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Liouville first-passage percolation

» “First passage percolation on the exponential of Gaussian
free field”: Liouville first-passage percolation (LFPP) is
first-passage percolation on e, where hiis a (discrete or
circle-averaged continuous) Gaussian free field and ¢ is an
inverse-temperature parameter.




Distance exponent

» How does the metric (left—right crossing distance,
point-to-point distance, diameter. . .) scale with the box
size S (equivalently the mollification scale §) and the
temperature £?

> Y. Watabiki (1993): non-rigorous prediction for the distance
exponent.

> J. Ding—F. Zhang (PTRF, 2018): the exponent of the
distance is non-universal among log-correlated Gaussian
fields. Therefore, answering this question must use rather
fine information about the Gaussian free field.

> Ding—S. Goswami (CPAM, 2019): upper bounds on the
exponent for high temperature ¢ < 1 (seems to contradict
Watabiki).

> Ding—E. Gwynne (Preprint, 2018): bounds for general
(subcritical) temperature.

> Includes precise value only at one special value of &, which

corresponds to expected equivalence between limiting metric
and the Brownian map (J.P. Miller—S. Sheffield 2015—-'16).



Limiting metric

» Does there exist a scaling limit of the metric as the box size
goes to « (equivalently, as the mollification scale goes to
0)?

> Need to rescale the metric by the typical distance, which is
so far unknown.

> No non-universality expected here: a limiting metric should
exist for a wide class of log-correlated Gaussian fields.

> Uniqueness of the limiting metric done via axiomatic
characterization by Gwynne and Miller.



Liouville quantum gravity

> Liouville quantum gravity is supposed to be a random
geometry given by reweighting the Lebesgue measure, or
the Euclidean metric, by e*”, where his a (continuum)
Gaussian free field.

> Problem: his not a function but rather a distribution, and
so it cannot be exponentiated.
» Construction of LQG measure (B. Duplantier—S. Sheffield
2010):
> Consider u.(dx) = e”h=()+37* 82 gy where h, is the circle

average process of the Gaussian free field with circles of
radius ¢.

> Note the renormalization by s*/2.

> [If y < 2 (critical temperature), then there is a random
measure u so that, with probability 1, we have

lim po-k =p
k—oo

weakly.



Liouville graph distance

» Liouville FPP is intuitive to define, but there is another
notion of discretized metric related to Liouville quantum
gravity.

» Let Q c R?. Consider the y-LQG measure u on some
domain Q' > Q.

> For x,y € Q, define d5%3 ,(x,y) to be the minimum size of
a set of Euclidean balls with centers in Q, each having
LQG measure at most 6, whose union forms a connected

set that includes x and y.



Main result

Notation: if R is a box, let R* be a box with three times the side
lengths, centered around R.

Theorem
Suppose thaty < 2. LetR be a rectangular subset of R2. For
any sequence 6, | 0, there is a subsequence (5,,) and a
nontrivial random metric d : R xR — R so that
-1 JLGD

Qs,, Ay, 5, — 9
in distribution with respect to the uniform topology of functions
R xR — R. Here Qs is the median Liouville graph distance
between and left- and right-hand sides of R.

> No assumption of high temperature beyond subcriticality.
» Don’t need to know the scaling exponent (size of Q).



Multiscale analysis: the effect of the coarse field

» We would like to understand the LGD metric using
multiscale analysis.

> |f G is a subbox of R, we would like to be able to relate

LGD LGD
dm*’&(5 and d@ﬁ’é.

> There is a relationship between hg- and he-: we can
couple the GFFs so that hy- [g-= he- + hg-.c-, where Ay«
(“coarse field”) is the harmonic interpolation of hg- on hg-
(hence smooth). Moreover, hy:.c+ and he- (“fine field”) are
independent.
» Compare this to the branching random walk picture.
» This means that

LGD LGD LGD
Op g5 < Opr s < - .00

where

6 = exp{—y min hg-.g- (X)}, & =exp {—’y maxhg;*;@*(x)} i
Xes Xes



Multiscale analysis: the effect of the coarse field
LGD LGD LGD
> dple gn < dsn*,_cs,a < dyg 5> Where
0" = exp{—y minyee g+ (X)} 6,
6" = exp{—y maxyecg hy+.c+ (X)} 6.
» Also have scaling property of LQG:
LGD law JLGD
(19{*,(16,(12+72/26 - 9{*,6,6‘
» Maximum of the Gaussian free field: if S1,..., Sk is a set
of translates of 4%, all contained in R, then we have
K2 K2
minmin Ag-.g+(X) 2 —2log K; maxmaxhg+.e(X) < 2log K
i=1 xe& i=1 xe&

with Gaussian concentration.
» Putting this all together: we have that
LGD LGD LGD
da,-G}",af,-G,',é s dm*,ei,é s dﬁfG*,ﬁfGi,rS’
where (since y < 2)

2y
maxfj < K20%2 < K.
I



Subcriticality leads to averaging

v

Recall that &1, ..., G- is a set of translates of %K.

LGD LGD LGD
dai67’0/61s5 < d‘R*,G/,é s dﬁie*,ﬁiei,é’ where

Y
max; B < K2%2 < K.
“Subboxes look smaller than the overall box, even after
considering the coarse field.”

Idea: the crossing weight across a large box should feel
the weight from many subboxes, and thus should be doing
some kind of averaging, leading to concentration.



