Gaussian curvature for LQG surfaces and random planar maps

Andres A. Contreras Hip

University of Chicago

Toronto, Canada March 8, 2024.

A.A. Contreras Hip (University of Chicago)

March 8, 2024 1 / 22

Image: A matrix and a matrix

Gaussian free field: Centered Gaussian field $\Phi^{\mathbb{C}}$ with covariance given by

$$\mathbb{E}(\Phi^{\mathbb{C}}(z)\Phi^{\mathbb{C}}(w)) = \log |z|_+ + \log |w|_+ + \left(rac{1}{|z-w|}
ight).$$

 $\Phi^{\mathbb{C}}$ is a generalized function, called the whole-plane Gaussian free field (GFF).

Quantum cone field: Another important field is the γ -quantum cone field Φ ,

$$\Phi = \Phi^{\mathbb{C}} - \gamma \log |\cdot|.$$

イロト 不得 トイラト イラト 一日

Let $\gamma \in (0, 2)$. An γ -LQG surface is the surface with "Riemannian metric" $e^{\gamma \Phi}(dx^2 + dy^2)$.

イロト 不得 トイラト イラト 一日

- Let $\gamma \in (0, 2)$. An γ -LQG surface is the surface with "Riemannian metric" $e^{\gamma \Phi}(dx^2 + dy^2)$.
- Scaling limit of Random planar maps.

3

イロト 不得 トイヨト イヨト

- Let $\gamma \in (0, 2)$. An γ -LQG surface is the surface with "Riemannian metric" $e^{\gamma \Phi}(dx^2 + dy^2)$.
- Scaling limit of Random planar maps.
- This "metric" induces a measure (Duplantier-Sheffield, Kahane, Rhodes-Vargas)

$$\mu_{\Phi} = e^{\gamma \Phi} d^2 z.$$

イロト 不得 トイラト イラト 一日

- Let $\gamma \in (0, 2)$. An γ -LQG surface is the surface with "Riemannian metric" $e^{\gamma \Phi}(dx^2 + dy^2)$.
- Scaling limit of Random planar maps.
- This "metric" induces a measure (Duplantier-Sheffield, Kahane, Rhodes-Vargas)

$$\mu_{\Phi} = e^{\gamma \Phi} d^2 z.$$

Notation: Let d_{γ} be the fractal dimension of γ -LQG. Let $\xi := \frac{\gamma}{d_{\gamma}}$, and $Q := \frac{\gamma}{2} + \frac{2}{\gamma}$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

Recall: the LQG metric D_{Φ} exists (Ding-Dubedat-Dunlap-Falconet '19) and is uniquely determined (Gwynne-Miller) by the properties:

イロト 不得下 イヨト イヨト

Recall: the LQG metric D_{Φ} exists (Ding-Dubedat-Dunlap-Falconet '19) and is uniquely determined (Gwynne-Miller) by the properties:

• D_{Φ} is a length metric; D_{Φ} is local; and D_{Φ} satisfies Weyl scaling: for any $u, v \in \mathbb{C}$, a.s.

$$e^{\xi f} \cdot D_{\Phi}(u,v) = D_{\Phi+f}(u,v)$$

where

$$e^f \cdot D_{\Phi} = \inf_{P:u \to v} \int_0^{\ell(P;D_{\Phi})} e^{f(P(t))} dt.$$

Recall: the LQG metric D_{Φ} exists (Ding-Dubedat-Dunlap-Falconet '19) and is uniquely determined (Gwynne-Miller) by the properties:

• D_{Φ} is a length metric; D_{Φ} is local; and D_{Φ} satisfies Weyl scaling: for any $u, v \in \mathbb{C}$, a.s.

$$e^{\xi f} \cdot D_{\Phi}(u,v) = D_{\Phi+f}(u,v)$$

where

$$e^f \cdot D_{\Phi} = \inf_{P:u \to v} \int_0^{\ell(P;D_{\Phi})} e^{f(P(t))} dt.$$

• Coordinate change (for scaling and rotation): If r > 0 and $z \in \mathbb{C}$, then for all $u, v \in \mathbb{C}$, a.s.

$$D_{\Phi}(ru+z,rv+z)=D_{\Phi(r\cdot+z)+Q\log r}(u,v).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If S is a smooth Riemannian surface with metric $e^{f}(dx^{2} + dy^{2})$, then the Gaussian curvature is given by

$$K_S(z) = -rac{\Delta f}{2}e^{-f(z)}.$$

イロト 不得 トイラト イラト 一日

If S is a smooth Riemannian surface with metric $e^{f}(dx^{2} + dy^{2})$, then the Gaussian curvature is given by

$$K_S(z) = -rac{\Delta f}{2}e^{-f(z)}.$$

• In the case of an LQG surface, the metric is given by $e^{\xi \Phi}(dx^2 + dy^2)$.

