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Random Tilings as Random Surfaces

Figures from https://storage.lpetrov.cc/img/blog/hex120_uniform.png and
http://math.mit.edu/~borodin/hexagon.html.

Uniformly random tiling of domain R by “lozenges”

Also view as random stepped surface made of cubes
Gives rise to height function H : R→ Z

Question: How does the tiling behave as diam(R)→∞?
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Gaussian Free Field Under Planar Boundary Conditions

Planar boundary conditions: Take R ≈ N · D so H|∂R is nearly linear
Belief: Fluctuations
of H “look like” Gaussian free field (GFF)

Weak
convergence / level lines to CLE(4) / eH

to Liouville quantum gravity (LQG) / . . .
Weak convergence: If ϕ ∈ C∞c (D),∫
D
ϕ(z)HN(Nz)dz− E

[ ∫
D
ϕ(z)HN(Nz)dz

]
N→∞−−−−→∫

D
ϕ(z)GFF(z)dz

Inverse Kasteleyn matrix: Kenyon
(1997) / Kenyon–Okounkov–Sheffield (2003)
Discrete complex analysis: Kenyon (1999) /
Russkikh (2018) / Chelkak–Laslier–Russkikh (2020)
Imaginary geometry: Berestycki–Laslier–Ray
(2016)

Convergence does not see level lines / LQG
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Nonplanar Boundary Conditions

Non-planar domains: Can exist arctic curve separating facets / rough regions

Conjecture (Kenyon–Okounkov, 2005)
In rough region, fluctuations of H (weakly) converge to GFF under suitable
coordinate change

Proven in some nonplanar cases (where faceted regions appear)
Borodin–Ferrari (2008) / Petrov (2012) / Ahn–Russkikh–Van Peski (2021):
Determinantal point process
Bufetov–Gorin (2017): Schur generating function / loop equations
Huang (2020): Analytical comparison to system satisfying loop equations
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Edge Limits

Question: How does model transition from faceted to rough regions?

Red and orange tiles form paths X1,X2, . . ., where Xi =
(
Xi(t)

)
Edge statistics question: What is the joint scaling limit of these paths?

Scaling: Fluctuations Xi(T)− cN ∼ N1/3; time T ∼ tN2/3

Baik–Kriecherbauer–McLaughlin–Miller (2007), Petrov (2012): Exact calculation on
hexagon, exist a, b, c so that aN−1/3 ·

(
Xi(btN2/3)− cN

) N→∞−−−−→R(t)

A.–Huang (2021): Also holds on generic polygons
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Parabolic Airy Line Ensemble
Edge limit: aN−1/3 ·

(
Xi(btN2/3)− cN

) N→∞−−−−→R(t)

Limit R(t) =
(
R1(t) > R2(t) > · · ·

)
: Parabolic Airy line ensemble

(originally introduced by Prähofer–Spohn, 2001)
Airy line ensemble A =

(
Rj(t) + t2

)
is translation-invariant

Determinantal point process: P
[⋂m

j=1

{
(tj, xj)

}
∈ A

]
∼ det

[
K(ti, xi; tj, xj)

]
Extended Airy kernel K(s, x; t, y) =

{ ∫∞
0 eu(t−s)Ai(x + u)Ai(y + u)du if s ≥ t

−
∫ 0
−∞ eu(t−s)Ai(x + u)Ai(y + u)du if s < t

Convergence to Airy line ensemble is open for most surface models
More complicated tilings / restricted solid-on-solid models /
low-temperature three-dimensional Ising model / . . .
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Examining the Airy Line Ensemble

Question: Axiomatically describe the Airy line ensemble, in a way useful for
proving convergence to it

Walks Xi do not intersect

Walks should converge to Brownian motions

Limit should look like “infinitely many non-intersecting Brownian motions”
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Brownian Line Ensembles

Brownian line ensemble: Sequence x = (x1, x2, . . .) of random functions
xk : R→ R, with x1 > x2 > · · · , satisfying Brownian Gibbs property

Informally, x acts as infinitely many non-intersecting Brownian motions

Specifically, for any i < j and a < b, the below hold
Condition on xk(s) for (k, s) /∈ [i, j]× (a, b)

Then, the law of
(
xk(s)

)
for (k, s) ∈ [i, j]× (a, b) are Brownian bridges

starting at x(a), ending at x(b), and conditioned to not intersect
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Exact Formulas in the Airy Line Ensemble

Corwin–Hammond (2011): Parabolic Airy line ensemble R is a
Brownian line ensemble

Question (Okounkov, Sheffield, 2006): Can we characterize the Airy line
ensemble as the unique Brownian line ensemble satisfying certain properties?

