Gaussian curvature for LQG surfaces and random planar maps

Andres A. Contreras Hip

University of Chicago

Toronto, Canada
March 8, 2024.

Preliminaries

Gaussian free field: Centered Gaussian field $\Phi^{\mathbb{C}}$ with covariance given by

$$
\mathbb{E}\left(\Phi^{\mathbb{C}}(z) \Phi^{\mathbb{C}}(w)\right)=\log |z|_{+}+\log |w|_{+}+\left(\frac{1}{|z-w|}\right) .
$$

$\Phi^{\mathbb{C}}$ is a generalized function, called the whole-plane Gaussian free field (GFF).

Quantum cone field: Another important field is the γ-quantum cone field Φ,

$$
\Phi=\Phi^{\mathbb{C}}-\gamma \log |\cdot| .
$$

Preliminaries

Let $\gamma \in(0,2)$. An γ-LQG surface is the surface with "Riemannian metric" $e^{\gamma \Phi}\left(d x^{2}+d y^{2}\right)$.

Preliminaries

Let $\gamma \in(0,2)$. An γ-LQG surface is the surface with "Riemannian metric" $e^{\gamma \Phi}\left(d x^{2}+d y^{2}\right)$.

- Scaling limit of Random planar maps.

Preliminaries

Let $\gamma \in(0,2)$. An γ-LQG surface is the surface with "Riemannian metric" $e^{\gamma \Phi}\left(d x^{2}+d y^{2}\right)$.

- Scaling limit of Random planar maps.
- This "metric" induces a measure (Duplantier-Sheffield, Kahane, Rhodes-Vargas)

$$
\mu_{\Phi}=e^{\gamma \Phi} d^{2} z
$$

Preliminaries

Let $\gamma \in(0,2)$. An γ-LQG surface is the surface with "Riemannian metric" $e^{\gamma \Phi}\left(d x^{2}+d y^{2}\right)$.

- Scaling limit of Random planar maps.
- This "metric" induces a measure (Duplantier-Sheffield, Kahane, Rhodes-Vargas)

$$
\mu_{\Phi}=e^{\gamma \Phi} d^{2} z
$$

Notation: Let d_{γ} be the fractal dimension of γ-LQG. Let $\xi:=\frac{\gamma}{d_{\gamma}}$, and $Q:=\frac{\gamma}{2}+\frac{2}{\gamma}$.

Preliminaries

Recall: the LQG metric D_{Φ} exists (Ding-Dubedat-Dunlap-Falconet '19) and is uniquely determined (Gwynne-Miller) by the properties:

Preliminaries

Recall: the LQG metric D_{Φ} exists (Ding-Dubedat-Dunlap-Falconet '19) and is uniquely determined (Gwynne-Miller) by the properties:

- D_{Φ} is a length metric; D_{Φ} is local; and D_{Φ} satisfies Weyl scaling: for any $u, v \in \mathbb{C}$, a.s.

$$
e^{\xi f} \cdot D_{\Phi}(u, v)=D_{\Phi+f}(u, v)
$$

where

$$
e^{f} \cdot D_{\Phi}=\inf _{P: u \rightarrow v} \int_{0}^{\ell\left(P ; D_{\phi}\right)} e^{f(P(t))} d t
$$

Preliminaries

Recall: the LQG metric D_{Φ} exists (Ding-Dubedat-Dunlap-Falconet '19) and is uniquely determined (Gwynne-Miller) by the properties:

- D_{Φ} is a length metric; D_{Φ} is local; and D_{Φ} satisfies Weyl scaling: for any $u, v \in \mathbb{C}$, a.s.

$$
e^{\xi f} \cdot D_{\Phi}(u, v)=D_{\Phi+f}(u, v)
$$

where

$$
e^{f} \cdot D_{\Phi}=\inf _{P: u \rightarrow v} \int_{0}^{\ell\left(P ; D_{\Phi}\right)} e^{f(P(t))} d t
$$

- Coordinate change (for scaling and rotation): If $r>0$ and $z \in \mathbb{C}$, then for all $u, v \in \mathbb{C}$, a.s.