イロト 不得下 イヨト イヨト 二日

If S is a smooth Riemannian surface with metric $e^{f}(dx^{2} + dy^{2})$, then the Gaussian curvature is given by

$$K_S(z) = -rac{\Delta f}{2}e^{-f(z)}.$$

- In the case of an LQG surface, the metric is given by $e^{\xi \Phi}(dx^2 + dy^2)$.
- It would then be natural to define $K_{\Phi}(z)$ as

$$\mathcal{K}_{\Phi}(z):=-rac{\xi\Delta\Phi}{2}e^{-\xi\Phi}.$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - ヨー のへの

If S is a smooth Riemannian surface with metric $e^{f}(dx^{2} + dy^{2})$, then the Gaussian curvature is given by

$$K_S(z) = -rac{\Delta f}{2}e^{-f(z)}.$$

- In the case of an LQG surface, the metric is given by $e^{\xi \Phi}(dx^2 + dy^2)$.
- It would then be natural to define $K_{\Phi}(z)$ as

$$\mathcal{K}_{\Phi}(z) := -rac{\xi \Delta \Phi}{2} e^{-\xi \Phi}.$$

• Because of mismatch between LQG measure and metric, "right" notion should be

$$K_{\Phi}(z) := rac{\gamma \Delta \Phi}{2} e^{-\gamma \Phi}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - ヨー のへの

Definition of curvature on an LQG surface

 $K_{\Phi}(z)$ is defined weakly: for any smooth compactly supported test function f, we define

$$\int_{\mathbb{C}} f(z) \mathcal{K}_{\Phi}(z) d\mu_{\Phi} = \int_{\mathbb{C}} \frac{\gamma}{2} \Delta f(z) \Phi(z) dz.$$

Note: $K_{\Phi}(z)$ is invariant under LQG coordinate change.

イロト 不得 トイラト イラト 一日

Suppose \mathcal{G} is a triangulation.

Discrete curvature: The discrete curvature is given by

 $K_{\mathcal{G}}(v) = 6 - \deg(v).$

Conjecture: If *M* is a model of infinite random planar maps believed to be in the universality class of the γ quantum cone (e.g. uniform infinite triangulations), and we embed the map in the plane via any "reasonable embedding", then the scaling limit of K_M is $K_{\Phi}(z)$ for $\gamma = \sqrt{\frac{8}{3}}$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Poisson Mated CRT map

Poisson point process: Take a Poisson point process on \mathbb{R} with intensity ε^{-1} , $\Lambda = \{y_j\}_{j \in \mathbb{Z}}$.

Poisson mated CRT map: Suppose that $(L, R) : \mathbb{R} \to \mathbb{R}^2$ is a pair of correlated two sided standard linear Brownian motions, normalized such that $L_0 = R_0 = 0$ and such that $\operatorname{corr}(L_t, R_t) = -\cos\left(\frac{\pi\gamma^2}{4}\right)$ for $t \neq 0$. The mated CRT map $\mathcal{G}_{\varepsilon}$ is defined to be the random planar map obtained by mating discretized versions of the continuum random trees constructed from L and R, that is, two vertices $y_j, y_k \in \Lambda$ such that j < k are connected if either

$$\left(\inf_{t\in[y_{j-1},y_j]} L_t\right) \vee \left(\inf_{t\in[y_{k-1},y_k]} L_t\right) \le \left(\inf_{t\in[y_j,y_{k-1}]} L_t\right)$$
(1)

or the same holds with L replaced by R. If $|j - k| \ge 2$ and the inequality above holds for both L and R, then y_j, y_k are connected by two edges.

