Subsequential scaling limits for Liouville graph distance

March 5, 2024

Liouville first-passage percolation

- "First passage percolation on the exponential of Gaussian free field": Liouville first-passage percolation (LFPP) is first-passage percolation on $e^{\xi h}$, where h is a (discrete or circle-averaged continuous) Gaussian free field and ξ is an inverse-temperature parameter.

Distance exponent

- How does the metric (left-right crossing distance, point-to-point distance, diameter...) scale with the box size S (equivalently the mollification scale δ) and the temperature ξ ?
- Y. Watabiki (1993): non-rigorous prediction for the distance exponent.
- J. Ding-F. Zhang (PTRF, 2018): the exponent of the distance is non-universal among log-correlated Gaussian fields. Therefore, answering this question must use rather fine information about the Gaussian free field.
- Ding-S. Goswami (CPAM, 2019): upper bounds on the exponent for high temperature $\xi \ll 1$ (seems to contradict Watabiki).
- Ding-E. Gwynne (Preprint, 2018): bounds for general (subcritical) temperature.
- Includes precise value only at one special value of ξ, which corresponds to expected equivalence between limiting metric and the Brownian map (J.P. Miller-S. Sheffield 2015-'16).

Limiting metric

- Does there exist a scaling limit of the metric as the box size goes to ∞ (equivalently, as the mollification scale goes to $0)$?
- Need to rescale the metric by the typical distance, which is so far unknown.
- No non-universality expected here: a limiting metric should exist for a wide class of log-correlated Gaussian fields.
- Uniqueness of the limiting metric done via axiomatic characterization by Gwynne and Miller.

Liouville quantum gravity

- Liouville quantum gravity is supposed to be a random geometry given by reweighting the Lebesgue measure, or the Euclidean metric, by $e^{\gamma h}$, where h is a (continuum) Gaussian free field.
- Problem: h is not a function but rather a distribution, and so it cannot be exponentiated.
- Construction of LQG measure (B. Duplantier-S. Sheffield 2010):
- Consider $\mu_{\varepsilon}(d x)=e^{\gamma h_{\varepsilon}(x)+\frac{1}{2} \gamma^{2} \log \varepsilon} d x$, where h_{ε} is the circle average process of the Gaussian free field with circles of radius ε.
- Note the renormalization by $\varepsilon^{\gamma^{2} / 2}$.
- If $\gamma<2$ (critical temperature), then there is a random measure μ so that, with probability 1 , we have

$$
\lim _{k \rightarrow \infty} \mu_{2^{-k}}=\mu
$$

weakly.

Liouville graph distance

- Liouville FPP is intuitive to define, but there is another notion of discretized metric related to Liouville quantum gravity.
- Let $\Omega \subset \mathbf{R}^{2}$. Consider the γ-LQG measure μ on some domain $\Omega^{\prime} \supset \Omega$.
- For $x, y \in \Omega$, define $d_{\Omega^{\prime}, \Omega, \delta}^{L G D}(x, y)$ to be the minimum size of a set of Euclidean balls with centers in Ω, each having LQG measure at most δ, whose union forms a connected set that includes x and y.

Main result

Notation: if \mathfrak{R} is a box, let \mathfrak{R}^{*} be a box with three times the side lengths, centered around \mathfrak{R}.
Theorem
Suppose that $\gamma<2$. Let \mathfrak{R} be a rectangular subset of \mathbf{R}^{2}. For any sequence $\delta_{n} \downarrow 0$, there is a subsequence ($\delta_{n_{k}}$) and a nontrivial random metric $d: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathbf{R}$ so that

$$
Q_{\delta_{n_{k}}}^{-1} d_{\mathfrak{R}^{*}, \mathfrak{R}, \delta_{n_{k}}}^{L G D} \rightarrow d
$$

in distribution with respect to the uniform topology of functions $\mathfrak{R} \times \mathfrak{R} \rightarrow \mathbf{R}$. Here Q_{δ} is the median Liouville graph distance between and left- and right-hand sides of \mathfrak{R}.

- No assumption of high temperature beyond subcriticality.
- Don't need to know the scaling exponent (size of Q).

