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Aim of the talk

• What are Schramm-Loewner Evolutions (SLE)? 


• What’s the natural parametrisation?


• Why are we interested in SLE on Liouville Quantum Gravity (LQG)? 

• Quantum length of SLE: how to construct it and we care



Schramm-Loewner Evolution 
(SLE)



• Statistical mechanics models at 
critical point of continuous phase 
transition should satisfy conformal 
invariance in the scaling limit


• Can study correlations, or other 
macroscopic observables such as 
interfaces 

• Scaling limits of interfaces should be 
conformally invariant and satisfy a 
domain Markov property 

Motivation
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• Statistical mechanics models at 
critical point of continuous phase 
transition should satisfy conformal 
invariance in the scaling limit


• Can study correlations, or other 
macroscopic observables such as 
interfaces 

• Scaling limits of interfaces should be 
conformally invariant and satisfy a 
domain Markov property 
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Self-Avoiding Random Walk (Kennedy)



• Schramm defined (chordal)   for   
as a family of laws 


  

on curves in simply connected domains   
from   to  


• These laws satisfy conformal invariance 
(CI) and domain Markov property (DMP) 

• When  , the curve is 
described via the Loewner equation with 
driving function


 

SLEκ κ ≥ 0

μD,a,b
κ

D
a ∈ ∂D b ∈ ∂D

(D, a, b) = (ℍ,0,∞)

( κBt)t≥0

Definition: SLE

©Kennedy

SLE2

SLE6
SLE8

SLE4



• Schramm proved that any collection of laws on curves 
satisfying CI and DMP must be an SLE 


•   SLE are only candidates for scaling limits of critical 
discrete interfaces 

• Proven for 


( ) Loop-Erased Random Walk & Uniform Spanning 
Tree  (Lawler, Sheffield & Werner) 


( ) Percolation Interface (Smirnov)


( ) Ising Interface (Chelkak, Hongler, Duminil-Copin, 
Kempainnen & Smirnov) and FK Ising (Garban & Wu)


  Level line of discrete GFF (Schramm & Sheffield)

⇒

κ = 2,8

κ = 6

κ = 3,16/3

(κ = 4)

Scaling limits

GFF level line ©Aru
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All other  : open!κ



•   a.s. has Hausdorff dim


  


• On  -diameter grid, expect discrete interfaces to 
have   “steps”. 


• Reparametrise time so   steps made in time 
interval length one


   parametrised limit curve?


• This should be SLE in the “natural 
parametrisation”

SLEκ

d = dSLE
κ = min(2,1 + κ/8)

ε
O(ε−d)

ε−d

→

Natural Length: I

Percolation Interface ©Schramm-Steif




• The natural parametrisation of SLE (if it exists) 
can be defined by an axiomatic characterisation 
(Lawler & Sheffield)


• Existence was first shown by Lawler & Sheffield for 
 


• Then extended to all   by Lawler & Zhou


• Shown by Lawler & Rezaei to coincide with  - 
Minkowski content 

• Convergence of LERW in natural parametrisation 
shown by Lawler & Viklund 

κ ≤ κ0 ≈ 5

κ < 8

dSLE
κ

Natural length: II

Loop Erased Random Walk (Red) ©Viklund




SLE on Liouville Quantum Gravity 
(LQG)



Motivation

Uniform Spanning 
Tree © Kassel

Random cluster 
model ©Pete

Bond percolation 
©Wiki

Ising model 
©Cerf

Map + spanning tree

©Budd©Curien

Map + percolation

Critical statistical physics models… … on random graphs “maps”

“Random planar map” has law 
weighted by the partition function of 
the model 



In an appropriate scaling limit…

• Random map   Liouville quantum 
gravity surface (LQG)


• Loops/interfaces   SLE or  
conformal loop ensemble (CLE) 

• Independent of each other!

→

→

Conjecture

FK-cluster model weighted map ©Bettinelli-Laslier



LQG
• Random metric on D = ℂ, 𝔻, ℍ, 𝕊2 . . .

 Dh = exp(γh(z)) dz2; γ ∈ (0,2]

for  a Gaussian free field (GFF) on h D Approximation of a Gaussian free field on a square
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• Similarly boundary length measure  can be defined on a linear section 
of  if  is a “free boundary GFF” (Duplantier & Sheffield)

νh = "e(γ/2)h(x)dx"
∂D h

• Now, metric  also defined (Ding, Dunlap, Dubédat & Falconet, Gwynne & Miller) Dh

•  has dimension , and  is a -diml Minkowski content measure for  
(Ang, Falconet & Sun, Gwynne & Sung) 
Dh dLQG

γ > 2 μh dLQG
γ Dh

Approximation of a Gaussian free field on a square



• Conformally embed the random map plus 
interfaces in  


• Consider images of interfaces plus


Rescaled counting measure on faces/vertices


Rescaled graph distance between points


• Should be  -LQG metric-measure space built 
from a GFF-type field h, plus independent  


•   depends on discrete model and  

ℂ, 𝔻, ℍ, 𝕊2 . . .

γ
SLEκ

γ κ = γ2 or 16/γ2

Back to conjecture

LQG density ©Miller
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Rescaled counting measure on faces/vertices


Rescaled graph distance between points


• Should be  -LQG metric-measure space built 
from a GFF-type field h, plus independent  


•   depends on discrete model and  

ℂ, 𝔻, ℍ, 𝕊2 . . .