Let η be a whole-plane space-filling SLE κ' from ∞ to ∞ sampled independently from Φ and then parameterized by γ -quantum mass with respect to Φ , where $\kappa' = 16/\gamma^2 > 4$.

イロト 不得 トイラト イラト 一日

Let η be a whole-plane space-filling SLE κ' from ∞ to ∞ sampled independently from Φ and then parameterized by γ -quantum mass with respect to Φ , where $\kappa' = 16/\gamma^2 > 4$.

Alternate construction of Poisson CRT maps: One can define the graph $\bar{\mathcal{G}}_{\varepsilon}$ with vertex set Λ where two vertices y_i, y_j are connected if the CRT map cells $\eta([y_{i-1}, y_i])$ and $\eta([y_{j-1}, y_j])$ share a nontrivial boundary arc.

Fact: $\overline{\mathcal{G}}_{\varepsilon}$ and $\mathcal{G}_{\varepsilon}$ have the same law (Duplantier-Miller-Sheffield '14).

イロト 不得下 イヨト イヨト 二日

Curvature against smooth functions

Theorem (CH-Gwynne)

Let $\mathcal{G}_{\varepsilon}$ be the ε Poisson mated CRT map with vertex set $\mathcal{VG}_{\varepsilon}$. For any smooth compactly supported $f \in C_c^{\infty}(\mathbb{C})$ on \mathbb{C} we have with probability going to 1 as $\varepsilon \to 0$, that

$$\sum_{v\in\mathcal{VG}_{\varepsilon}}f(v)\mathcal{K}_{\mathcal{G}_{\varepsilon}}(v)=\varepsilon^{o(1)}.$$

< □ > < □ > < □ > < □ > < □ > < □ >

Curvature against smooth functions

Theorem (CH-Gwynne)

Let $\mathcal{G}_{\varepsilon}$ be the ε Poisson mated CRT map with vertex set $\mathcal{VG}_{\varepsilon}$. For any smooth compactly supported $f \in C_c^{\infty}(\mathbb{C})$ on \mathbb{C} we have with probability going to 1 as $\varepsilon \to 0$, that

$$\sum_{v\in\mathcal{VG}_{\varepsilon}}f(v)\mathcal{K}_{\mathcal{G}_{\varepsilon}}(v)=\varepsilon^{o(1)}.$$

Note: Since the sum is over ε^{-1} vertices, intuitively one could expect the sum to be of order $\varepsilon^{-\frac{1}{2}}$. The theorem above tells us there is much more cancellation.

< 口 > < 同 > < 回 > < 回 > < 回 > <

From now on, we use the imaginary geometry field Ψ and SLE κ' , sampled independently from the γ -quantum cone field Φ .

We define the total curvature on a CRT map cell C as

$$\mathcal{K}^{\mathcal{C}}_{\mathcal{G}_arepsilon} := \sum_{oldsymbol{v} \in \mathcal{VG}_arepsilon \cap \mathcal{C}} \mathcal{K}_{\mathcal{G}_arepsilon}(oldsymbol{v}).$$

where C is the set of vertices in $\mathcal{G}_{\varepsilon}$ contained in the CRT map cell C.

Total curvature on CRT cells

Theorem (CH-Gwynne)

We have that

$$\frac{\mathsf{K}_{\mathcal{G}_{\varepsilon}}(\mathsf{C})}{\varepsilon^{-\frac{1}{4}}} \to \mathcal{B},$$

where the law of \mathcal{B} can be described as follows. Sample \mathcal{L} according to the law of the boundary length of the mated CRT cell C. Now let Θ be sampled according to a Gaussian distribution with mean 0 and variance \mathcal{L} . Then \mathcal{B} and Θ have the same law.

(4) (日本)

Total curvature on CRT cells

Theorem (CH-Gwynne)

We have that

$$\frac{\mathsf{K}_{\mathcal{G}_{\varepsilon}}(\mathsf{C})}{\varepsilon^{-\frac{1}{4}}} \to \mathcal{B},$$

where the law of \mathcal{B} can be described as follows. Sample \mathcal{L} according to the law of the boundary length of the mated CRT cell C. Now let Θ be sampled according to a Gaussian distribution with mean 0 and variance \mathcal{L} . Then \mathcal{B} and Θ have the same law.

