Subsequential scaling limits for Liouville graph distance

March 5, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Liouville first-passage percolation

"First passage percolation on the exponential of Gaussian free field": Liouville first-passage percolation (LFPP) is first-passage percolation on e^{ξh}, where h is a (discrete or circle-averaged continuous) Gaussian free field and ξ is an inverse-temperature parameter.

Distance exponent

- How does the metric (left–right crossing distance, point-to-point distance, diameter...) scale with the box size S (equivalently the mollification scale δ) and the temperature *ξ*?
 - Y. Watabiki (1993): non-rigorous prediction for the distance exponent.
 - J. Ding-F. Zhang (PTRF, 2018): the exponent of the distance is *non-universal* among log-correlated Gaussian fields. Therefore, answering this question must use rather fine information about the Gaussian free field.
 - Ding–S. Goswami (CPAM, 2019): upper bounds on the exponent for high temperature *ξ* ≪ 1 (seems to contradict Watabiki).
 - Ding–E. Gwynne (Preprint, 2018): bounds for general (subcritical) temperature.
 - Includes precise value only at one special value of ξ, which corresponds to expected equivalence between limiting metric and the Brownian map (J.P. Miller–S. Sheffield 2015–'16).

Limiting metric

- Does there exist a scaling limit of the metric as the box size goes to ∞ (equivalently, as the mollification scale goes to 0)?
 - Need to rescale the metric by the typical distance, which is so far unknown.
 - No non-universality expected here: a limiting metric should exist for a wide class of log-correlated Gaussian fields.

(ロ) (同) (三) (三) (三) (○) (○)

Uniqueness of the limiting metric done via axiomatic characterization by Gwynne and Miller.

Liouville quantum gravity

- Liouville quantum gravity is supposed to be a random geometry given by reweighting the Lebesgue measure, or the Euclidean metric, by e^{γh}, where h is a (continuum) Gaussian free field.
- Problem: h is not a function but rather a distribution, and so it cannot be exponentiated.
- Construction of LQG measure (B. Duplantier–S. Sheffield 2010):
 - Consider μ_ε(dx) = e^{γh_ε(x)+¹/₂γ²log ε}dx, where h_ε is the circle average process of the Gaussian free field with circles of radius ε.
 - Note the *renormalization* by $\varepsilon^{\gamma^2/2}$.
 - If γ < 2 (critical temperature), then there is a random measure μ so that, with probability 1, we have</p>

$$\lim_{k\to\infty}\mu_{2^{-k}}=\mu$$

weakly.

Liouville graph distance

- Liouville FPP is intuitive to define, but there is another notion of discretized metric related to Liouville quantum gravity.
- Let Ω ⊂ R². Consider the γ-LQG measure μ on some domain Ω' ⊃ Ω.
- For x, y ∈ Ω, define d^{LGD}_{Ω',Ω,δ}(x, y) to be the minimum size of a set of *Euclidean* balls with centers in Ω, each having *LQG measure* at most δ, whose union forms a connected set that includes x and y.

Main result

Notation: if \Re is a box, let \Re^* be a box with three times the side lengths, centered around \Re .

Theorem

Suppose that $\gamma < 2$. Let \Re be a rectangular subset of \mathbb{R}^2 . For any sequence $\delta_n \downarrow 0$, there is a subsequence (δ_{n_k}) and a nontrivial random metric $d : \Re \times \Re \to \mathbb{R}$ so that

$$Q_{\delta_{n_k}}^{-1} d_{\mathfrak{R}^*,\mathfrak{R},\delta_{n_k}}^{LGD} \to d$$

in distribution with respect to the uniform topology of functions $\Re \times \Re \to \mathbf{R}$. Here Q_{δ} is the median Liouville graph distance between and left- and right-hand sides of \Re .

- No assumption of high temperature beyond subcriticality.
- Don't need to know the scaling exponent (size of Q).