$$
D_{\Phi}(r u+z, r v+z)=D_{\Phi(r \cdot+z)+Q \log r}(u, v)
$$

Curvature in LQG surfaces

If S is a smooth Riemannian surface with metric $e^{f}\left(d x^{2}+d y^{2}\right)$, then the Gaussian curvature is given by

$$
K_{S}(z)=-\frac{\Delta f}{2} e^{-f(z)}
$$

Curvature in LQG surfaces

If S is a smooth Riemannian surface with metric $e^{f}\left(d x^{2}+d y^{2}\right)$, then the Gaussian curvature is given by

$$
K_{S}(z)=-\frac{\Delta f}{2} e^{-f(z)}
$$

- In the case of an LQG surface, the metric is given by $e^{\xi \Phi}\left(d x^{2}+d y^{2}\right)$.

Curvature in LQG surfaces

If S is a smooth Riemannian surface with metric $e^{f}\left(d x^{2}+d y^{2}\right)$, then the Gaussian curvature is given by

$$
K_{S}(z)=-\frac{\Delta f}{2} e^{-f(z)}
$$

- In the case of an LQG surface, the metric is given by $e^{\xi \Phi}\left(d x^{2}+d y^{2}\right)$.
- It would then be natural to define $K_{\Phi}(z)$ as

$$
K_{\Phi}(z):=-\frac{\xi \Delta \Phi}{2} e^{-\xi \Phi}
$$

Curvature in LQG surfaces

If S is a smooth Riemannian surface with metric $e^{f}\left(d x^{2}+d y^{2}\right)$, then the Gaussian curvature is given by

$$
K_{S}(z)=-\frac{\Delta f}{2} e^{-f(z)}
$$

- In the case of an LQG surface, the metric is given by $e^{\xi \Phi}\left(d x^{2}+d y^{2}\right)$.
- It would then be natural to define $K_{\Phi}(z)$ as

$$
K_{\Phi}(z):=-\frac{\xi \Delta \Phi}{2} e^{-\xi \Phi} .
$$

- Because of mismatch between LQG measure and metric, "right" notion should be

$$
K_{\Phi}(z):=\frac{\gamma \Delta \Phi}{2} e^{-\gamma \Phi} .
$$

Definition of curvature on an LQG surface

$K_{\Phi}(z)$ is defined weakly: for any smooth compactly supported test function f, we define

$$
\int_{\mathbb{C}} f(z) K_{\Phi}(z) d \mu_{\Phi}=\int_{\mathbb{C}} \frac{\gamma}{2} \Delta f(z) \Phi(z) d z .
$$

Note: $K_{\Phi}(z)$ is invariant under LQG coordinate change.

Discrete curvature

Suppose \mathcal{G} is a triangulation.
Discrete curvature: The discrete curvature is given by

$$
K_{\mathcal{G}}(v)=6-\operatorname{deg}(v) .
$$

Conjecture: If M is a model of infinite random planar maps believed to be in the universality class of the γ quantum cone (e.g. uniform infinite triangulations), and we embed the map in the plane via any "reasonable embedding", then the scaling limit of K_{M} is $K_{\Phi}(z)$ for $\gamma=\sqrt{\frac{8}{3}}$.

Poisson Mated CRT map

Poisson point process: Take a Poisson point process on \mathbb{R} with intensity $\varepsilon^{-1}, \Lambda=\left\{y_{j}\right\}_{j \in \mathbb{Z}}$.
Poisson mated CRT map: Suppose that $(L, R): \mathbb{R} \rightarrow \mathbb{R}^{2}$ is a pair of correlated two sided standard linear Brownian motions, normalized such that $L_{0}=R_{0}=0$ and such that $\operatorname{corr}\left(L_{t}, R_{t}\right)=-\cos \left(\frac{\pi \gamma^{2}}{4}\right)$ for $t \neq 0$. The mated CRT map $\mathcal{G}_{\varepsilon}$ is defined to be the random planar map obtained by mating discretized versions of the continuum random trees constructed from L and R, that is, two vertices $y_{j}, y_{k} \in \Lambda$ such that $j<k$ are connected if either

$$
\begin{equation*}
\left(\inf _{t \in\left[y_{j-1}, y_{j}\right]} L_{t}\right) \vee\left(\inf _{t \in\left[y_{k-1}, y_{k}\right]} L_{t}\right) \leq\left(\inf _{t \in\left[y_{j}, y_{k-1}\right]} L_{t}\right) \tag{1}
\end{equation*}
$$

or the same holds with L replaced by R. If $|j-k| \geq 2$ and the inequality above holds for both L and R, then y_{j}, y_{k} are connected by two edges.

