Boundaries of Random Surfaces and KPZ Models

Amol Aggarwal

Columbia University / Clay Mathematics Institute

March 7, 2024

Random Tilings as Random Surfaces

Figures from https://storage.lpetrov.cc/img/blog/hex120_uniform.png and http://math.mit.edu/~borodin/hexagon.html.

- Uniformly random tiling of domain R by "lozenges"

- Also view as random stepped surface made of cubes

- Gives rise to height function $H: R \rightarrow \mathbb{Z}$

Question: How does the tiling behave as $\operatorname{diam}(R) \rightarrow \infty$?

Gaussian Free Field Under Planar Boundary Conditions

- Planar boundary conditions: Take $R \approx N \cdot \mathcal{D}$ so $\left.H\right|_{\partial R}$ is nearly linear

Belief: Fluctuations

of H "look like" Gaussian free field (GFF)

- Weak
convergence / level lines to $\operatorname{CLE}(4) / e^{H}$
to Liouville quantum gravity (LQG) / ...
Weak convergence: If $\varphi \in \mathcal{C}_{c}^{\infty}(\mathcal{D})$,
$\int_{\mathcal{D}} \varphi(z) H_{N}(N z) d z-\mathbb{E}\left[\int_{\mathcal{D}} \varphi(z) H_{N}(N z) d z\right] \xrightarrow{N \rightarrow \infty}$
$\int_{\mathcal{D}} \varphi(z) \operatorname{GFF}(z) d z$
- Inverse Kasteleyn matrix: Kenyon
(1997) / Kenyon-Okounkov-Sheffield (2003)
- Discrete complex analysis: Kenyon (1999) / Russkikh (2018) / Chelkak-Laslier-Russkikh (2020)
- Imaginary geometry: Berestycki-Laslier-Ray (2016)

Convergence does not see level lines / LQG

Nonplanar Boundary Conditions

Non-planar domains: Can exist arctic curve separating facets / rough regions

Conjecture (Kenyon-Okounkov, 2005)

In rough region, fluctuations of H (weakly) converge to GFF under suitable coordinate change

Proven in some nonplanar cases (where faceted regions appear)

- Borodin-Ferrari (2008) / Petrov (2012) / Ahn-Russkikh-Van Peski (2021): Determinantal point process
- Bufetov-Gorin (2017): Schur generating function / loop equations
- Huang (2020): Analytical comparison to system satisfying loop equations

Edge Limits

Question: How does model transition from faceted to rough regions?

- Red and orange tiles form paths X_{1}, X_{2}, \ldots, where $X_{i}=\left(X_{i}(t)\right)$

Edge statistics question: What is the joint scaling limit of these paths?

- Scaling: Fluctuations $X_{i}(T)-\mathfrak{c} N \sim N^{1 / 3}$; time $T \sim t N^{2 / 3}$

Baik-Kriecherbauer-McLaughlin-Miller (2007), Petrov (2012): Exact calculation on hexagon, exist $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ so that $\mathfrak{a} N^{-1 / 3} \cdot\left(X_{i}\left(\mathfrak{b} t N^{2 / 3}\right)-\mathfrak{c} N\right) \xrightarrow{N \rightarrow \infty} \mathcal{R}(t)$

- A.-Huang (2021): Also holds on generic polygons

Parabolic Airy Line Ensemble

Edge limit: $\mathfrak{a} N^{-1 / 3} \cdot\left(X_{i}\left(\mathfrak{b} t N^{2 / 3}\right)-\mathfrak{c} N\right) \xrightarrow{N \rightarrow \infty} \boldsymbol{\mathcal { R }}(t)$