γ
SLEκ

γ κ = γ2 or 16/γ2

Back to conjecture

Now proven in some special cases: Holden & Sun, Gwynne & Miller, Gwynne 
& Miller & Sheffield

LQG density ©Miller



Quantum Length of SLE



• If discrete interface is naturally 
parameterised by # “steps” in the graph…


• Limit after rescaling   SLE in “quantum 
length parametrisation” 

‣ d-diml content measure with respect to 
the LQG metric  ?


 (KPZ: implies  !)


‣ “ ” for   natural length 
measure on the SLE and   the LQG field?

→

Dh

d = dLQG
γ /2

eαh(z)m(dz) m
h

Quantum Length

Percolation on random planar map ©Angel

Can any of this be made sense of directly in the continuum? 



Conformal Covariance
Suppose   is a free boundary GFF-type field on h D ⊂ ℂ
with  its LQG metric-measure space for some , (Dh, μh) γ
and  conformal.ϕ : D → D′ 

Then  withϕ*μh = μϕ(h)

 ϕ(h) = h ∘ ϕ−1 + (
2
γ

+
γ
2

)log | (ϕ−1)′ |

Sheffield’s Approach
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Conformal Covariance
Suppose   is a free boundary GFF-type field on h D ⊂ ℂ
with  its LQG metric-measure space for some , (Dh, μh) γ
and  conformal.ϕ : D → D′ 

Then  withϕ*μh = μϕ(h)

 ϕ(h) = h ∘ ϕ−1 + (
2
γ

+
γ
2

)log | (ϕ−1)′ |

Also holds for  &  on linear sections of νh νϕ(h) ∂D, ∂D′ 

Holds for  &  if  and  is translation/scaling. Expected to hold in general. Dh Dϕ(h) D = ℂ ϕ

Sheffield’s Approach



Construction for  κ ∈ (0,4)

• Define ,  as previouslyϕL(h) ϕR(h)

• Define the quantum length on the left and the 
right sides of the SLE via   νϕL(h) and νϕR(h)

• Question: Do the left/right measures agree??
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Construction for  κ ∈ (0,4)

• Define ,  as previouslyϕL(h) ϕR(h)

• Define the quantum length on the left and the 
right sides of the SLE via   νϕL(h) and νϕR(h)

• Question: Do the left/right measures agree??

• Theorem (Sheffield): Yes!

• Gives nice definition of quantum length …

… but proof not so easy, uses the quantum 
gravity zipper 

Sheffield’s Approach



• Conformal welding: Sheffield also 
showed that an LQG surface with an 
independent SLE can be viewed as the 
conformal welding according to 
quantum boundary length of two 
independent LQG surfaces


• Generalisations developed in mating-
of-trees theory of Duplantier & Miller & 
Sheffields makes scaling limit intuition 
that “independent SLE/CLE 
decomposes LQG into small 
independent pieces” rigorous


• Powerful tool for studying LQG 
surfaces and for studying SLE!

Applications

SLE exploration of LQG ©Miller



Direct approaches: for  κ ≤ 4
Questions 

Can we construct quantum length of an SLE with respect to an independent GFF   as a 
 -dimensional Minkowski content measure wrt metric  ?


Or as “ ” (defined via regularisation) where   is the natural length of the SLE?


h
(dLQG

γ /2) Dh

eαh(z)m(dz) m



Direct approaches: for  κ ≤ 4
Questions 

Can we construct quantum length of an SLE with respect to an independent GFF   as a 
 -dimensional Minkowski content measure wrt metric  ?


Or as “ ” (defined via regularisation) where   is the natural length of the SLE?


h
(dLQG

γ /2) Dh

eαh(z)m(dz) m
Answers 

Not known ??


Yes! First shown by Benoist with   (same as the boundary length measure for  ) and 
 . 


[Drawback: Benoist’s proof of (2) relies on the delicate stationary quantum zipper 
construction of Sheffield, plus an ergodicity argument. Equivalence with Sheffield’s quantum 
length up to an unknown multiplicative constant.]

α = γ/2 Dh
κ ∈ (0,4)



With Avelio Sepúlveda
(Even more) direct approach for  κ ≤ 4

• Elementary construction of the quantum length 
for   ( ) with respect to an independent 
GFF  


  “ ”;         

via standard Gaussian multiplicative chaos 
theory.   conformal Minkowski content


• Direct proof that after conformal mapping with  
 , for any subset   of the SLE


   

SLEκ κ < 4
h
ν(m̂)

h = e(γ/2)h(x)m̂(dx) γ = κ

m̂ = cm

ϕL, ϕR A

νϕL(h)(ϕL(A)) = νϕR(h)(ϕR(A)) =
4 − κ

4
ν(m̂)

h (A)
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SLEκ κ < 4
h
ν(m̂)

h = e(γ/2)h(x)m̂(dx) γ = κ

m̂ = cm

ϕL, ϕR A

νϕL(h)(ϕL(A)) = νϕR(h)(ϕR(A)) =
4 − κ

4
ν(m̂)

h (A)

• That is, equivalence with Sheffield’s length up to a known multiplicative constant
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• Ingredient: new approximation


   

 to   for both  


• This approximation transforms very well 
under applying   or   …


• … it becomes an approximation of Lebesgue 
measure on the boundary

m̂(dx) = 2 lim
δ→0

δCR(z, D∖η)(κ/8)−1+δ1z∈Hi

m̂ i = L, R

ϕL ϕR
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under applying   or   …


• … it becomes an approximation of Lebesgue 
measure on the boundary

m̂(dx) = 2 lim
δ→0

δCR(z, D∖η)(κ/8)−1+δ1z∈Hi
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• Identifying the ratio with Sheffield’s quantum length explicitly allows us to take   
and get same result for  

γ ↑ 2, κ ↑ 4
γ = 2, κ = 4



Thanks!


