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How are the geometry of the landscape and Airy line ensemble related?

...

(0, 0)

(0, 1)

We will focus on the geometry of both when we condition the top curve P1
to be large at various points.
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The Brownian Gibbs property



The resampling property

Why embed P1(·) = L(0, 0; ·, 1) as the top/lowest-indexed curve in P?

...
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...
P has a resampling property, the Brownian Gibbs property.

It says the conditional distribution of P1 on an interval is a non-intersecting
Brownian bridge (of rate 2).
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The resampling property

Why embed P1(·) = L(0, 0; ·, 1) as the top/lowest-indexed curve in P?

...
A useful heuristic to keep in mind:

P1 is like a Brownian bridge conditioned to stay above a parabola –x2 with
which it shares endpoints.
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The geometry of the line ensemble



Main results: geometry under one-point conditioning

Define Triangleθ : [–θ1/2, θ1/2] to be

(0, θ)

(θ1/2, –θ)(–θ1/2, –θ)

The linear portions of Triangleθ are tangent to –x2 at ±θ1/2.

Theorem (Ganguly-H.)
There exist θ0 and c > 0 such that, for all t ≥ 1, θ > θ0, and M > 0,

P

(
sup

x∈[–θ1/2 ,θ1/2]
|P1(x) – Triangleθ(x)| > Mθ

1/4
∣∣∣ P1(0) = θ

)
≤ exp(–cM2).

• θ1/4 is the Brownian fluctuation scale on an interval of size θ1/2 and is
optimal.
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A quantitative consequence: one-point upper tail asymptotics

From the limit shape, one can obtain sharp asymptotics for the upper tail:

Theorem (Ganguly-H.)
There exist C <∞ and θ0 such that, for all θ > θ0,

exp
(
–43 θ

3/2 – Cθ3/4
)

≤ 1
dθP

(
P1(0) ∈ dθ

)
≤ exp

(
–43 θ

3/2 + Cθ3/4
)
.

As an immediate consequence, the same bounds also hold for P(P1(0) > θ).

By more refined coupling arguments, we also get a comparison statement:

Theorem (Ganguly-H.-Zhang)
There exist C <∞ and θ0 such that, for all δ > 0 and θ > θ0,

P
(
P1(0) ≥ θ + δ

)
P
(
P1(0) ≥ θ

) = exp
(
–2δθ1/2 + O(δL–1/4)

)
.
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Main results: geometry under two-point conditioning

Define Quada,b : [–xtanℓ , xtanr ] to be

(–1, a) (1,b)

(–xtanℓ , –(xtanℓ )2)
(xtanr , –(xtanr )2)

The values of xtanℓ and xtanr are such that the tangency conditions are met.

Theorem (Ganguly-H.)
Assuming some non-degeneracy conditions on a and b, there exists c > 0
such that, for all t ≥ 1, M > 0, and large enough a,b,

P

(
sup

x∈[–xtanℓ ,xtanr ]
P1(x) – Quada,b(x) > M(a

1/4 + b1/4)
∣∣∣ P1(–1) = a,P1(1) = b

)
≤ exp(–cM2).
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A quantitative consequence: Two-point upper tail asymptotics

Theorem (Ganguly-H.)
For t ≥ 1 and if a,b are large enough and satisfy the non-degeneracy
condition, then

P
(
P1(–1) ≥ a,P1(1) ≥ b

)
= exp

(
– 124

[
16
(
(1 + a)3/2 + (1 + b)3/2

)
+ 3(a – b)2 + 24(a + b) + 32

]
+ error

)
.

The error term has explicit upper and lower bounds.

• A similar bound also holds at ±K in place of ±1, or in general any two
points (using stationarity).
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A multi-point question: Sharpness of FKG

Because of connections to statistical mechanics models, it is known that P1
enjoys the FKG inequality, so that, for all a and b,

P
(
P1(–K1/2) > a,P1(K1/2) > b

)
≥ P

(
P1(–K1/2) > a

)
· P
(
P1(K1/2) > b

)
.

But in many applications the inequality is suboptimal.

Is FKG sharp for any values of a and b, and, if so, which ones?
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Corollary: Geometric condition for sharpness of FKG

(–K1/2, a)

(K1/2,b)

(K1/2,b)

(K1/2,b)

(K1/2,b)
(K1/2,b)

Corollary (Ganguly-H.)

Let K be fixed. If the line joining (–K1/2, a) and (K1/2,b) is tangent to or
intersects –x2 inside [–K1/2, K1/2], then

P
(
P1(–K1/2) > a,P1(K1/2) > b

)
= exp

(
–43 [(K + a)

3/2 + (K + b)3/2] + error
)

≈ P(P1(–K1/2) > a) · P(P1(K1/2) > b).
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Geometry of the landscape and geodesic



Qualitative features under the upper tail conditioning

How does the landscape change under the conditioning
P1(0) = L(0, 0; 0, 1) > θ?