Multiscale analysis: the effect of the coarse field

- We would like to understand the LGD metric using multiscale analysis.
 - ► If \mathfrak{S} is a subbox of \mathfrak{R} , we would like to be able to relate $d^{LGD}_{\mathfrak{R}^*,\mathfrak{S},\delta}$ and $d^{LGD}_{\mathfrak{S}^*,\mathfrak{S},\delta}$.
- There is a relationship between h_{R*} and h_{S*}: we can couple the GFFs so that h_{R*} ↾_{S*} = h_{S*} + h_{R*:S*}, where h_{R*:S*} ("coarse field") is the harmonic interpolation of h_{R*} on h_{S*} (hence smooth). Moreover, h_{R*:S*} and h_{S*} ("fine field") are independent.
 - Compare this to the branching random walk picture.
 - This means that

$$d^{LGD}_{\mathfrak{R}^*,\mathfrak{S},\delta''} \leq d^{LGD}_{\mathfrak{R}^*,\mathfrak{S},\delta} \leq d^{LGD}_{\mathfrak{R}^*,\mathfrak{S},\delta'},$$

where

$$\delta^{\prime\prime} = \exp\left\{-\gamma \min_{x \in \mathfrak{S}} h_{\mathfrak{R}^*:\mathfrak{S}^*}(x)\right\}, \quad \delta^{\prime} = \exp\left\{-\gamma \max_{x \in \mathfrak{S}} h_{\mathfrak{R}^*:\mathfrak{S}^*}(x)\right\}.$$

Multiscale analysis: the effect of the coarse field

►
$$d_{\mathfrak{R}^*,\mathfrak{S},\delta''}^{LGD} \le d_{\mathfrak{R}^*,\mathfrak{S},\delta}^{LGD} \le d_{\mathfrak{R}^*,\mathfrak{S},\delta'}^{LGD}$$
, where
 $\delta'' = \exp\{-\gamma \min_{x\in\mathfrak{S}} h_{\mathfrak{R}^*:\mathfrak{S}^*}(x)\}\delta,$
 $\delta' = \exp\{-\gamma \max_{x\in\mathfrak{S}} h_{\mathfrak{R}^*:\mathfrak{S}^*}(x)\}\delta.$

Also have scaling property of LQG:

$$d^{LGD}_{\alpha\mathfrak{R}^*,\alpha\mathfrak{S},\alpha^{2+\gamma^2/2}\delta} \stackrel{\mathsf{law}}{=} d^{LGD}_{\mathfrak{R}^*,\mathfrak{S},\delta}.$$

Maximum of the Gaussian free field: if S₁,..., S_{K²} is a set of translates of ¹/_K ℜ, all contained in ℜ, then we have

$$\min_{i=1}^{K^2} \min_{x \in \mathfrak{S}} h_{\mathfrak{R}^*:\mathfrak{S}^*}(x) \gtrsim -2\log K; \quad \max_{i=1}^{K^2} \max_{x \in \mathfrak{S}} h_{\mathfrak{R}^*:\mathfrak{S}^*}(x) \lesssim 2\log K$$

with Gaussian concentration.

Putting this all together: we have that

$$d^{LGD}_{\alpha_{i}\mathfrak{S}_{i}^{*},\alpha_{i}\mathfrak{S}_{i},\delta} \lesssim d^{LGD}_{\mathfrak{R}^{*},\mathfrak{S}_{i},\delta} \lesssim d^{LGD}_{\beta_{i}\mathfrak{S}^{*},\beta_{i}\mathfrak{S}_{i},\delta},$$

where (since $\gamma < 2$)

$$\max_{i} \beta_{i} \leq K^{\frac{2\gamma}{2+\gamma^{2}/2}} < K.$$

Subcriticality leads to averaging

• Recall that $\mathfrak{S}_1, \ldots, \mathfrak{S}_{K^2}$ is a set of translates of $\frac{1}{K}\mathfrak{R}$.