CRT map cells

Let η be a whole-plane space-filling SLE κ^{\prime} from ∞ to ∞ sampled independently from Φ and then parameterized by γ-quantum mass with respect to Φ, where $\kappa^{\prime}=16 / \gamma^{2}>4$.

CRT map cells

Let η be a whole-plane space-filling SLE κ^{\prime} from ∞ to ∞ sampled independently from Φ and then parameterized by γ-quantum mass with respect to Φ, where $\kappa^{\prime}=16 / \gamma^{2}>4$.

Alternate construction of Poisson CRT maps: One can define the graph $\overline{\mathcal{G}}_{\varepsilon}$ with vertex set Λ where two vertices y_{i}, y_{j} are connected if the CRT map cells $\eta\left(\left[y_{i-1}, y_{i}\right]\right)$ and $\eta\left(\left[y_{j-1}, y_{j}\right]\right)$ share a nontrivial boundary arc.

Fact: $\overline{\mathcal{G}}_{\varepsilon}$ and $\mathcal{G}_{\varepsilon}$ have the same law (Duplantier-Miller-Sheffield '14).

Curvature against smooth functions

Theorem (CH-Gwynne)
Let $\mathcal{G}_{\varepsilon}$ be the ε Poisson mated CRT map with vertex set $\mathcal{V} \mathcal{G}_{\varepsilon}$. For any smooth compactly supported $f \in C_{c}^{\infty}(\mathbb{C})$ on \mathbb{C} we have with probability going to 1 as $\varepsilon \rightarrow 0$, that

$$
\sum_{v \in \mathcal{V} \mathcal{G}_{\varepsilon}} f(v) K_{\mathcal{G}_{\varepsilon}}(v)=\varepsilon^{o(1)}
$$

Curvature against smooth functions

Theorem (CH-Gwynne)
Let $\mathcal{G}_{\varepsilon}$ be the ε Poisson mated CRT map with vertex set $\mathcal{V} \mathcal{G}_{\varepsilon}$. For any smooth compactly supported $f \in C_{c}^{\infty}(\mathbb{C})$ on \mathbb{C} we have with probability going to 1 as $\varepsilon \rightarrow 0$, that

$$
\sum_{v \in \mathcal{V} \mathcal{G}_{\varepsilon}} f(v) K_{\mathcal{G}_{\varepsilon}}(v)=\varepsilon^{o(1)}
$$

Note: Since the sum is over ε^{-1} vertices, intuitively one could expect the sum to be of order $\varepsilon^{-\frac{1}{2}}$. The theorem above tells us there is much more cancellation.

Total curvature on CRT cells

From now on, we use the imaginary geometry field Ψ and $\operatorname{SLE} \kappa^{\prime}$, sampled independently from the γ-quantum cone field Φ.

We define the total curvature on a CRT map cell C as

$$
K_{\mathcal{G}_{\varepsilon}}^{C}:=\sum_{v \in \mathcal{V G}_{\varepsilon} \cap \mathcal{C}} K_{\mathcal{G}_{\varepsilon}}(v)
$$

where \mathcal{C} is the set of vertices in $\mathcal{G}_{\varepsilon}$ contained in the CRT map cell C.

Total curvature on CRT cells

Theorem (CH-Gwynne)
We have that

$$
\frac{K_{\mathcal{G}_{\varepsilon}}(C)}{\varepsilon^{-\frac{1}{4}}} \rightarrow \mathcal{B}
$$

where the law of \mathcal{B} can be described as follows. Sample \mathcal{L} according to the law of the boundary length of the mated CRT cell C. Now let Θ be sampled according to a Gaussian distribution with mean 0 and variance \mathcal{L}. Then \mathcal{B} and Θ have the same law.

Total curvature on CRT cells

Theorem (CH-Gwynne)
We have that

$$
\frac{K_{\mathcal{G}_{\varepsilon}}(C)}{\varepsilon^{-\frac{1}{4}}} \rightarrow \mathcal{B}
$$

where the law of \mathcal{B} can be described as follows. Sample \mathcal{L} according to the law of the boundary length of the mated CRT cell C. Now let Θ be sampled according to a Gaussian distribution with mean 0 and variance \mathcal{L}. Then \mathcal{B} and Θ have the same law.

