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What is the dimer model and what is this talk about?

A dimer tiling is a perfect matching of a graph, namely a collection of edges

such that every vertex is contained in exactly one edge. In Z2 or Z3 these can

be drawn as domino tilings like this:

The dimer model is the study of random dimer tilings. One of the big

challenges of moving from 2D to 3D is that the 3D model is (at least

seemingly) not exactly solvable.

This talk: In the hope that this more relevant to this conference, I am going to

focus more on our methodology than our result, and try to explain some of the

tools and ideas we use instead of exact solvability.
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Why does the 3D model seem not

exactly solvable?



Example 1: Kasteleyn determinant formula fails in 3D

The partition function (=number of dimer tilings) of any finite planar bipartite

graph can be computed as the determinant of a weighted adjacency matrix of

the graph. This is called the Kasteleyn determinant formula.

Cool fact: the Kasteleyn determinant formula can be used to compute the

number of perfect matchings (a.k.a. dimer tilings) of a graph if and only if it

does not contain K3,3 as a minor (C. H. C. Little, 1975).

Z3 contains K3,3 given only four lattice cubes.
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Example 2: non-intersecting paths and (non)-solvability?

Another way to compute the partition function for dimers in 2D is via the

bijection with non-intersecting paths in Z2 by overlaying a tiling (red) with a

brickwork tiling (black).

There is an analogous bijection between dimer tilings of Z3 and

non-intersecting paths in Z3. But these paths are not ordered, they can be

braided in various ways, etc.
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Main question: scaling limits of random

tilings?



Dimers and vector fields

For any d , Zd is a bipartite lattice, with fixed underlying black and white

checkerboard.

The colors of the dimers represent the cardinal direction of the dimer (north,

south, east, west, up, down for d = 3), viewed as a vector from white to black.

There is a correspondence between 1) a dimer tiling τ of Zd and 2) a discrete

vector field vτ defined by: for each edge e of Zd oriented from white to black,

vτ (e) =

1 e ∈ τ

0 e ̸∈ τ
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Scaling limits of random tilings

As n → ∞, the scaling limits of flows vτ corresponding to tilings of 1
n
Zd are

divergence-free measurable vector fields on Rd that have L1 norm less than 1.

R
Rn

Question: Fix a region and boundary condition (R, b) in Rd . Let Rn ⊂ 1
n
Zd be

a sequence of lattice regions approximating (R, b). What does the flow

corresponding to a uniformly random dimer tiling of Rn look like as n → ∞?

Versions of this question: is there a law of large numbers (yes!)? Large

deviation principle? What is the expected limiting flow? Fluctuations?
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2D example: Aztec diamond
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A note: boundary conditions have a big effect

In 2D or 3D (so the square [1, n]2 or the cube [1, n]3), the limit shape is just

the zero flow. In the tiling picture, this means you should see approximately

equal proportions of all the tile colors. (This is the only limit shape in 3D that

know explicitly right now!)
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3D example: Aztec octahedron
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https://math.mit.edu/~wolframc/aztec200.gif


Chain swapping

τ1 τ ′1

τ2 τ ′2

(τ1, τ2)
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