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Preliminaries

Gaussian free field: Centered Gaussian field ΦC with covariance given by

E(ΦC(z)ΦC(w)) = log |z |+ + log |w |+ +

(
1

|z − w |

)
.

ΦC is a generalized function, called the whole-plane Gaussian free field
(GFF).

Quantum cone field: Another important field is the γ-quantum cone
field Φ,

Φ = ΦC − γ log | · |.
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Preliminaries

Let γ ∈ (0, 2). An γ-LQG surface is the surface with “Riemannian metric”
eγΦ(dx2 + dy2).

• Scaling limit of Random planar maps.

• This “metric” induces a measure (Duplantier-Sheffield, Kahane,
Rhodes-Vargas)

µΦ = eγΦd2z .

Notation: Let dγ be the fractal dimension of γ-LQG. Let ξ := γ
dγ
, and

Q := γ
2 + 2

γ .
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Preliminaries

Recall: the LQG metric DΦ exists (Ding-Dubedat-Dunlap-Falconet ’19)
and is uniquely determined (Gwynne-Miller) by the properties:

• DΦ is a length metric; DΦ is local; and DΦ satisfies Weyl scaling: for any
u, v ∈ C, a.s.

eξf · DΦ(u, v) = DΦ+f (u, v)

where

ef · DΦ = inf
P:u→v

∫ ℓ(P;DΦ)

0
ef (P(t))dt.

• Coordinate change (for scaling and rotation): If r > 0 and z ∈ C, then
for all u, v ∈ C, a.s.

DΦ(ru + z , rv + z) = DΦ(r ·+z)+Q log r (u, v).
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Curvature in LQG surfaces

If S is a smooth Riemannian surface with metric ef (dx2 + dy2), then the
Gaussian curvature is given by

KS(z) = −∆f

2
e−f (z).

• In the case of an LQG surface, the metric is given by eξΦ(dx2 + dy2).

• It would then be natural to define KΦ(z) as

KΦ(z) := −ξ∆Φ

2
e−ξΦ.

• Because of mismatch between LQG measure and metric, “right” notion
should be

KΦ(z) :=
γ∆Φ

2
e−γΦ.
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Definition of curvature on an LQG surface

KΦ(z) is defined weakly: for any smooth compactly supported test
function f , we define∫

C
f (z)KΦ(z)dµΦ =

∫
C

γ

2
∆f (z)Φ(z)dz .

Note: KΦ(z) is invariant under LQG coordinate change.
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Discrete curvature

Suppose G is a triangulation.

Discrete curvature: The discrete curvature is given by

KG(v) = 6− deg(v).

Conjecture: If M is a model of infinite random planar maps believed to
be in the universality class of the γ quantum cone (e.g. uniform infinite
triangulations), and we embed the map in the plane via any “reasonable

embedding”, then the scaling limit of KM is KΦ(z) for γ =
√

8
3 .
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Poisson Mated CRT map

Poisson point process: Take a Poisson point process on R with intensity
ε−1, Λ = {yj}j∈Z.

Poisson mated CRT map: Suppose that (L,R) : R → R2 is a pair of
correlated two sided standard linear Brownian motions, normalized such

that L0 = R0 = 0 and such that corr(Lt ,Rt) = − cos
(
πγ2

4

)
for t ̸= 0. The

mated CRT map Gε is defined to be the random planar map obtained by
mating discretized versions of the continuum random trees constructed
from L and R, that is, two vertices yj , yk ∈ Λ such that j < k are
connected if either(

inf
t∈[yj−1,yj ]

Lt

)
∨
(

inf
t∈[yk−1,yk ]

Lt

)
≤
(

inf
t∈[yj ,yk−1]

Lt

)
(1)

or the same holds with L replaced by R. If |j − k | ≥ 2 and the inequality
above holds for both L and R, then yj , yk are connected by two edges.
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CRT map cells

Let η be a whole-plane space-filling SLEκ′ from ∞ to ∞ sampled
independently from Φ and then parameterized by γ-quantum mass with
respect to Φ, where κ′ = 16/γ2 > 4.

Alternate construction of Poisson CRT maps: One can define the
graph Ḡε with vertex set Λ where two vertices yi , yj are connected if the
CRT map cells η([yi−1, yi ]) and η([yj−1, yj ]) share a nontrivial boundary
arc.

Fact: Ḡε and Gε have the same law (Duplantier-Miller-Sheffield ’14).
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Curvature against smooth functions

Theorem (CH-Gwynne)

Let Gε be the ε Poisson mated CRT map with vertex set VGε. For any
smooth compactly supported f ∈ C∞

c (C) on C we have with probability
going to 1 as ε → 0, that∑

v∈VGε

f (v)KGε(v) = εo(1).

Note: Since the sum is over ε−1 vertices, intuitively one could expect the

sum to be of order ε−
1
2 . The theorem above tells us there is much more

cancellation.
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Total curvature on CRT cells

From now on, we use the imaginary geometry field Ψ and SLEκ′, sampled
independently from the γ-quantum cone field Φ.

