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Random planar map simulation

Random planar map, spring embedding in R3 (Thomas Budzinski).



Random planar map simulation

Random planar map, harmonic embedding in D (Jason Miller).

Scaling limit of this random geometry is Liouville quantum gravity.
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Liouville quantum gravity (LQG)

LQG parameter γ ∈ (0, 2].

Random generalized function Random geometry
“h : C→ R” “eγh(dx2 + dy2)”

Simulation of discretization of LQG (Minjae Park).

LQG is a random continuum geometry endowed with:
metric, measure, conformal structure.



Examples and simulations

γ =
√

2: Tree-decorated random planar map.

γ =
√

8/3: Uniform random planar map.

γ =
√

3: Ising-decorated random planar map.

γ = 2: GFF-decorated random planar map

“Larger γ =⇒ rougher surface”.
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Gaussian free field

Centered Gaussian field h on the plane with covariance

E[h(z)h(w)] = − log |z − w |+ O(1) as z → w .

h is a distribution or generalized function:

h(z) is not well-defined;∫
C
h(z)ρ(dz) is defined when ρ is sufficiently regular,

e.g., ρ(dz) = f (z)dz for smooth compactly supported f .

(Simulations by Minjae Park, Henry Jackson.)



Liouville quantum gravity area measure

Let h be a Gaussian free field.
Let hε(z) be the average of h on the radius-ε circle around z .
Let γ ∈ (0, 2). The γ-LQG area measure is

Aγh(dz) := lim
ε→0

εγ
2/2eγhε(z) dz .

This is an example of Gaussian multiplicative chaos.
Kahane ’85, Robert-Vargas ’08, Duplantier-Sheffield ’08

Gaussian free field h Discretization of Ah,
Images by Minjae Park. squares have comparable Ah-mass.



Liouville quantum gravity area measure

Let h be a Gaussian free field.
Let hε(z) be the average of h on the radius-ε circle around z .
Let γ ∈ (0, 2). The γ-LQG area measure is

Aγh(dz) := lim
ε→0

εγ
2/2eγhε(z) dz .

This is an example of Gaussian multiplicative chaos.
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When γ = 2, have log-correction
[Duplantier-Sheffield-Rhodes-Vargas ’14]:

Aγ=2
h (dz) := lim

ε→0

√
log(1/ε)ε2e2hε(z) dz .

When γ > 2, the LQG area measure does not exist: Aγh(dz) ≡ 0.



Properties of the LQG area measure

Weyl scaling

If f is a continuous function (not necessarily indep. of h), then

Aγh+f (dz) = eγf (z)Aγh(dz).

Moments

E[Aγh([0, 1]2)p] <∞ if and only if p < 4
γ2 .

We say z is an α-thick point of h if limε→0
log hε(z)
log(1/ε) = α, i.e., h

blows up like −α log | · −z | near z .

Singularity of Aγh-typical points

The LQG measure Aγh is supported on the set of γ-thick points.



Properties of the LQG area measure: coordinate change

Let f : D → D̃ be a conformal map. Let Q = γ
2 + 2

γ .

(D, h) (D̃, h̃)

f
h = h̃ ◦ f + (γ2 +

2
γ) log |f

′|

In above setting, we have

f∗A
γ
h = Aγ

h̃
.

We think of (D, h) and (D̃, h̃) as describing the same LQG surface!
A quantum surface is an equivalence class of pairs (D, h).

Any reasonable notion of LQG metric Dγ
h will also satisfy

f∗D
γ
h = Dγ

h̃
.



Properties of the LQG area measure: coordinate change

Let f : D → D̃ be a conformal map. Let Q = γ
2 + 2

γ .

(D, h) (D̃, h̃)

f
h = h̃ ◦ f + (γ2 +

2
γ) log |f

′|

In above setting, we have

f∗A
γ
h = Aγ

h̃
.

We think of (D, h) and (D̃, h̃) as describing the same LQG surface!
A quantum surface is an equivalence class of pairs (D, h).

Any reasonable notion of LQG metric Dγ
h will also satisfy

f∗D
γ
h = Dγ

h̃
.



The Liouville quantum gravity metric

There is a constant dγ called the fractal dimension of γ-LQG.

Will discuss dγ in more detail later.