- Limit $\mathcal{R}(t)=\left(\mathcal{R}_{1}(t)>\mathcal{R}_{2}(t)>\cdots\right)$: Parabolic Airy line ensemble (originally introduced by Prähofer-Spohn, 2001)
- Airy line ensemble $\mathcal{A}=\left(\mathcal{R}_{j}(t)+t^{2}\right)$ is translation-invariant Determinantal point process: $\mathbb{P}\left[\bigcap_{j=1}^{m}\left\{\left(t_{j}, x_{j}\right)\right\} \in \mathcal{A}\right] \sim \operatorname{det}\left[\mathcal{K}\left(t_{i}, x_{i} ; t_{j}, x_{j}\right)\right]$
- Extended Airy kernel $\mathcal{K}(s, x ; t, y)=\left\{\begin{array}{cc}\int_{0}^{\infty} e^{u(t-s)} \operatorname{Ai}(x+u) \operatorname{Ai}(y+u) d u & \text { if } s \geq t \\ -\int_{-\infty}^{0} e^{u(t-s)} \operatorname{Ai}(x+u) \operatorname{Ai}(y+u) d u & \text { if } s<t\end{array}\right.$

Convergence to Airy line ensemble is open for most surface models

- More complicated tilings / restricted solid-on-solid models / low-temperature three-dimensional Ising model / .. .

Examining the Airy Line Ensemble

Question: Axiomatically describe the Airy line ensemble, in a way useful for proving convergence to it

- Walks X_{i} do not intersect
- Walks should converge to Brownian motions

Limit should look like "infinitely many non-intersecting Brownian motions"

Brownian Line Ensembles

Brownian line ensemble: Sequence $\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right)$ of random functions $\mathrm{x}_{k}: \mathbb{R} \rightarrow \mathbb{R}$, with $\mathrm{x}_{1}>\mathrm{x}_{2}>\cdots$, satisfying Brownian Gibbs property

- Informally, \mathbf{x} acts as infinitely many non-intersecting Brownian motions

Specifically, for any $i<j$ and $a<b$, the below hold

- Condition on $\mathrm{X}_{k}(s)$ for $(k, s) \notin[i, j] \times(a, b)$
- Then, the law of $\left(\mathrm{x}_{k}(s)\right)$ for $(k, s) \in[i, j] \times(a, b)$ are Brownian bridges starting at $\mathbf{x}(a)$, ending at $\mathbf{x}(b)$, and conditioned to not intersect

Exact Formulas in the Airy Line Ensemble

- Corwin-Hammond (2011): Parabolic Airy line ensemble $\boldsymbol{\mathcal { R }}$ is a Brownian line ensemble
Question (Okounkov, Sheffield, 2006): Can we characterize the Airy line ensemble as the unique Brownian line ensemble satisfying certain properties?
- Random surfaces satisfy discrete analogs of Brownian Gibbs property
- Try showing discrete Gibbs property converges to Brownian one
- Barraquand, Corwin, Dimitrov, Serio, Wu, ...: Results towards convergence to Brownian line ensemble for some surface models
- Falls under the subfield statistical mechanics concerning of classification of Gibbs measures

Theorem (A.-Huang, 2023; Informal statement)

Fix $\sigma>0$. If $\mathcal{L}=\left(\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots\right)$ is a Brownian line ensemble such that $\mathcal{L}_{1}(t)=-\sigma t^{2}+o\left(t^{2}\right)$ likely holds, then \mathcal{L} is a parabolic Airy line ensemble, up to scaling and an affine shift.

- Exist other Brownian line ensembles with $\mathcal{L}_{1}(t) \sim-t$

Characterization Result

- Fix $\sigma>0$ and a Brownian line ensemble $\mathcal{L}=\left(\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots\right)$

Theorem (A.-Huang, 2023)

Assume for any $\varepsilon, \delta>0$ that there exists $\mathfrak{K}>0$ such that

$$
\mathbb{P}\left[\left|\mathcal{L}_{1}(t)+\sigma t^{2}\right|>\varepsilon t^{2}+\mathfrak{K}\right]<\delta, \quad \text { for all } t \in \mathbb{R}
$$

Then there exist a parabolic Airy line ensemble \mathcal{R} and an independent pair of random variables $(\mathfrak{l}, \mathfrak{c}) \in \mathbb{R}^{2}$, such that $\mathcal{L}(t)=\sigma \cdot \mathcal{R}\left(t / 2 \sigma^{2}\right)+\mathfrak{l} t+\mathfrak{c}$.