►
$$d^{LGD}_{\alpha_i \mathfrak{S}^*_i, \alpha_i \mathfrak{S}_i, \delta} \leq d^{LGD}_{\mathfrak{R}^*, \mathfrak{S}_i, \delta} \lesssim d^{LGD}_{\beta_i \mathfrak{S}^*, \beta_i \mathfrak{S}_i, \delta}$$
, where
 $\max_i \beta_i \leq K^{\frac{\gamma}{2+\gamma^2/2}} < K$.

- "Subboxes look smaller than the overall box, even after considering the coarse field."
- Idea: the crossing weight across a large box should feel the weight from many subboxes, and thus should be doing some kind of averaging, leading to concentration.

(日) (日) (日) (日) (日) (日) (日)

Chaining argument

- Mechanism to show tightness: show that the metric is Hölder continuous.
- Use a chaining argument:

- Ingredients:
 - Concentration for the left-right crossing distance at each scale.
 - Crossing distances grow at least polynomially in the scale:

$$\text{median}(d^{LGD}_{K\mathfrak{N}^*,K\mathfrak{N},\delta}) \gtrsim K^c \text{median}(d^{LGD}_{\mathfrak{N}^*,\mathfrak{N},\delta})$$

 $\blacktriangleright \implies$ summability.

Percolation arguments

Left-tails and right-tails of the crossings, as well as relationships between crossing distances at different scales, can be obtained through "percolation arguments":

- A left-right crossing of the large box must include many left-right crossings of smaller boxes.
- A left-right crossing of the large box can be assembled from left-right circuits around smaller annuli.
- Similar to strategies used extensively before, most closely in Ding–D. high-temperature result and Dubédat–Falconet result for *-scale invariant fields.

Concentration through percolation

- Problem: the left and right tails aren't in terms of quite the same thing.
 - Left tail in terms of *small* quantiles of *"easy"* crossings at smaller scales.
 - Right tail in terms of *large* quantiles of *"hard"* crossings at smaller scales.
- So... need to relate easy and hard crossings, and need to relate small and large (but fixed) quantiles.

RSW result: relate easy and hard crossing quantiles

- First results: Russo, Seymour, Welsh for Bernoulli percolation in 1979–'80.
- Ding–D. high-temperature result for LFPP: adapted intricate inductive RSW result due to V. Tassion (2016).
- Dubédat–Falconet: introduced very simple RSW proof based on conformal invariance.
 - We adapt the Dubédat–Falconet proof to Liouville graph distance.

RSW strategy

Dubédat–Falconet RSW strategy: map

- A positive fraction of easy–crossing geodesics can be mapped to hard–crossing geodesics if y is chosen correctly.
- Uses approximate conformal invariance of LGD (coming from conformal invariance of GFF).

Relating small and large quantiles

- In order to tie together the percolation arguments and the RSW arguments, we need to relate different quantiles of the crossing distances.
- ► To do this, we seek to bound $Var(\log d_{\Re^*,\Re,\delta}(\text{left-right}))$.
- Then p < q quantiles of d_{R*,R,δ} (left–right) are related by a multiplicative factor of at most

$$\exp\left\{\left(q^{-1/2}+(1-q)^{-1/2}\right)\sqrt{\operatorname{Var}\left(\log d_{\Re^*,\Re,\delta}(\operatorname{left-right})\right)}\right\}.$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Efron-Stein argument

- The field can be subdivided into a sum of "fine" and "coarse" pieces using the "white-noise decomposition."
- "Fine" here means concentrated on boxes a factor of K smaller, where K is very large but fixed.
- Efron–Stein inequality:

$$\operatorname{Var}\left(\log d_{\mathfrak{R}^{*},\mathfrak{R},\delta}(\operatorname{left-right})\right) \leq \sum_{i} \mathbf{E}\left(\log \frac{\tilde{d}_{\mathfrak{R}^{*},\mathfrak{R},\delta}^{(i)}(\operatorname{left-right})}{d_{\mathfrak{R}^{*},\mathfrak{R},\delta}(\operatorname{left-right})}\right)^{2},$$

where $\tilde{d}^{(i)}_{\Re^*,\Re,\delta}$ is the metric where piece *i* has been resampled.

So the goal becomes to control the ratio between the resampled and original distances.