Remark: The previous theorem tells us the right scaling for the curvature against a smooth function is $\varepsilon^{o(1)}$, while this theorem tells us that the scaling for the total curvature on a CRT map cell is $\varepsilon^{-1/4}$. This suggests it is impossible to define both Gaussian curvature and geodesic curvature simultaneously.

Outline of proofs: curvature against a test function

First ingredient: Convenient cancellation when computing

$$\sum_{v\in\mathcal{VG}_{\varepsilon}}f(v)K_{\Phi}(v).$$

Notation: If \overrightarrow{e} has starting vertex v_1 and end vertex v_2 , let $\mathcal{D}f(e) = f(v_2) - f(v_1)$.

イロト 不得 トイヨト イヨト 二日

Outline of proofs: curvature against a test function

First ingredient: Convenient cancellation when computing

v

$$\sum_{\in \mathcal{VG}_{\varepsilon}} f(v) \mathcal{K}_{\Phi}(v).$$

Notation: If \overrightarrow{e} has starting vertex v_1 and end vertex v_2 , let $\mathcal{D}f(e) = f(v_2) - f(v_1)$.

Proposition

There is an orientation on edges of $\mathcal{G}_{\varepsilon}$ such that for any smooth compactly supported test function f,

$$\sum_{v \in \mathcal{VG}_{\varepsilon}} f(v) \mathcal{K}_{\mathcal{G}_{\varepsilon}}(v) = \sum_{e \in \mathcal{EG}_{\varepsilon}} \mathcal{D}f(\overrightarrow{e}).$$

Cancellations

First we split our sum $\sum_{v \in \mathcal{VG}_{\varepsilon}} f(v) \mathcal{K}_{\mathcal{G}_{\varepsilon}}(v)$ into the edges corresponding to when (1) holds for *L* and those for *R*.

Second ingredient: There is an injection $v \mapsto e_v$ from $\mathcal{VG}_{\varepsilon}$ to the set of edges $e \in \mathcal{EG}_{\varepsilon}$ defined by taking the "rightmost past" edge. Hence

$$\sum_{\boldsymbol{e}\in\mathcal{EG}_{\varepsilon}}\mathcal{D}f(\overrightarrow{\boldsymbol{e}})=\sum_{\boldsymbol{v}\in\mathcal{VG}_{\varepsilon}}\mathcal{D}f(\overrightarrow{\boldsymbol{e}}_{\boldsymbol{v}}).$$

Now we split e_v at the first point it exists the CRT map cell containing v, called m_v .

Grouping all pieces adjacent to v, we obtain

$$\sum_{v\in\mathcal{VG}_{\varepsilon}}f(v)\mathcal{K}_{\mathcal{G}_{\varepsilon}}(v)=\sum_{v\in\mathcal{VG}_{\varepsilon}}\mathcal{G}_{f}(v).$$

Goal: Control
$$\mathbb{E}\left(\left(\sum_{v\in\mathcal{VG}_{\varepsilon}}G_{f}(v)\right)^{2}\right)$$
.

3

(日)

Next: Rewrite the sum above as an integral:

$$\sum_{v \in \mathcal{VG}_{\varepsilon}} G_f(v) = \int_{\mathbb{C}} \frac{G_f(x_z)}{\operatorname{Area}(H_z^{\varepsilon})} dz$$

where H_z^{ε} is the CRT map cell containing z, and x_z is the vertex in $\mathcal{VG}_{\varepsilon}$ contained in H_z^{ε} .

Notation: Let \hat{H}_z^{ε} be the union of all CRT map cells adjacent to H_z^{ε} together with H_z^{ε} itself.

イロト イポト イヨト イヨト 二日

Fixing CRT map cell size

Splitting into events: Let E_j be the event

$$E_j := \{ z \in \mathbb{C} : \operatorname{diam}(\widehat{H}_z^{\varepsilon}) \in [\varepsilon^{\alpha_{j+1}}, \varepsilon^{\alpha_j}], \operatorname{area}(H_z^{\varepsilon}) \ge \varepsilon^{\beta} \}$$

where the α_j 's are a partition of a sufficiently large interval, with $|\alpha_{j+1}-\alpha_j|$ small.