An energy-entropy tradeoff occurs: larger fluctuations give
the geodesic more choice of paths, but the cost grows with θ.

So the path measure will become more rigid, i.e., have much
smaller transversal fluctuations. (It also becomes a
“highway” for geodesics to nearby points.)

Heuristically, a uniformly (on some scale) random path is
chosen and made to be the geodesic.

(0, 0)

(0, 1)
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The scaling limit of the geodesic under upper tail conditioning

Let Γθ : [0, 1]→ R be the geodesic in the directed landscape from (0, 0) to
(0, 1), conditioned on L(0, 0; 0, 1) > θ.

Theorem (Ganguly-H.-Zhang)

θ1/4Γθ
d→ 1

2B in the uniform topology with B = standard Brownian bridge.

Note that we identify the fluctuation scale to be θ–1/4 as well as the scaling
limit.

This result had been conjectured by Zhipeng Liu, who proved the one-point
scale and one-point convergence using exact formulas.

A similar result had earlier been conjectured by Basu-Ganguly for the
geodesic in exponential LPP under a large deviation conditioning.
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Heuristics and proof ideas



The source of the θ–1/4 scale

Why is the fluctuation scale θ–1/4?

• P1(x) + x2 = L(0, 0; x, 1) + x2 is stationary in x.

• So the geodesic fluctuating by ε means it suffers a loss of O(ε2).

• Under the conditioning of being > θ, this loss has to be made up; akin to
P1(0) > θ + O(ε2) (by stationarity).

• But P(P1(0) > θ + O(ε
2))

P(P1(0) > θ)
≈ exp(–Cε2θ1/2).

• This is O(1) exactly when ε = O(θ–1/4).
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The source of the Brownian bridge

Recall that
Γθ(s) = argmax

y

(
L(0, 0; y, s) + L(y, s; 0, 1)

)
under the conditioning L(0, 0; 0, 1) = maxy(L(0, 0; y, s) + L(y, s; 0, 1)) > θ.

The tent picture suggests that L(0, 0; y, s) and L(y, s; 0, 1) are like
independent Brownian bridges on [–θ1/2, θ1/2].

So the maximizer density at y is essentially the density that the Brownian
bridge will reach L at y.

The variance at y = L–1/2(L1/2 + y)(L1/2 – y) = L1/2 – y2L–1/2, so density at y is
proportional to

exp
(
–c L2

L1/2 – y2L–1/2

)
= exp

(
–cL3/2 – cy2L1/2 + O(L–1/2)

)
.

This is Gaussian on scale L–1/4!
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The source of the Brownian bridge

• One-point Gaussianity follows essentially from the comparison theorem.
For multi-point, also need some decoupling & independence.

• These are provided by coalescence.

• (Γ(s), Γ(t)) = argmax
z1 ,z2

L(0, 0; z1, s) +L(z1, s; z2, t) +L(z2, t; 0, 1)

• Coalescence gives quadrangle equality:
L(z1, s; z2, t) + L(0, s; 0, t) = L(z1, s; 0, t) + L(0, s; z2, t)

• The double argmax separates into two single argmaxes.

• Heuristically, coalescence also implies the two process
on the RHS are (approximately) independent.

• The proof of independence relies crucially on shift
invariance of L or free energy fields.

z1 0

z2 0
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The scaling limit of the CDRP polymer measure under upper tail conditioning

Let Γannθ : [0, 1]→ R be a sample from the annealed polymer measure from
(0, 0) to (0, 1) in the CDRP, under the conditioning that the free energy > θ.

Theorem (Ganguly-H.-Zhang)

θ1/4Γannθ
d→ 1

2B in the uniform topology with B = standard Brownian bridge.

What about the quenched situation? The polymer measure concentrates in
a O(θ–1/2) window around a random “backbone” Γbackθ , and θ–1/4Γbackθ

d→ 1
2B.
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Summary

• Using geometric methods + Brownian Gibbs properties, we can obtain the
shape of the weight profile of L under upper tail events.

• These also give sharp upper tail asymptotics and probability comparison
statements.

• With these + “tent” picture, can prove that geodesic/polymer measure
rescaled by θ–1/4 converges to a Brownian bridge, under upper tail.

• Further, the polymer measure fluctuates on scale θ–1/2 around a random
“backbone” curve.

Thank you!
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A convex consequence

A key idea is that the resampling in terms of Brownian bridges implies that
the limit shapes should be convex.

Indeed, suppose the limit shape of the top curve is not convex in some
neighbourhood. This pushes the second curve down on the interval.

Then resample the top curve on that interval. Since the non-convexity
means the second curve is far away, Brownian bridge naturally avoids it.

Unconditioned Brownian bridge approximately follows a straight line, so
can’t recreate the earlier non-convexity. A contradiction!
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