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Random Tilings as Random Surfaces

Figures from https://storage.lpetrov.cc/img/blog/hex120_uniform.png and
http://math.mit.edu/~borodin/hexagon.html.

@ Uniformly random tiling of domain R by “lozenges” <> A L/

@ Also view as random stepped surface made of cubes @
o Gives rise to height function H : R — Z

Question: How does the tiling behave as diam(R) — co?
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Gaussian Free Field Under Planar Boundary Conditions

o Planar boundary conditions: Take R =~ N - D so H|gg is nearly linear
Belief: Fluctuations
of H “look like” Gaussian free field (GFF)
@ Weak
convergence / level lines to CLE(4) / e
to Liouville quantum gravity (LQG) /...
Weak convergence: If ¢ € C°(D),
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@ Inverse Kasteleyn matrix: Kenyon
(1997) / Kenyon—Okounkov—Sheffield (2003)
@ Discrete complex analysis: Kenyon (1999) /
Russkikh (2018) / Chelkak—Laslier—Russkikh (2020)
@ Imaginary geometry: Berestycki—Laslier—Ray
(2016)
Convergence does not see level lines / LQG



Nonplanar Boundary Conditions

Non-planar domains: Can exist arctic curve separating facets / rough regions

Conjecture (Kenyon—Okounkov, 2005)

In rough region, fluctuations of H (weakly) converge to GFF under suitable
coordinate change

Proven in some nonplanar cases (where faceted regions appear)
@ Borodin—Ferrari (2008) / Petrov (2012) / Ahn—Russkikh—Van Peski (2021):
Determinantal point process
@ Bufetov—Gorin (2017): Schur generating function / loop equations
@ Huang (2020): Analytical comparison to system satisfying loop equations
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Edge Limits

Question: How does model transition from faceted to rough regions?

Edge of facet

@ Red and orange tiles form paths X1, X», . . ., where X; = (Xi(t))
Edge statistics question: What is the joint scaling limit of these paths?
@ Scaling: Fluctuations X;(T) — ¢N ~ N'/3; time T ~ tN?/3
Baik—Kriecherbauer-McLaughlin-Miller (2007), Petrov (2012): Exa% calculation on
—00

hexagon, exist a, b, ¢ so that aN~/3 - (X;(btN?/3) — eN) == R(t)
@ A.—Huang (2021): Also holds on generic polygons
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Parabolic Airy Line Ensemble

Edge limit: aN /% - (X;(b:N?/?) — oN) 222 R(1)

X WN N\

e Limit R(1) = (R (t) > Ra(r) > --+): Parabolic Airy line ensemble
(originally introduced by Prihofer—Spohn, 2001)

o Airy line ensemble A = (R;(t) + *) is translation-invariant
Determinantal point process: P[ﬂ;ﬂzl {@,x)} € A} ~ det [K(t;, x5 17, ;)]

e Extended Airy kernel K (s, x;1,y) = { _{?}o:i;igig(j :)Si/g(;rj):)ud ) E j i ;
Convergence to Airy line ensemble is open for most surface models
@ More complicated tilings / restricted solid-on-solid models /
low-temperature three-dimensional Ising model / . ..

6/14



Examining the Airy Line Ensemble

Question: Axiomatically describe the Airy line ensemble, in a way useful for
proving convergence to it
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@ Walks X; do not intersect

@ Walks should converge to Brownian motions

Limit should look like “infinitely many non-intersecting Brownian motions”
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Brownian Line Ensembles

Brownian line ensemble: Sequence X = (Xj, Xz, . . .) of random functions
Xk : R = R, with X; > Xp > - - -, satisfying Brownian Gibbs property
@ Informally, X acts as infinitely many non-intersecting Brownian motions
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Specifically, for any i < j and a < b, the below hold
e Condition on Xx(s) for (k,s) ¢ [i,j] X (a,b)
@ Then, the law of (Xk(s)) for (k,s) € [i,j] x (a, b) are Brownian bridges
starting at X(a), ending at X(b), and conditioned to not intersect
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Exact Formulas in the Airy Line Ensemble

@ Corwin—-Hammond (2011): Parabolic Airy line ensemble R is a
Brownian line ensemble