We define the total curvature on a CRT map cell C as

KC
Gε

:=
∑

v∈VGε∩C
KGε(v).

where C is the set of vertices in Gε contained in the CRT map cell C .
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Total curvature on CRT cells

Theorem (CH-Gwynne)

We have that
KGε(C )

ε−
1
4

→ B,

where the law of B can be described as follows. Sample L according to
the law of the boundary length of the mated CRT cell C . Now let Θ be
sampled according to a Gaussian distribution with mean 0 and variance L.
Then B and Θ have the same law.

Remark: The previous theorem tells us the right scaling for the curvature
against a smooth function is εo(1), while this theorem tells us that the
scaling for the total curvature on a CRT map cell is ε−1/4. This suggests it
is impossible to define both Gaussian curvature and geodesic curvature
simultaneously.

A.A. Contreras Hip (University of Chicago) March 8, 2024 12 / 22



Total curvature on CRT cells

Theorem (CH-Gwynne)

We have that
KGε(C )

ε−
1
4

→ B,

where the law of B can be described as follows. Sample L according to
the law of the boundary length of the mated CRT cell C . Now let Θ be
sampled according to a Gaussian distribution with mean 0 and variance L.
Then B and Θ have the same law.

Remark: The previous theorem tells us the right scaling for the curvature
against a smooth function is εo(1), while this theorem tells us that the
scaling for the total curvature on a CRT map cell is ε−1/4. This suggests it
is impossible to define both Gaussian curvature and geodesic curvature
simultaneously.

A.A. Contreras Hip (University of Chicago) March 8, 2024 12 / 22



Outline of proofs: curvature against a test function

First ingredient: Convenient cancellation when computing∑
v∈VGε

f (v)KΦ(v).

Notation: If −→e has starting vertex v1 and end vertex v2, let
Df (e) = f (v2)− f (v1).

Proposition

There is an orientation on edges of Gε such that for any smooth compactly
supported test function f ,∑

v∈VGε

f (v)KGε(v) =
∑

e∈EGε

Df (−→e ).
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Cancellations

First we split our sum
∑

v∈VGε
f (v)KGε(v) into the edges corresponding to

when (1) holds for L and those for R.

Second ingredient: There is an injection v 7→ ev from VGε to the set of
edges e ∈ EGε defined by taking the “rightmost past” edge. Hence∑

e∈EGε

Df (−→e ) =
∑

v∈VGε

Df (−→e v ).
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Cancellations

Now we split ev at the first point it exists the CRT map cell containing v ,
called mv .

Grouping all pieces adjacent to v , we obtain∑
v∈VGε

f (v)KGε(v) =
∑

v∈VGε

Gf (v).

Goal: Control E
((∑

v∈VGε
Gf (v)

)2)
.
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Rewriting as an integral

Next: Rewrite the sum above as an integral:∑
v∈VGε

Gf (v) =

∫
C

Gf (xz)

Area(Hε
z )
dz

where Hε
z is the CRT map cell containing z , and xz is the vertex in VGε

contained in Hε
z .

Notation: Let Ĥε
z be the union of all CRT map cells adjacent to Hε

z

together with Hε
z itself.
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Fixing CRT map cell size

Splitting into events: Let Ej be the event

Ej := {z ∈ C : diam(Ĥε
z ) ∈ [εαj+1 , εαj ] , area(Hε

z ) ≥ εβ}

where the αj ’s are a partition of a sufficiently large interval, with
|αj+1 − αj | small.

Now we focus on bounding

E

((∫
C
1Ej

Gf (xz)

Area(Hε
z )

)2
)
.
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Splitting

We split our expression as

E

((∫
C
1Ej

Gf (xz)

Area(Hε
z )

)2
)

= E

(∫ ∫
|z−w |≤ε

αj−ζ
X ε
z X

ε
wdzdw

)

+ E

(∫ ∫
|z−w |≥ε

αj−ζ
X ε
z X

ε
wdzdw

)

where X ε
z = Gf (xz )

Area(Hε
z )
. Essentially, the first term is small since we are

integrating on a small measure set, while the second is small because of
the long range properties of Gf and Hε

z .
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Outline of proofs: Total curvature on a CRT map cell

First ingredient: Combinatorial graph identity relating edges, vertices,
and perimeter of a triangulation. With it, one obtains

KC
Gε

= Perim(C)− 6−
∑
v∈C

degCext(v)

This can be rewritten as

KC
Gε

=
∑

v∈∂GεC
KC
g (v)− 6

where KGε is the “discrete geodesic curvature”.

Next: We split this sum into four parts, corresponding to the past-left,
past-right, future-left, future-right components of the boundary of C.
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We have

KC
Gε

=
∑

v∈C̄PR

KC
g (v) +

∑
v∈C̄PL

KC
g (v)

+
∑

v∈C̄FR

KC
g (v) +

∑
v∈C̄PL

KC
g (v).

Each sum is treated the same way.

Second ingredient: Central limit theorem together with an independence
property for KC

g (v) along the boundary.
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η(t2)

η(t1)

η([t1, t2])
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Open problems

• Subsequential limit of KGε(v)?

• Is the scaling limit of KGε equal to KΦ? What is the scaling factor?

• Is KΦ a universal limit?

• Is there an observable on CRT maps converging to the underlying field?
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Thank you!
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