Remark: The previous theorem tells us the right scaling for the curvature against a smooth function is $\varepsilon^{o(1)}$, while this theorem tells us that the scaling for the total curvature on a CRT map cell is $\varepsilon^{-1 / 4}$. This suggests it is impossible to define both Gaussian curvature and geodesic curvature simultaneously.

Outline of proofs: curvature against a test function

First ingredient: Convenient cancellation when computing

$$
\sum_{v \in \mathcal{V G}_{\varepsilon}} f(v) K_{\Phi}(v)
$$

Notation: If \vec{e} has starting vertex v_{1} and end vertex v_{2}, let $\mathcal{D} f(e)=f\left(v_{2}\right)-f\left(v_{1}\right)$.

Outline of proofs: curvature against a test function

First ingredient: Convenient cancellation when computing

$$
\sum_{v \in \mathcal{V} \mathcal{G}_{\varepsilon}} f(v) K_{\Phi}(v)
$$

Notation: If \vec{e} has starting vertex v_{1} and end vertex v_{2}, let $\mathcal{D} f(e)=f\left(v_{2}\right)-f\left(v_{1}\right)$.

Proposition
There is an orientation on edges of $\mathcal{G}_{\varepsilon}$ such that for any smooth compactly supported test function f,

$$
\sum_{v \in \mathcal{V} \mathcal{G}_{\varepsilon}} f(v) K_{\mathcal{G}_{\varepsilon}}(v)=\sum_{e \in \mathcal{E} \mathcal{G}_{\varepsilon}} \mathcal{D} f(\vec{e})
$$

Cancellations

First we split our sum $\sum_{v \in \mathcal{V} \mathcal{G}_{\varepsilon}} f(v) K_{\mathcal{G}_{\varepsilon}}(v)$ into the edges corresponding to when (1) holds for L and those for R.

Second ingredient: There is an injection $v \mapsto e_{v}$ from $\mathcal{V} \mathcal{G}_{\varepsilon}$ to the set of edges $e \in \mathcal{E} \mathcal{G}_{\varepsilon}$ defined by taking the "rightmost past" edge. Hence

$$
\sum_{e \in \mathcal{E} \mathcal{G}_{\varepsilon}} \mathcal{D} f(\vec{e})=\sum_{v \in \mathcal{V} \mathcal{G}_{\varepsilon}} \mathcal{D} f\left(\vec{e}_{v}\right)
$$

Cancellations

Now we split e_{v} at the first point it exists the CRT map cell containing v, called m_{v}.

Grouping all pieces adjacent to v, we obtain

$$
\sum_{v \in \mathcal{V} \mathcal{G}_{\varepsilon}} f(v) K_{\mathcal{G}_{\varepsilon}}(v)=\sum_{v \in \mathcal{V} \mathcal{G}_{\varepsilon}} G_{f}(v)
$$

Goal: Control $\mathbb{E}\left(\left(\sum_{v \in \mathcal{V} \mathcal{G}_{\varepsilon}} G_{f}(v)\right)^{2}\right)$.

Rewriting as an integral

Next: Rewrite the sum above as an integral:

$$
\sum_{v \in \mathcal{V} \mathcal{G}_{\varepsilon}} G_{f}(v)=\int_{\mathbb{C}} \frac{G_{f}\left(x_{z}\right)}{\operatorname{Area}\left(H_{z}^{\varepsilon}\right)} d z
$$

where H_{z}^{ε} is the CRT map cell containing z, and x_{z} is the vertex in $\mathcal{V} \mathcal{G}_{\varepsilon}$ contained in H_{z}^{ε}.

Notation: Let $\hat{H}_{z}^{\varepsilon}$ be the union of all CRT map cells adjacent to H_{z}^{ε} together with H_{z}^{ε} itself.

