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Preliminaries

Gaussian free field: Centered Gaussian field ®© with covariance given by

E(0C(2)0%(w)) = log 2] + log|wl, + ( ! ) .

|z — w|

®C is a generalized function, called the whole-plane Gaussian free field
(GFF).

Quantum cone field: Another important field is the y-quantum cone
field &,

& =% —~log|-|.
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Preliminaries

Let v € (0,2). An v-LQG surface is the surface with “Riemannian metric”
e7®(dx? + dy?).

e Scaling limit of Random planar maps.

e This "metric” induces a measure (Duplantier-Sheffield, Kahane,
Rhodes-Vargas)

Hod = qu)dzz.
Notation: Let d, be the fractal dimension of 7-LQG. Let £ := d%’ and
Qi=73+2
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Preliminaries

Recall: the LQG metric Dy exists (Ding-Dubedat-Dunlap-Falconet '19)
and is uniquely determined (Gwynne-Miller) by the properties:

e Dy is a length metric; Dy is local; and Dy satisfies Weyl scaling: for any

u,veC, as.
e" - Do (u,v) = Dorf(u, v)

where

£(P;Dy)
e Do = inf / o (PO gy,
0

P:u—v
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Recall: the LQG metric Dy exists (Ding-Dubedat-Dunlap-Falconet '19)
and is uniquely determined (Gwynne-Miller) by the properties:

e Dy is a length metric; Dy is local; and Dy satisfies Weyl scaling: for any

uveC, as.
e" - Do (u,v) = Dorf(u, v)

where

P:u—v

£(P;Dy)
e Do = inf / o (PO gy,
0

e Coordinate change (for scaling and rotation): If r > 0 and z € C, then
for all u,v € C, ass.

Do(ru+z,rv + z) = Do(r42)+Qlog r(U; V).
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Curvature in LQG surfaces

If S is a smooth Riemannian surface with metric ef (dx? + dy?), then the
Gaussian curvature is given by

Af
Ks(z) = —7e—f<2>.
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Curvature in LQG surfaces

If S is a smooth Riemannian surface with metric ef (dx? + dy?), then the
Gaussian curvature is given by

Af
Ks(z) = —7e—f<z).

e In the case of an LQG surface, the metric is given by e®(dx? 4 dy?).

e |t would then be natural to define K¢(z) as

AP
Ko(z) := —g—e*@.
2
e Because of mismatch between LQG measure and metric, “right” notion

should be
B YA
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Definition of curvature on an LQG surface

Ko (z) is defined weakly: for any smooth compactly supported test
function f, we define

/C f(2)Ko(z)due = /C gAf(z)d)(z)dz.

Note: Ky(z) is invariant under LQG coordinate change.
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Discrete curvature

Suppose G is a triangulation.

Discrete curvature: The discrete curvature is given by

Kg(v) = 6 — deg(v).

Conjecture: If M is a model of infinite random planar maps believed to
be in the universality class of the 7 quantum cone (e.g. uniform infinite
triangulations), and we embed the map in the plane via any “reasonable

embedding”, then the scaling limit of Ky is Ko (z) for v = \/g.
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-
Poisson Mated CRT map

Poisson point process: Take a Poisson point process on R with intensity
8_17 A= {y_l}JGZ
Poisson mated CRT map: Suppose that (L, R) : R — R? is a pair of
correlated two sided standard linear Brownian motions, normalized such

2
that Lo = Ry = 0 and such that corr(L;, R;) = — cos <%> for t # 0. The

mated CRT map G. is defined to be the random planar map obtained by
mating discretized versions of the continuum random trees constructed
from L and R, that is, two vertices y;, yx € A such that j < k are
connected if either

telyj—1,] t€[yk—1,¥4] te€lyj,yk—1]

or the same holds with L replaced by R. If |[j — k| > 2 and the inequality
above holds for both L and R, then y;, yx are connected by two edges.
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|
CRT map cells

Let 7 be a whole-plane space-filling SLEx’ from oo to oo sampled
independently from ® and then parameterized by y-quantum mass with
respect to ®, where ' = 16/7% > 4.
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|
CRT map cells

Let 7 be a whole-plane space-filling SLEx’ from oo to oo sampled
independently from ® and then parameterized by y-quantum mass with
respect to ®, where ' = 16/7% > 4.

Alternate construction of Poisson CRT maps: One can define the
graph G, with vertex set A where two vertices y;, y; are connected if the
CRT map cells n([yi—1, yi]) and n([yj—1,y;j]) share a nontrivial boundary
arc.

Fact: G. and G. have the same law (Duplantier-Miller-Sheffield '14).
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Curvature against smooth functions

Theorem (CH-Gwynne)

Let G. be the € Poisson mated CRT map with vertex set VG.. For any

smooth compactly supported f € C2°(C) on C we have with probability
going to 1 as ¢ — 0O, that

> f(v)Kg.(v) =W,

veVG.
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Curvature against smooth functions

Theorem (CH-Gwynne)

Let G. be the € Poisson mated CRT map with vertex set VG.. For any
smooth compactly supported f € C2°(C) on C we have with probability
going to 1 as ¢ — 0O, that

> f(v)Kg.(v) =W,

veVG.

