to a known multiplicative constant

With Avelio Sepúlveda

• Ingredient: new approximation

 $\hat{m}(dx) = 2 \lim_{\delta \to 0} \delta \operatorname{CR}(z, D \setminus \eta)^{(\kappa/8) - 1 + \delta} \mathbb{1}_{z \in H^i}$

to \hat{m} for both i = L, R

- This approximation **transforms very well** under applying ϕ^L or ϕ^R ...
- ... it becomes an approximation of Lebesgue measure on the boundary

With Avelio Sepúlveda

• Ingredient: new approximation

 $\hat{m}(dx) = 2\lim_{\delta \to 0} \delta \operatorname{CR}(z, D \setminus \eta)^{(\kappa/8) - 1 + \delta} \mathbb{1}_{z \in H^i}$

```
to \hat{m} for both i = L, R
```

- This approximation transforms very well under applying ϕ^L or ϕ^R ...
- ... it becomes an approximation of Lebesgue measure on the boundary
- Identifying the ratio with Sheffield's quantum length explicitly allows us to take $\gamma \uparrow 2$, $\kappa \uparrow 4$ and get same result for $\gamma = 2$, $\kappa = 4$

Thanks!