Now we focus on bounding

$$\mathbb{E}\left(\left(\int_{\mathbb{C}} \mathbb{1}_{E_j} \frac{G_f(x_z)}{\operatorname{Area}(H_z^{\varepsilon})}\right)^2\right)$$

イロト 不得 トイヨト イヨト 二日

Splitting

We split our expression as

$$\begin{split} \mathbb{E}\left(\left(\int_{\mathbb{C}} \mathbb{1}_{E_{j}} \frac{G_{f}(x_{z})}{\operatorname{Area}(H_{z}^{\varepsilon})}\right)^{2}\right) &= \mathbb{E}\left(\int \int_{|z-w| \leq \varepsilon^{\alpha_{j}-\zeta}} X_{z}^{\varepsilon} X_{w}^{\varepsilon} dz dw\right) \\ &+ \mathbb{E}\left(\int \int_{|z-w| \geq \varepsilon^{\alpha_{j}-\zeta}} X_{z}^{\varepsilon} X_{w}^{\varepsilon} dz dw\right) \end{split}$$

where $X_z^{\varepsilon} = \frac{G_f(x_z)}{\operatorname{Area}(H_z^{\varepsilon})}$. Essentially, the first term is small since we are integrating on a small measure set, while the second is small because of the long range properties of G_f and H_z^{ε} .

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Outline of proofs: Total curvature on a CRT map cell

First ingredient: Combinatorial graph identity relating edges, vertices, and perimeter of a triangulation. With it, one obtains

$$\mathcal{K}^{\mathcal{C}}_{\mathcal{G}_{\varepsilon}} = \operatorname{Perim}(\mathcal{C}) - 6 - \sum_{v \in \mathcal{C}} \operatorname{deg}_{ext}^{\mathcal{C}}(v)$$

This can be rewritten as

$$\mathcal{K}^{\mathcal{C}}_{\mathcal{G}_{arepsilon}} = \sum_{\mathbf{v}\in\partial_{\mathcal{G}_{arepsilon}}\mathcal{C}}\mathcal{K}^{\mathcal{C}}_{g}(\mathbf{v}) - 6$$

where $K_{\mathcal{G}_{\mathcal{F}}}$ is the "discrete geodesic curvature".

Next: We split this sum into four parts, corresponding to the past-left, past-right, future-left, future-right components of the boundary of C.

イロト イポト イヨト イヨト 二日

We have

$$\begin{split} \mathcal{K}_{\mathcal{G}_{\varepsilon}}^{\mathcal{C}} &= \sum_{v \in \bar{\mathcal{C}}_{PR}} \mathcal{K}_{g}^{\mathcal{C}}(v) + \sum_{v \in \bar{\mathcal{C}}_{PL}} \mathcal{K}_{g}^{\mathcal{C}}(v) \\ &+ \sum_{v \in \bar{\mathcal{C}}_{FR}} \mathcal{K}_{g}^{\mathcal{C}}(v) + \sum_{v \in \bar{\mathcal{C}}_{PL}} \mathcal{K}_{g}^{\mathcal{C}}(v). \end{split}$$

Each sum is treated the same way.

Second ingredient: Central limit theorem together with an independence property for $K_{e}^{C}(v)$ along the boundary.

March 8, 2024

20 / 22

Ξ.

<ロ> <四> <ヨ> <ヨ>

• Subsequential limit of $K_{\mathcal{G}_{\varepsilon}}(v)$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Subsequential limit of $K_{\mathcal{G}_{\varepsilon}}(v)$?
- Is the scaling limit of $K_{\mathcal{G}_{\varepsilon}}$ equal to K_{Φ} ? What is the scaling factor?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Subsequential limit of $K_{\mathcal{G}_{\varepsilon}}(v)$?
- Is the scaling limit of $K_{\mathcal{G}_{\varepsilon}}$ equal to K_{Φ} ? What is the scaling factor?
- Is K_{Φ} a universal limit?

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

- Subsequential limit of $K_{\mathcal{G}_{\varepsilon}}(v)$?
- Is the scaling limit of $K_{\mathcal{G}_{\varepsilon}}$ equal to K_{Φ} ? What is the scaling factor?
- Is K_{Φ} a universal limit?
- Is there an observable on CRT maps converging to the underlying field?

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

Thank you!

2