Question (Okounkov, Sheffield, 2006): Can we characterize the Airy line
ensemble as the unique Brownian line ensemble satisfying certain properties?

o Random surfaces satisfy discrete analogs of Brownian Gibbs property
e Try showing discrete Gibbs property converges to Brownian one
@ Barraquand, Corwin, Dimitrov, Serio, Wu, . . .: Results towards convergence
to Brownian line ensemble for some surface models
o Falls under the subfield statistical mechanics concerning of classification
of Gibbs measures

Theorem (A.—Huang, 2023; Informal statement)

Fixo > 0. If L = (L1, L,,...) is a Brownian line ensemble such that
L1(t) = —ot* + o(£?) likely holds, then L is a parabolic Airy line ensemble,
up to scaling and an affine shift.

e Exist other Brownian line ensembles with £ (f) ~ —t

9/14



Characterization Result

@ Fix 0 > 0 and a Brownian line ensemble £ = (L, L2, .. .)

Theorem (A.—-Huang, 2023)

Assume for any €,0 > 0 that there exists & > 0 such that
P[|£1(t)+at2] >et2+ﬁ] <8,  forallt €R.

Then there exist a parabolic Airy line ensemble R and an independent pair of
random variables (1, ¢) € R?, such that L(t) = o - R(t/20%) + It + ¢.

v

If L(t) + of? is translation-invariant and extremal, then exists ¢ € R with
L(t) =0 -R(t/20%) +c.

Predicted by Okounkov and Sheffield (2006)
@ General theorem does not need any information about £; for j > 1

@ Also only needs £ close to —o12, not translation-invariance of £; + ot
e Useful in showing convergence of discrete models



Corner Growth Models

Corner growth model: At any time t € Zx>, corners flip up with probability %

@ Denote interface after time N by Fy

@ Basic example of stochastic growth model

Figures by Corwin / Chhita—Young / Jockusch—Propp—Shor

N—oo

Johansson (2003): aN—!/3 . (FN(bN2/3t) —N) —= Ry (1)

@ Jockusch—Propp—Shor (1998): Fy equal in law to facet edge (extreme
path) of random domino tiling of Aztec diamond
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Stochastic Growth Models

Convergence to R believed for many other stochastic growth models
o Last passage percolation models
@ Exclusion processes and interacting particle systems
@ Directed polymers in random media
@ Stochastic vertex models
° ...
A.—Borodin (2024): Using Yang-Baxter equation, some of these models also
can be mapped to facet edge of random surface
@ Borodin—-Bufetov—Wheeler (2016), Bufetov—Mucciconi—Petrov (2017):
Special cases
@ Apply characterization to show surface facet edge converges to Airy line
ensemble, and deduce R convergence of growth models
Colored / multi-species growth models get mapped to a family of many line
ensembles, all interacting with each other
o A.—Corwin-Hegde (2024): Uncovers structure that reduces analysis of
all of them to just one, and relate to Airy sheet / directed landscape



Application to Directed Polymers in Random Media

Random variable R;; ~ R in cell (i, ) y
@ Weight path Q by w(Q) = H(meg Xij i
@ Partition function: 3 oo~
2
1
0

Z(X,Y) = 30:00)—x.x) W(Q)
e Sample path Q : (0,0) — (X,Y)
with ]P[Q] = W(Q) 'Z(Xv Y)71 0o 1 2 3 4 5 °
Model governed
by free energy F(X,Y) = logZ(X,Y)
@ Should have KPZ fluctuations if one looks at F(X,Y) in tube of width
N?/3 around lineX =Y ~ N
o IfR; = Ug and 8 — oo, polymer — last passage percolation (LPP)

Example: Log-gamma polymer (Seppiliinen, 2009) R ~ I'(x) ~'x?~le~*dx
@ Example of a polymer model that can be mapped to random surface
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Correlated Noise

Assumed in LPP / polymers that noise R;; was independent over (i, )
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o Believed that KPZ statistics should still hold if noise decorrelates
sufficiently quickly in all directions
@ Not clear if noise does not decorrelate quickly enough

What happens if R;; come from (discretization of) Gaussian free field? \
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