We want a metric Dγ
h satisfying the following properties:

1 (Length space)

2 (Locality)

3 (Weyl scaling)

4 (Coordinate change)



The Liouville quantum gravity metric

There is a constant dγ called the fractal dimension of γ-LQG.
We want a metric Dγ

h satisfying the following properties:

1 (Length space) For a path P : [0, 1]→ C, define

len(P;Dγ
h ) = sup

n∑
i=1

Dγ
h (P(ti ),P(ti−1))

where the supremum is taken over all partitions
0 = t0 < t1 < · · · < tn = 1. Then

Dγ
h = inf

P
len(P;Dγ

h ).
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3 (Weyl scaling)

4 (Coordinate change)
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There is a constant dγ called the fractal dimension of γ-LQG.
We want a metric Dγ

h satisfying the following properties:

1 (Length space)
Dγ
h = inf

P
len(P;Dγ

h ).

2 (Locality) For deterministic open U, define internal metric

Dγ
h (z ,w ;U) = inf{len(P;Dγ

h ) : P is a path from z to w in U}.

Then Dγ
h (z ,w ;U) is a measurable function of h|U .
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There is a constant dγ called the fractal dimension of γ-LQG.
We want a metric Dγ

h satisfying the following properties:

1 (Length space)
Dγ
h = inf

P
len(P;Dγ

h ).

2 (Locality) Internal metric Dγ
h (z ,w ;U) is determined by h|U .

3 (Weyl scaling) Let ξ = γ
dγ

. For continuous f : C→ R, define

(eξf · Dγ
h )(z ,w) = inf

P:z→w

∫ len(P;Dγh )

0
eξf (P(t)) dt

where the infimum is over paths parametrized by Dγ
h -length.

Then a.s.
eξf · Dγ

h = Dγ
h+f .

4 (Coordinate change)



The Liouville quantum gravity metric

There is a constant dγ called the fractal dimension of γ-LQG.
We want a metric Dγ

h satisfying the following properties:

1 (Length space)
Dγ
h = inf

P
len(P;Dγ

h ).

2 (Locality) Internal metric Dγ
h (z ,w ;U) is determined by h|U .

3 (Weyl scaling) Let ξ = γ
dγ

. For continuous f : C→ R,

Dγ
h+f (z ,w) = inf

P:z→w

∫ len(P;Dγh )

0
eξf (P(t)) dt.

4 (Coordinate change for scaling and rotation) Let Q = γ
2 + 2

γ .
Let r > 0 and z ∈ C. Almost surely, for all u, v ∈ C

Dγ
h (ru + z , rv + z) = Dh(r ·+z)+Q log r (u, v).



The Liouville quantum gravity metric

Theorem Ding-Dubédat-Dunlap-Falconet ’19

There exists an LQG metric.

Construction via ε→ 0 subsequential limit of
ε-Liouville first passage percolation,
the metric corresponding to eξhε(dx2 + dy2).

Theorem Gwynne-Miller ’19

The LQG metric is unique up to multiplicative constant.



Fractal dimension of the LQG metric

Denote the fractal dimension of γ-LQG by dγ [Ding-Gwynne ’18].

Minkowski dimension of γ-LQG = dγ [A.-Falconet-Sun ’20],
dγ-Minkowski content of Dγ

h is Aγh [Gwynne-Sung ’22].

Describes distances in random planar maps
[Gwynne-Holden-Sun ’17, Ding-Gwynne ’18].

Upper and lower bounds for dγ .
Only known values are d0 = 2 and d√

8/3
= 4.

Open problem: Compute dγ.



Geodesics of the LQG metric

Confluence of geodesics Gwynne-Miller ’19

Fix z ∈ C. Almost surely, for each radius s > 0 there exists a radius
t ∈ (0, s) such that any two Dγ

h -geodesics from z to points outside
the γ-LQG metric ball Bs(z ;Dγ

h ) coincide on the time interval [0, t].

Much is unknown about geodesics, e.g., Euclidean dimension.



The Knizhik-Polyakov-Zamolodchikov relation

The Hausdorff dimension of a set X with respect to metric D is

inf{
∞∑
j=1

r∆
j : exists covering of X by D-metric balls with radii rj}.

(e.g. Hausdorff dim of point, line, plane w.r.t. Euc. metric is 0, 1, 2.)

Recall Q = γ
2 + 2

γ .