Corollary

If $\mathcal{L}(t)+\sigma t^{2}$ is translation-invariant and extremal, then exists $c \in \mathbb{R}$ with $\mathcal{L}(t)=\sigma \cdot \mathcal{R}\left(t / 2 \sigma^{2}\right)+c$.

Predicted by Okounkov and Sheffield (2006)

- General theorem does not need any information about \mathcal{L}_{j} for $j>1$
- Also only needs \mathcal{L}_{1} close to $-\sigma t^{2}$, not translation-invariance of $\mathcal{L}_{1}+\sigma t^{2}$
- Useful in showing convergence of discrete models

Corner Growth Models

Corner growth model: At any time $t \in \mathbb{Z}_{\geq 0}$, corners flip up with probability $\frac{1}{2}$

- Denote interface after time N by F_{N}
- Basic example of stochastic growth model

Figures by Corwin / Chhita-Young / Jockusch-Propp-Shor
Johansson (2003): $\mathfrak{a} N^{-1 / 3} \cdot\left(F_{N}\left(\mathfrak{b} N^{2 / 3} t\right)-\mathfrak{c} N\right) \xrightarrow{N \rightarrow \infty} \mathcal{R}_{1}(t)$

- Jockusch-Propp-Shor (1998): F_{N} equal in law to facet edge (extreme path) of random domino tiling of Aztec diamond

Stochastic Growth Models

Convergence to \mathcal{R}_{1} believed for many other stochastic growth models

- Last passage percolation models
- Exclusion processes and interacting particle systems
- Directed polymers in random media
- Stochastic vertex models
- ...
A.-Borodin (2024): Using Yang-Baxter equation, some of these models also can be mapped to facet edge of random surface
- Borodin-Bufetov-Wheeler (2016), Bufetov-Mucciconi-Petrov (2017): Special cases
- Apply characterization to show surface facet edge converges to Airy line ensemble, and deduce \mathcal{R}_{1} convergence of growth models
Colored / multi-species growth models get mapped to a family of many line ensembles, all interacting with each other
- A.-Corwin-Hegde (2024): Uncovers structure that reduces analysis of all of them to just one, and relate to Airy sheet / directed landscape

Application to Directed Polymers in Random Media

Random variable $R_{i j} \sim R$ in cell (i, j)

- Weight path \mathcal{Q} by $w(\mathcal{Q})=\prod_{(i, j) \in \mathcal{Q}} X_{i j}$
- Partition function:
$Z(X, Y)=\sum_{\mathcal{Q}:(0,0) \rightarrow(X, Y)} w(\mathcal{Q})$
- Sample path $\mathcal{Q}:(0,0) \rightarrow(X, Y)$ with $\mathbb{P}[\mathcal{Q}]=w(\mathcal{Q}) \cdot Z(X, Y)^{-1}$

Model governed
by free energy $F(X, Y)=\log Z(X, Y)$

- Should have KPZ fluctuations if one looks at $F(X, Y)$ in tube of width $N^{2 / 3}$ around line $X=Y \sim N$
- If $R_{i j}=U_{i j}^{\beta}$ and $\beta \rightarrow \infty$, polymer \rightarrow last passage percolation (LPP)

Example: Log-gamma polymer (Seppäläinen, 2009) $R \sim \Gamma(x)^{-1} x^{\theta-1} e^{-x} d x$

- Example of a polymer model that can be mapped to random surface

Correlated Noise

Assumed in LPP / polymers that noise $R_{i j}$ was independent over (i, j)

- Believed that KPZ statistics should still hold if noise decorrelates sufficiently quickly in all directions
- Not clear if noise does not decorrelate quickly enough

Question

What happens if $R_{i j}$ come from (discretization of) Gaussian free field?