~1 vertices, intuitively one could expect the

Note: Since the sum is over €
sum to be of order e~ 2 The theorem above tells us there is much more

cancellation.
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Total curvature on CRT cells

From now on, we use the imaginary geometry field W and SLEx’, sampled
independently from the v-quantum cone field .

We define the total curvature on a CRT map cell C as

K§ = > Ka(v

veVG.NC

where C is the set of vertices in G. contained in the CRT map cell C.
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Total curvature on CRT cells

Theorem (CH-Gwynne)

We have that

Kg.(C
7(1 ) — B,

E 4
where the law of B can be described as follows. Sample L according to
the law of the boundary length of the mated CRT cell C. Now let © be

sampled according to a Gaussian distribution with mean 0 and variance L.
Then B and © have the same law.

v
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Total curvature on CRT cells

Theorem (CH-Gwynne)

We have that Ko (C

g (1 ) B,

£ 4
where the law of B can be described as follows. Sample L according to
the law of the boundary length of the mated CRT cell C. Now let © be
sampled according to a Gaussian distribution with mean 0 and variance L.

Then B and © have the same law.

Remark: The previous theorem tells us the right scaling for the curvature
against a smooth function is (1), while this theorem tells us that the
scaling for the total curvature on a CRT map cell is e=1/4. This suggests it
is impossible to define both Gaussian curvature and geodesic curvature
simultaneously.
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Outline of proofs: curvature against a test function

First ingredient: Convenient cancellation when computing
> F(V)Ka(v).
vEVgs
%

Notation: If € has starting vertex v; and end vertex v;, let
Df(e) = f(V2 — f(vl).
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Outline of proofs: curvature against a test function

First ingredient: Convenient cancellation when computing

> F(v)Ke(v)

vEVgs

Notation: If € has starting vertex v; and end vertex v;, let
Df(e) = f(va) — f(v1).
Proposition

There is an orientation on edges of G. such that for any smooth compactly
supported test function f,

> f(V)Ka.(v)= > DFf(E

veVG, ecEG,
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Cancellations

First we split our sum > y,c f(v)Kg.(v) into the edges corresponding to
when (1) holds for L and those for R.

Second ingredient: There is an injection v — e, from VG; to the set of
edges e € £G. defined by taking the “rightmost past” edge. Hence

> DF(E)= > Df(E).

ecEG, veVG.
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Cancellations

Now we split e, at the first point it exists the CRT map cell containing v,
called m,.

Grouping all pieces adjacent to v, we obtain

Y f(MKe(v)= ) G(v

veVG. veVG.

Goal: Control E ((Zvevgs Gf(V))Z) :
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Rewriting as an integral

Next: Rewrite the sum above as an integral:

S G = [ o) g,

S c Area(H:)

where HS is the CRT map cell containing z, and x; is the vertex in VG,
contained in H.

Notation: Let I-AI§ be the union of all CRT map cells adjacent to HZ
together with H: itself.
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-
Fixing CRT map cell size

Splitting into events: Let E; be the event
Ei:={zeC: diam(H?) € [+, %], area(HS) > &P}

where the «;j's are a partition of a sufficiently large interval, with
lajy1 — aj| small.

Now we focus on bounding

((frentaiin) )

A.A. Contreras Hip (University of Chicago) March 8, 2024 17 /22



-
Splitting

We split our expression as

E<</ﬁilﬁfm>2> _ E(//|z_wgaaj< X;vadzdw>

+ E // X: XS dzdw
|z—w\26af7<
where X& = Gr(x:)

= Rrea(HE)" Essentially, the first term is small since we are
integrating on a small measure set, while the second is small because of
the long range properties of Gr and H:.
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Outline of proofs: Total curvature on a CRT map cell

First ingredient: Combinatorial graph identity relating edges, vertices,
and perimeter of a triangulation. With it, one obtains

K_QCE = Perim(C) — 6 — Z deg ,(v)
veC
This can be rewritten as
Kg= Y Kg(v)-6
angsc

where Kg_ is the “discrete geodesic curvature”.

Next: We split this sum into four parts, corresponding to the past-left,
past-right, future-left, future-right components of the boundary of C.
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We have

K& = > KW+ > KE(v)

VECPR VECPL
C C
+ ) KEW)+ D KE(v).
VGCFR VEEPL

Each sum is treated the same way.

Second ingredient: Central limit theorem together with an independence
property for Kgc(v) along the boundary.
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n(ty)
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|
Open problems

e Subsequential limit of Kg_(v)?
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|
Open problems

e Subsequential limit of Kg_(v)?

e Is the scaling limit of Kg_ equal to K¢? What is the scaling factor?

e Is K¢ a universal limit?

e |s there an observable on CRT maps converging to the underlying field?
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Thank you!
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