KPZ formula Gwynne-Pfeffer ’19

Let X be a random fractal set independent of h.
∆0 = Hausdorff dimension of X w.r.t. Euclidean metric,
∆h = Hausdorff dimension of X w.r.t. Dγ

h . Then a.s.,

∆h =
dγ
γ

(Q −
√
Q2 − 2∆0).

More elementary formulations using Aγh rather than Dγ
h

(Duplantier-Sheffield ’08, Rhodes-Vargas ’08, Aru ’15).



The KPZ relation: some history

Early evidence for “planar maps ←→ eγh(dx2 + dy2)”.

Physics derivation of Mandelbrot’s conjecture! [Duplantier ’98]

Mandelbrot’s conjecture

The dimension of the outer boundary of 2D Brownian motion is 4/3.

Compute dimension of Brownian motion outer boundary on
γ =

√
8/3-LQG, using enumeration of planar maps.

Compute dimension of Brownian motion outer boundary on
plane, using KPZ relation.

Eventually Mandelbrot’s conjecture was rigorously proved by
Lawler-Schramm-Werner via SLE.
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Schramm-Loewner evolution

Cutting LQG by independent SLE gives independent surfaces.
See Powell’s upcoming talk!

Critical Ising model Critical percolation Uniform spanning tree

Images by Peltola, Duminil-Copin, Yong Han, Mingchang Liu, Hao Wu ’20.

SLE3 SLE6 SLE32
Images by Antti Kemppainen



Random planar maps

n-face random planar map Liouville quantum gravity
Image by Jason Miller Image by Minjae Park

Discrete area measure An, boundary measure Ln, metric dn.
General conjecture: (An, Ln, dn)→ (Ah, Lh, dh)!

Important special cases:
Gwynne-Miller-Sheffield ’17 (mated-CRT map, harmonic embedding),
Holden-Sun ’19 (uniform RPM, Cardy embedding).
Bertacco-Gwynne-Sheffield ’23 (mated-CRT map, Smith embedding).

Open problem:
convergence for RPM weighted by statistical physics model.



Random planar maps: convergence of observables

Conformal loop ensemble (CLE) = random collection of SLE loops.

Random planar maps with Fortuin-Kasteleyn random cluster
−→ LQG + independent CLE.

Convergence of “boundary length process”.

Sheffield ’11, Duplantier-Miller-Sheffield ’14, Gwynne-Mao-Sun ’15.

Random planar maps with O(n) loop model
−→ LQG + independent CLE.

Convergence of loop lengths.

Bertoin-Budd-Curien-Kortchemski ’16,

Chen-Curien-Maillard ’17, Miller-Sheffield-Werner ’20.

Convergence of area.

Äıdekon, Da Silva, Hu ’24.



Liouville conformal field theory

Lots of recent progress on Liouville conformal field theory.
Why should we care?

For probability theorists:
The laws of LQG areas and boundary lengths of natural random
surfaces are encapsulated by correlation functions of Liouville CFT.
These correlation functions have explicit expressions.

For mathematicians:
Making rigorous sense of quantum field theories (path integrals) is a
major driving force in mathematics.

For physicists:
Derivations of Liouville CFT correlation functions were lacking rigor
even by physicists standards.
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Liouville conformal field theory (*imprecise slide)

A quantum field theory is a collection of numbers called
correlation functions, that arise as expectations of a random field.

A conformal field theory is a QFT with conformal symmetries.

Liouville conformal field theory was introduced by Polyakov ’81 in
the context of bosonic string theory.

One of the most fundamental 2D CFTs.

Mathematically constructed by

David-Kupiainen-Rhodes-Vargas ’14 (sphere)

Huang-Rhodes-Vargas ’15 (disk)

Guillarmou-Rhodes-Vargas ’16 (closed surfaces)

Remy ’17 (annulus)



Liouville conformal field theory (*imprecise slide)

Very, very roughly speaking, the Liouville CFT correlation functions
are something like

〈
n∏

i=1

eαih(zi )〉µ := “E[
n∏

i=1

eαih(zi )e−µA
γ
h (C)]′′

where h is a Gaussian free field, αi ∈ R are weights, zi ∈ C are
points, and µ > 0.

Describes law of LQG area via Laplace transform.

“Solving LCFT” = computing all correlation functions.



Correlation functions of Liouville CFT

“Solving LCFT” = computing all correlation functions.