Multiscale analysis: the effect of the coarse field

- We would like to understand the LGD metric using multiscale analysis.
- If \subseteq is a subbox of \Re, we would like to be able to relate $d_{\Re^{*}, \mathfrak{S}, \delta}^{L G D}$ and $d_{\mathcal{E}^{*}, \mathfrak{S}, \delta}^{L G D}$.
- There is a relationship between $h_{\mathfrak{R}^{*}}$ and $h_{\mathfrak{S}^{*}}$: we can couple the GFFs so that $h_{\mathfrak{R}^{*}} \upharpoonright_{\mathfrak{G}^{*}}=h_{\mathfrak{S}^{*}}+h_{\mathfrak{R}^{*}: \mathfrak{G}^{*}}$, where $h_{\mathfrak{R}^{*}: \mathfrak{S}^{*}}$ ("coarse field") is the harmonic interpolation of $h_{\mathfrak{R}^{*}}$ on $h_{\mathfrak{G}^{*}}$ (hence smooth). Moreover, $h_{\mathfrak{R}^{*}: \mathfrak{S}^{*}}$ and $h_{\mathfrak{S}^{*}}$ ("fine field") are independent.
- Compare this to the branching random walk picture.
- This means that

$$
d_{\mathfrak{R}^{*}, \mathcal{E}, \delta^{\prime \prime}}^{L G D} \leq d_{\mathfrak{R}^{*}, \subseteq, \delta}^{L G D} \leq d_{\mathfrak{R}^{*}, \subseteq, \mathcal{E}, \delta^{\prime}}^{L G D}
$$

where

$$
\delta^{\prime \prime}=\exp \left\{-\gamma \min _{x \in \mathbb{S}} h_{\mathfrak{R}^{*}: \mathcal{S}^{*}}(x)\right\}, \quad \delta^{\prime}=\exp \left\{-\gamma \max _{x \in \mathscr{C}} h_{\mathfrak{R}^{*}: \mathcal{S}^{*}}(x)\right\} .
$$

Multiscale analysis: the effect of the coarse field

$-d_{\Re^{*}, \mathfrak{S}, \delta^{\prime \prime}}^{L G D} \leq d_{\mathfrak{R}^{*}, \mathfrak{S}, \delta}^{L G D} \leq d_{\mathfrak{R}^{*}, \mathfrak{S}, \delta^{\prime}}^{L G D}$, where
$\delta^{\prime \prime}=\exp \left\{-\gamma \min _{x \in \mathfrak{S}} h_{\mathfrak{R}^{*}: \mathfrak{G}^{*}}(x)\right\} \delta$,
$\delta^{\prime}=\exp \left\{-\gamma \max _{x \in \subseteq} h_{\Re^{*}: \mathfrak{S}^{*}}(x)\right\} \delta$.

- Also have scaling property of LQG:

$$
d_{\alpha \mathfrak{R}^{*}, \alpha \mathbb{S}, \alpha^{2+\gamma^{2} / 2} \delta}^{L G D} \stackrel{\text { law }}{=} d_{\mathfrak{R}^{*}, \mathbb{E}, \delta}^{L G D} .
$$

- Maximum of the Gaussian free field: if $\Im_{1}, \ldots, \Im_{K^{2}}$ is a set of translates of $\frac{1}{K} \mathfrak{R}$, all contained in \mathfrak{R}, then we have

$$
\min _{i=1}^{K^{2}} \min _{x \in \mathfrak{S}} h_{\mathfrak{R}^{*}: \mathfrak{S}^{*}}(x) \gtrsim-2 \log K ; \quad \max _{i=1}^{K^{2}} \max _{x \in \mathfrak{S}} h_{\mathfrak{R}^{*}: \mathbb{S}^{*}}(x) \lesssim 2 \log K
$$

with Gaussian concentration.

- Putting this all together: we have that

$$
d_{\alpha_{i} \mathfrak{S}_{i}^{*}, \alpha_{i} \mathfrak{S}_{i}, \delta}^{L G D} \lesssim d_{\mathfrak{R}^{*}, \mathfrak{S}_{i}, \delta}^{L G D} \lesssim d_{\beta_{i} \mathfrak{S}^{*}, \beta_{i} \mathfrak{S}_{i}, \delta}^{L G}
$$

where (since $\gamma<2$)