Fixing CRT map cell size

Splitting into events: Let E_{j} be the event

$$
E_{j}:=\left\{z \in \mathbb{C}: \operatorname{diam}\left(\widehat{H}_{z}^{\varepsilon}\right) \in\left[\varepsilon^{\alpha_{j+1}}, \varepsilon^{\alpha_{j}}\right], \text { area }\left(H_{z}^{\varepsilon}\right) \geq \varepsilon^{\beta}\right\}
$$

where the α_{j} 's are a partition of a sufficiently large interval, with $\left|\alpha_{j+1}-\alpha_{j}\right|$ small.

Now we focus on bounding

$$
\mathbb{E}\left(\left(\int_{\mathbb{C}} 1_{E_{j}} \frac{G_{f}\left(x_{z}\right)}{\operatorname{Area}\left(H_{z}^{\varepsilon}\right)}\right)^{2}\right)
$$

Splitting

We split our expression as

$$
\begin{aligned}
\mathbb{E}\left(\left(\int_{\mathbb{C}} 1_{E_{j}} \frac{G_{f}\left(X_{z}\right)}{\operatorname{Area}\left(H_{z}^{\varepsilon}\right)}\right)^{2}\right) & =\mathbb{E}\left(\iint_{|z-w| \leq \varepsilon^{\alpha_{j}-\zeta}} X_{z}^{\varepsilon} X_{w}^{\varepsilon} d z d w\right) \\
& +\mathbb{E}\left(\iint_{|z-w| \geq \varepsilon^{\alpha_{j}-\zeta}} X_{z}^{\varepsilon} X_{w}^{\varepsilon} d z d w\right)
\end{aligned}
$$

where $X_{z}^{\varepsilon}=\frac{G_{f}\left(x_{z}\right)}{\text { Area }\left(H_{z}^{\varepsilon}\right)}$. Essentially, the first term is small since we are integrating on a small measure set, while the second is small because of the long range properties of G_{f} and H_{z}^{ε}.

Outline of proofs: Total curvature on a CRT map cell

First ingredient: Combinatorial graph identity relating edges, vertices, and perimeter of a triangulation. With it, one obtains

$$
K_{\mathcal{G}_{\varepsilon}}^{C}=\operatorname{Perim}(\mathcal{C})-6-\sum_{v \in \mathcal{C}} \operatorname{deg}_{\text {ext }}^{\mathcal{C}}(v)
$$

This can be rewritten as

$$
K_{\mathcal{G}_{\varepsilon}}^{C}=\sum_{v \in \partial_{\mathcal{G}_{\varepsilon} \mathcal{C}}} K_{g}^{\mathcal{C}}(v)-6
$$

where $K_{\mathcal{G}_{\varepsilon}}$ is the "discrete geodesic curvature".
Next: We split this sum into four parts, corresponding to the past-left, past-right, future-left, future-right components of the boundary of \mathcal{C}.

We have

$$
\begin{aligned}
K_{\mathcal{G}_{\varepsilon}}^{C} & =\sum_{v \in \bar{C}_{P R}} K_{g}^{C}(v)+\sum_{v \in \bar{C}_{P L}} K_{g}^{C}(v) \\
& +\sum_{v \in \bar{C}_{F R}} K_{g}^{C}(v)+\sum_{v \in \bar{C}_{P L}} K_{g}^{C}(v) .
\end{aligned}
$$

Each sum is treated the same way.
Second ingredient: Central limit theorem together with an independence property for $K_{g}^{C}(v)$ along the boundary.

Open problems

- Subsequential limit of ${K_{\mathcal{G}_{\varepsilon}}}(v)$?

Open problems

- Subsequential limit of $K_{\mathcal{G}_{\varepsilon}}(v)$?
- Is the scaling limit of $K_{\mathcal{G}_{\varepsilon}}$ equal to K_{Φ} ? What is the scaling factor?

Open problems

- Subsequential limit of $K_{\mathcal{G}_{\varepsilon}}(v)$?
- Is the scaling limit of $K_{\mathcal{G}_{\varepsilon}}$ equal to K_{Φ} ? What is the scaling factor?
- Is K_{Φ} a universal limit?

Open problems

- Subsequential limit of ${K_{\mathcal{G}_{\varepsilon}}}(v)$?
- Is the scaling limit of $K_{\mathcal{G}_{\varepsilon}}$ equal to K_{Φ} ? What is the scaling factor?
- Is K_{Φ} a universal limit?
- Is there an observable on CRT maps converging to the underlying field?

Thank you!