Three-point correlation function Kupiainen-Rhodes-Vargas ’17

〈
∏3

i=1 e
αih(zi )〉µ has the explicit formula

CDOZZ
γ (α1, α2, α3)× µ(2Q−

∑
i αi )/γ

2

3∏
i=1

|zi − zi+1|−2(∆i+∆i+1−∆i+2)

where ∆i = αi
2 (Q − αi

2 ).

Given three-point correlation function, can inductively solve for
higher order correlation functions via conformal bootstrap.

Guillarmou-Kupiainen-Rhodes-Vargas ’20
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DOZZ formula (jump-scare)

Write α =
∑
αi .

CDOZZ
γ (α1,α2, α3) :=

(
π

Γ(γ
2

4 )

Γ(1− γ2

4 )
(
γ

2
)2−γ2/2

) 2
γ

(Q−α)

×
Υ′γ

2
(0)Υ γ

2
(α1)Υ γ

2
(α2)Υ γ

2
(α3)

Υ γ
2

(α2 − Q)Υ γ
2

(α2 − α1)Υ γ
2

(α2 − α2)Υ γ
2

(α2 − α3)
,

ln Υ γ
2

(z) :=

∫ ∞
0

(
(
Q

2
− z)2e−t −

(sinh((Q2 − z) t
2 )2)

sinh( tγ4 ) sinh( t
γ )

)
dt

t
.
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Application of LQG to critical percolation

Uses all discussed connections of LQG and other topics!

Coupling of LQG and SLE/CLE

Miller-Sheffield-Werner ’20

A.-Holden-Sun ’21

A.-Holden-Sun-Yu ’23

Random planar maps + O(n) loop model −→ LQG + CLE

Bertoin-Budd-Curien-Kortchemski ’16

Chen-Curien-Maillard ’17

Liouville conformal field theory solvability

Kupiainen-Rhodes-Vargas ’17



Application of LQG to critical percolation

Critical site percolation on triangular lattice with mesh size δ.

Pδn(z1, . . . , zn) = probability n points lie in the same cluster.

Conformally invariant scaling limit [Camia ’23]:

Pn(z1, . . . , zn) := lim
δ→0

π1(δ)−nPδn(z1, . . . , zn).



Application of LQG to critical percolation

Pn(z1, . . . , zn) := lim
δ→0

π1(δ)−nPδn(z1, . . . , zn).

Three-point connectivity constant

P3(z1, z2, z3)√
P2(z1, z2)P2(z2, z3)P2(z3, z1)

?
=

√
2π−

1
8

(
2

3

)− 1
2

(
Γ
(

2
3

)
Γ
(

1
3

)) 3
8
(

Γ
(

1
4

)
Γ
(

3
4

)) 3
2 1

CDOZZ√
8
3

(
7
√

6
12 ,

7
√

6
12 ,

7
√

6
12

) ≈ 1.022,

CDOZZ
γ = DOZZ formula from γ-Liouville conformal field theory.

Theorem (Delfino-Viti conjecture) A.-Cai-Sun-Wu ’24+

Above conjecture for the three-point connectivity constant holds.
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Liouville CFT: the Liouville field on D

Motivation: probabilistic interpretation of Polyakov’s path integral
formulation of LCFT [David-Kupiainen-Rhodes-Vargas ’14].

Liouville field depends implicitly on γ ∈ (0, 2). Let Q := γ
2 + 2

γ .
Let PD be the law of the GFF on D with average zero on ∂D.

Liouville field on D Huang-Rhodes-Vargas ’15

Sample (h, c) from PD × [e−Qcdc] on H−1(D)×R.
The Liouville field is φ = h + c.
Let LFD be the measure on H−1(D) describing the law of φ.

Liouville field with insertion: LF(α,0)
D

:= eαφ(0)LFD(dφ).

Near the origin, field looks like GFF− α log |z |.
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Correlation functions of Liouville CFT

LCFT disk one-point correlation function for µ, µB ≥ 0:

〈eαφ(0)〉D :=

∫
e−µAφ(D)−µBLφ(∂D)LF(α,0)

D
(dφ).

Can define Liouville field, correlation functions for general surfaces,
e.g. Riemann sphere Ĉ:

〈
3∏

i=1

eαiφ(zi )〉
Ĉ

:=

∫
e−µAφ(Ĉ)LF(α1,z1),(α2,z2),(α3,z3)

Ĉ
(dφ).

“Solving LCFT” = computing all correlation functions.
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