Resampling the coarse field

The coarse field is smooth, and when it is resampled it has a Lipschitz effect on the crossing distance.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Gaussian concentration and a variance bound on the coarse field implies that the variance coming from resampling the coarse field is bounded by log K.

Resampling the fine field

- When we resample the fine field in a box, the weight coming from most of the geodesic (the part far away from where the field is resampled) doesn't change much.
- On the other hand, we can bound the change in the weight of the geodesic close to the resampled location by replacing the path with an annular crossing in that region.
- So the variance coming from resampling the small boxes is like

$$\begin{split} \sum_{i} \mathbf{E} & \left(\frac{\tilde{d}_{\Re^*,\mathfrak{S}_{i},\delta}^{(i)}(\text{circuit})}{d_{\Re^*,\Re,\delta}(\text{left-right })} \right)^2 \\ & \leq & \left(\sum_{i} \frac{\tilde{d}_{\Re^*,\mathfrak{S}_{i},\delta}^{(i)}(\text{circuit})}{d_{\Re^*,\Re,\delta}(\text{left-right })} \right) \left(\max_{i} \frac{\tilde{d}_{\Re^*,\mathfrak{S}_{i},\delta}^{(i)}(\text{circuit})}{d_{\Re^*,\Re,\delta}(\text{left-right })} \right). \end{split}$$

► Here, \mathfrak{C}_i is a box containing the area where the field is resampled, and $\tilde{d}_{\mathfrak{R}^*,\mathfrak{S}_i,\delta}^{(i)}$ (circuit) is the weight of an annular circuit around \mathfrak{C}_i .

The effect of subcriticality

In the inequality

$$\begin{split} \sum_{i} \mathbf{E} & \left(\frac{\tilde{d}_{\Re^{*},\mathfrak{S}_{i},\delta}^{(i)}(\operatorname{circuit})}{d_{\Re^{*},\Re,\delta}(\operatorname{left-right})} \right)^{2} \\ & \leq & \left(\sum_{i} \frac{\tilde{d}_{\Re^{*},\mathfrak{S}_{i},\delta}^{(i)}(\operatorname{circuit})}{d_{\Re^{*},\Re,\delta}(\operatorname{left-right})} \right) & \left(\max_{i} \frac{\tilde{d}_{\Re^{*},\mathfrak{S}_{i},\delta}^{(i)}(\operatorname{circuit})}{d_{\Re^{*},\Re,\delta}(\operatorname{left-right})} \right), \end{split}$$

the first factor is on the order of $\exp \{C\sqrt{V}\}$, where V is the variance bound inductively attained at the smaller scale.

- That is, by the concentration at the smaller scale, size of first factor does not depend on K, but it does depend on the previously-attained variance bound which is necessary for the concentration at the smaller scale.
- The second factor is order $\exp \{C\sqrt{V}\} K^{-c}$, because, as previously discussed, boxes at the smaller scale "look smaller," even after considering the coarse field.

The bound on the variance of the logarithm

Combining fine- and coarse-field contributions, obtain

$$V' := \operatorname{Var}\left(\log d_{\Re^*, \Re, \delta}(\operatorname{left-right})\right) \le C\left(\log K + e^{C\sqrt{V}}K^{-c}\right).$$

In order to close the induction, need a V so that

$$C\left(\log K + e^{C\sqrt{V}}K^{-c}\right) \leq V.$$

- V can be taken to be a small constant times $\log K$.
- Actually, there is an additional term in the variance bound, which goes to 0 as S → ∞ but to ∞ as K → ∞.
 - Comes from the inability of the path to be subdivided in the presence of LGD balls with large Euclidean diameter.
 - Thus the base case of the induction imposes additional challenges: use an *a priori* bound of J. Ding–O. Zeitouni–F. Zhang (preprint, 2018).

Further questions

- Can the result be extended toto other similar discrete approximations? To other models?
 - What are good techniques for RSW results in the absence of conformal invariance?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- What are the scaling exponents?
- Any question you want to ask about the limiting metrics.