$$
\max _{i} \beta_{i} \leq K^{\frac{2 \gamma}{2+\gamma^{2} / 2}}<K
$$

Subcriticality leads to averaging

- Recall that $\mathfrak{S}_{1}, \ldots, \mathfrak{S}_{K^{2}}$ is a set of translates of $\frac{1}{K} \mathfrak{R}$.
$-d_{\alpha_{i} \Im_{i}^{*}, \alpha_{i} \Xi_{i}, \delta}^{L G D} \leq d_{\mathfrak{R}^{*}, \Im_{i}, \delta}^{L G D} \leq d_{\beta_{i} \Im^{*}, \beta_{i} \Im_{i}, \delta}^{L G D}$, where $\max _{i} \beta_{i} \leq K^{\frac{\gamma}{2+\gamma^{2} / 2}}<K$.
- "Subboxes look smaller than the overall box, even after considering the coarse field."
- Idea: the crossing weight across a large box should feel the weight from many subboxes, and thus should be doing some kind of averaging, leading to concentration.

Chaining argument

- Mechanism to show tightness: show that the metric is Hölder continuous.
- Use a chaining argument:

- Ingredients:
- Concentration for the left-right crossing distance at each scale.
- Crossing distances grow at least polynomially in the scale:

$$
\operatorname{median}\left(d_{K \Re^{*}, K \Re, \delta}^{L G D}\right) \gtrsim K^{C} \text { median }\left(d_{\Re^{*}, \Re, \delta}^{L G D}\right)
$$

- \Longrightarrow summability.

Percolation arguments

- Left-tails and right-tails of the crossings, as well as relationships between crossing distances at different scales, can be obtained through "percolation arguments":

- A left-right crossing of the large box must include many left-right crossings of smaller boxes.
- A left-right crossing of the large box can be assembled from left-right circuits around smaller annuli.
- Similar to strategies used extensively before, most closely in Ding-D. high-temperature result and Dubédat-Falconet result for *-scale invariant fields.

Concentration through percolation

- Problem: the left and right tails aren't in terms of quite the same thing.
- Left tail in terms of small quantiles of "easy" crossings at smaller scales.
- Right tail in terms of large quantiles of "hard" crossings at smaller scales.
- So... need to relate easy and hard crossings, and need to relate small and large (but fixed) quantiles.

RSW result: relate easy and hard crossing quantiles

- First results: Russo, Seymour, Welsh for Bernoulli percolation in 1979-'80.
- Ding-D. high-temperature result for LFPP: adapted intricate inductive RSW result due to V. Tassion (2016).
- Dubédat-Falconet: introduced very simple RSW proof based on conformal invariance.
- We adapt the Dubédat-Falconet proof to Liouville graph distance.

RSW strategy

- Dubédat-Falconet RSW strategy: map

- A positive fraction of easy-crossing geodesics can be mapped to hard-crossing geodesics if y is chosen correctly.
- Uses approximate conformal invariance of LGD (coming from conformal invariance of GFF).

Relating small and large quantiles

- In order to tie together the percolation arguments and the RSW arguments, we need to relate different quantiles of the crossing distances.
- To do this, we seek to bound $\operatorname{Var}\left(\log d_{\mathfrak{R}^{*}, \mathfrak{R}, \delta}\right.$ (left-right $\left.)\right)$.
- Then $p<q$ quantiles of $d_{\mathfrak{R}^{*}, \mathfrak{R}, \delta}$ (left-right) are related by a multiplicative factor of at most

$$
\exp \left\{\left(q^{-1 / 2}+(1-q)^{-1 / 2}\right) \sqrt{\operatorname{Var}\left(\log d_{\mathfrak{R}^{*}, \mathfrak{R}, \delta}(\text { left-right })\right)}\right\}
$$

Efron-Stein argument

- The field can be subdivided into a sum of "fine" and "coarse" pieces using the "white-noise decomposition."
- "Fine" here means concentrated on boxes a factor of K smaller, where K is very large but fixed.
- Efron-Stein inequality:
$\operatorname{Var}\left(\log d_{\mathfrak{R}^{*}, \mathfrak{R}, \delta}(\right.$ left-right $\left.)\right) \leq \sum_{i} \mathbf{E}\left(\log \frac{\tilde{d}_{\mathfrak{R}^{*}, \mathfrak{R}, \delta}^{(i)}(\text { left-right })}{d_{\mathfrak{R}^{*}, \mathfrak{R}, \delta}(\text { left-right })}\right)^{2}$,
where $\tilde{d}_{\mathfrak{R}^{*}, \mathfrak{R}, \delta}^{(i)}$ is the metric where piece i has been resampled.
- So the goal becomes to control the ratio between the resampled and original distances.