Chaining argument

» Mechanism to show tightness: show that the metric is
Hélder continuous.

» Use a chaining argument:

> Ingredients:

> Concentration for the left—right crossing distance at each
scale.
> Crossing distances grow at least polynomially in the scale:

median(drSP . 5) = K°median(di®h )

> — summability.



Percolation arguments

> Left—tails and right—tails of the crossings, as well as
relationships between crossing distances at different
scales, can be obtained through “percolation arguments”:
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> A left—right crossing of the large box must include many
left—right crossings of smaller boxes.

> A left—right crossing of the large box can be assembled
from left—right circuits around smaller annuli.

» Similar to strategies used extensively before, most closely

in Ding—D. high-temperature result and Dubédat—Falconet
result for *-scale invariant fields.



Concentration through percolation
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» Problem: the left and right tails aren’t in terms of quite the

same thing.

> Left tail in terms of small quantiles of “easy” crossings at

smaller scales.

> Right tail in terms of large quantiles of “hard” crossings at

smaller scales.

» So... need to relate easy and hard crossings, and need to
relate small and large (but fixed) quantiles.



RSW result: relate easy and hard crossing quantiles

> First results: Russo, Seymour, Welsh for Bernoulli
percolation in 1979-'80.

» Ding-D. high-temperature result for LFPP: adapted
intricate inductive RSW result due to V. Tassion (2016).
» Dubédat—Falconet: introduced very simple RSW proof
based on conformal invariance.
> We adapt the Dubédat—Falconet proof to Liouville graph
distance.



RSW strategy

» Dubédat—Falconet RSW strategy: map

N Fy(xo)

Fy(y)

>

Wi‘w

> A positive fraction of easy—crossing geodesics can be
mapped to hard—crossing geodesics if y is chosen

correctly.

» Uses approximate conformal invariance of LGD (coming

from conformal invariance of GFF).



Relating small and large quantiles

> In order to tie together the percolation arguments and the
RSW arguments, we need to relate different quantiles of

the crossing distances.
> To do this, we seek to bound Var (log di- %, s (left-right )).

» Then p < g quantiles of dg- % s (left—right ) are related by a
multiplicative factor of at most

exp {(q—1/2 +(1- q)—1/2) \/Var (|Og dm*,m,(;(left—right ))} .



Efron—Stein argument

» The field can be subdivided into a sum of “fine” and
“coarse” pieces using the “white-noise decomposition.”

> “Fine” here means concentrated on boxes a factor of K
smaller, where K is very large but fixed.

» Efron—Stein inequality:

=10 i 2
a, (left—right )
dy- x5 (left—right ) | °

Var (Iog dy- %, s (left—right )) < Z E(Iog R R, 6
i

where 8;{291 s Is the metric where piece / has been
resampled.

» So the goal becomes to control the ratio between the
resampled and original distances.



Resampling the coarse field

» The coarse field is smooth, and when it is resampled it has
a Lipschitz effect on the crossing distance.

» Gaussian concentration and a variance bound on the
coarse field implies that the variance coming from
resampling the coarse field is bounded by log K.



Resampling the fine field
» When we resample the fine field in a box, the weight
coming from most of the geodesic (the part far away from
where the field is resampled) doesn’t change much.
» On the other hand, we can bound the change in the weight
of the geodesic close to the resampled location by
replacing the path with an annular crossing in that region.

» So the variance coming from resampling the small boxes is
like

~ (i 2
dy) o ,(circuit)
E L
Z Oy %, s (left—right )
~() T ~ (i) N
. Z dw,ei’é(cwcwt) . dw,gi’&(cwcwt)
~ | & dwe s (left—right ) i Oy g s(left-right) |’
» Here, €; is a box containing the area where the field is

resampled, and a;;’) . s(circuit) is the weight of an annular
circuit around €;.




The effect of subcriticality
» In the inequality

d(’) (circuit) 2
28| Gyl
R %, 5(Ieft—r|ght)

Z d(’)(5 5 (circuit) . d(’)(5 5 (circuit)
Oy . s (left—right ) i Oy 5.s(left—right) |’

the first factor is on the order of exp {C\/V} where V is the

variance bound inductively attained at the smaller scale.
> That is, by the concentration at the smaller scale, size of
first factor does not depend on K, but it does depend on the
previously-attained variance bound which is necessary for
the concentration at the smaller scale.

> The second factor is order exp {C\/V} K¢, because, as

previously discussed, boxes at the smaller scale “look
smaller,” even after considering the coarse field.




The bound on the variance of the logarithm
» Combining fine- and coarse-field contributions, obtain
V' := Var (log dy- %, s (left-right )) < C (IogK+ eCWK_C) )
> In order to close the induction, need a V so that
C(logk +e®VVKe) < V.

» V can be taken to be a small constant times log K.

> Actually, there is an additional term in the variance bound,
which goesto 0 as S — oo but to 0 as K — .
» Comes from the inability of the path to be subdivided in the
presence of LGD balls with large Euclidean diameter.
> Thus the base case of the induction imposes additional
challenges: use an a priori bound of J. Ding—0. Zeitouni—F.
Zhang (preprint, 2018).



Further questions

> Can the result be extended toto other similar discrete
approximations? To other models?

> What are good techniques for RSW results in the absence
of conformal invariance?

» What are the scaling exponents?
» Any question you want to ask about the limiting metrics.