Random surfaces satisfy discrete analogs of Brownian Gibbs property
Try showing discrete Gibbs property converges to Brownian one

Barraquand, Corwin, Dimitrov, Serio, Wu, . . .: Results towards convergence
to Brownian line ensemble for some surface models

Falls under the subfield statistical mechanics concerning of classification
of Gibbs measures

Theorem (A.–Huang, 2023; Informal statement)
Fix σ > 0. If L = (L1,L2, . . .) is a Brownian line ensemble such that
L1(t) = −σt2 + o(t2) likely holds, then L is a parabolic Airy line ensemble,
up to scaling and an affine shift.

Exist other Brownian line ensembles with L1(t) ∼ −t
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Characterization Result

Fix σ > 0 and a Brownian line ensemble L = (L1,L2, . . .)

Theorem (A.–Huang, 2023)
Assume for any ε, δ > 0 that there exists K > 0 such that

P
[∣∣L1(t) + σt2∣∣ > εt2 + K

]
< δ, for all t ∈ R.

Then there exist a parabolic Airy line ensemble R and an independent pair of
random variables (l, c) ∈ R2, such that L(t) = σ ·R(t/2σ2) + lt + c.

Corollary

If L(t) + σt2 is translation-invariant and extremal, then exists c ∈ R with
L(t) = σ ·R(t/2σ2) + c.

Predicted by Okounkov and Sheffield (2006)
General theorem does not need any information about Lj for j > 1
Also only needs L1 close to −σt2, not translation-invariance of L1 + σt2

Useful in showing convergence of discrete models
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Corner Growth Models

Corner growth model: At any time t ∈ Z≥0, corners flip up with probability 1
2

Denote interface after time N by FN

Basic example of stochastic growth model

Figures by Corwin / Chhita–Young / Jockusch–Propp–Shor

Johansson (2003): aN−1/3 ·
(
FN(bN2/3t)− cN

) N→∞−−−−→ R1(t)

Jockusch–Propp–Shor (1998): FN equal in law to facet edge (extreme
path) of random domino tiling of Aztec diamond
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Stochastic Growth Models

Convergence toR1 believed for many other stochastic growth models
Last passage percolation models
Exclusion processes and interacting particle systems
Directed polymers in random media
Stochastic vertex models
. . .

A.–Borodin (2024): Using Yang-Baxter equation, some of these models also
can be mapped to facet edge of random surface

Borodin–Bufetov–Wheeler (2016), Bufetov–Mucciconi–Petrov (2017):
Special cases
Apply characterization to show surface facet edge converges to Airy line
ensemble, and deduceR1 convergence of growth models

Colored / multi-species growth models get mapped to a family of many line
ensembles, all interacting with each other

A.–Corwin–Hegde (2024): Uncovers structure that reduces analysis of
all of them to just one, and relate to Airy sheet / directed landscape
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Application to Directed Polymers in Random Media

Random variable Rij ∼ R in cell (i, j)

Weight path Q by w(Q) =
∏

(i,j)∈Q Xij

Partition function:
Z(X,Y) =

∑
Q:(0,0)→(X,Y) w(Q)

Sample path Q : (0, 0)→ (X,Y)
with P[Q] = w(Q) · Z(X,Y)−1

Model governed
by free energy F(X,Y) = log Z(X,Y)

Should have KPZ fluctuations if one looks at F(X,Y) in tube of width
N2/3 around line X = Y ∼ N

If Rij = Uβ
ij and β →∞, polymer→ last passage percolation (LPP)

Example: Log-gamma polymer (Seppäläinen, 2009) R ∼ Γ(x)−1xθ−1e−xdx

Example of a polymer model that can be mapped to random surface
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Correlated Noise

Assumed in LPP / polymers that noise Rij was independent over (i, j)

Believed that KPZ statistics should still hold if noise decorrelates
sufficiently quickly in all directions
Not clear if noise does not decorrelate quickly enough

Question
What happens if Rij come from (discretization of) Gaussian free field?
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