Resampling the coarse field

- The coarse field is smooth, and when it is resampled it has a Lipschitz effect on the crossing distance.
- Gaussian concentration and a variance bound on the coarse field implies that the variance coming from resampling the coarse field is bounded by $\log K$.

Resampling the fine field

- When we resample the fine field in a box, the weight coming from most of the geodesic (the part far away from where the field is resampled) doesn't change much.
- On the other hand, we can bound the change in the weight of the geodesic close to the resampled location by replacing the path with an annular crossing in that region.
- So the variance coming from resampling the small boxes is like

$$
\begin{aligned}
\sum_{i} \mathbf{E} & \left(\frac{\tilde{d}_{\mathfrak{R}^{*}, \mathfrak{S}_{i}, \delta}^{(i)}(\text { circuit })}{d_{\mathfrak{R}^{*}, \mathfrak{R}, \delta}(\text { left-right })}\right)^{2} \\
& \leq\left(\sum_{i} \frac{\tilde{d}_{\mathfrak{R}^{*}, \mathfrak{S}_{i}, \delta}^{(i)}(\text { circuit })}{d_{\mathfrak{R}^{*}, \mathfrak{R}, \delta}(\text { left-right })}\right)\left(\max _{i} \frac{\tilde{d}_{\mathfrak{R}^{*}, \Im_{i}, \delta}^{(i)}(\text { circuit })}{d_{\mathfrak{R}^{*}, \mathfrak{R}, \delta}(\text { left-right })}\right)
\end{aligned}
$$

- Here, \mathfrak{C}_{i} is a box containing the area where the field is resampled, and $\tilde{d}_{\mathfrak{R}^{*}, \Im_{i}, \delta}^{(i)}$ (circuit) is the weight of an annular circuit around \mathfrak{C}_{i}.

The effect of subcriticality

- In the inequality

$$
\begin{aligned}
\sum_{i} \mathbf{E} & \left(\frac{\tilde{d}_{\mathfrak{R}^{*}, \mathfrak{S}_{i}, \delta}^{(i)}(\text { circuit })}{d_{\mathfrak{R}^{*}, \mathfrak{R}, \delta}(\text { left-right })}\right)^{2} \\
& \leq\left(\sum_{i} \frac{\tilde{d}_{\mathfrak{R}^{*}, \mathfrak{S}_{i}, \delta}^{(i)}(\text { circuit })}{d_{\mathfrak{R}^{*}, \mathfrak{R}, \delta}(\text { left-right })}\right)\left(\max _{i} \frac{\tilde{d}_{\mathfrak{R}^{*}, \mathfrak{S}_{i}, \delta}^{(i)}(\text { circuit })}{d_{\mathfrak{R}^{*}, \mathfrak{R}, \delta}(\text { left-right })}\right),
\end{aligned}
$$

the first factor is on the order of $\exp \{C \sqrt{V}\}$, where V is the variance bound inductively attained at the smaller scale.

- That is, by the concentration at the smaller scale, size of first factor does not depend on K, but it does depend on the previously-attained variance bound which is necessary for the concentration at the smaller scale.
- The second factor is order $\exp \{C \sqrt{V}\} K^{-c}$, because, as previously discussed, boxes at the smaller scale "look smaller," even after considering the coarse field.

The bound on the variance of the logarithm

- Combining fine- and coarse-field contributions, obtain

$$
V^{\prime}:=\operatorname{Var}\left(\log d_{\mathfrak{R}^{*}, \mathfrak{R}, \delta}(\text { left-right })\right) \leq C\left(\log K+e^{C \sqrt{V}} K^{-c}\right) .
$$

- In order to close the induction, need a V so that

$$
c\left(\log K+e^{c \sqrt{V}} K^{-c}\right) \leq V .
$$

- V can be taken to be a small constant times $\log K$.
- Actually, there is an additional term in the variance bound, which goes to 0 as $S \rightarrow \infty$ but to ∞ as $K \rightarrow \infty$.
- Comes from the inability of the path to be subdivided in the presence of LGD balls with large Euclidean diameter.
- Thus the base case of the induction imposes additional challenges: use an a priori bound of J. Ding-O. Zeitouni-F. Zhang (preprint, 2018).

Further questions

- Can the result be extended toto other similar discrete approximations? To other models?
- What are good techniques for RSW results in the absence of conformal invariance?
- What are the scaling exponents?
- Any question you want to ask about the limiting metrics.

