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Liouville first-passage percolation

▶ “First passage percolation on the exponential of Gaussian
free field”: Liouville first-passage percolation (LFPP) is
first-passage percolation on e𝜉h, where h is a (discrete or
circle-averaged continuous) Gaussian free field and 𝜉 is an
inverse-temperature parameter.



Distance exponent

▶ How does the metric (left–right crossing distance,
point-to-point distance, diameter. . . ) scale with the box
size S (equivalently the mollification scale 𝛿) and the
temperature 𝜉?
▶ Y. Watabiki (1993): non-rigorous prediction for the distance

exponent.
▶ J. Ding–F. Zhang (PTRF, 2018): the exponent of the

distance is non-universal among log-correlated Gaussian
fields. Therefore, answering this question must use rather
fine information about the Gaussian free field.

▶ Ding–S. Goswami (CPAM, 2019): upper bounds on the
exponent for high temperature 𝜉 ≪ 1 (seems to contradict
Watabiki).

▶ Ding–E. Gwynne (Preprint, 2018): bounds for general
(subcritical) temperature.
▶ Includes precise value only at one special value of 𝜉, which

corresponds to expected equivalence between limiting metric
and the Brownian map (J.P. Miller–S. Sheffield 2015–’16).



Limiting metric

▶ Does there exist a scaling limit of the metric as the box size
goes to ∞ (equivalently, as the mollification scale goes to
0)?
▶ Need to rescale the metric by the typical distance, which is

so far unknown.
▶ No non-universality expected here: a limiting metric should

exist for a wide class of log-correlated Gaussian fields.
▶ Uniqueness of the limiting metric done via axiomatic

characterization by Gwynne and Miller.



Liouville quantum gravity
▶ Liouville quantum gravity is supposed to be a random

geometry given by reweighting the Lebesgue measure, or
the Euclidean metric, by e𝛾h, where h is a (continuum)
Gaussian free field.

▶ Problem: h is not a function but rather a distribution, and
so it cannot be exponentiated.

▶ Construction of LQG measure (B. Duplantier–S. Sheffield
2010):
▶ Consider 𝜇𝜀 (dx) = e𝛾h𝜀 (x )+ 1

2 𝛾
2 log 𝜀dx , where h𝜀 is the circle

average process of the Gaussian free field with circles of
radius 𝜀.
▶ Note the renormalization by 𝜀𝛾

2/2.
▶ If 𝛾 < 2 (critical temperature), then there is a random

measure 𝜇 so that, with probability 1, we have

lim
k→∞

𝜇2−k = 𝜇

weakly.



Liouville graph distance

▶ Liouville FPP is intuitive to define, but there is another
notion of discretized metric related to Liouville quantum
gravity.

▶ Let Ω ⊂ R2. Consider the 𝛾-LQG measure 𝜇 on some
domain Ω′ ⊃ Ω.

▶ For x ,y ∈ Ω, define dLGD
Ω′ ,Ω, 𝛿

(x ,y ) to be the minimum size of
a set of Euclidean balls with centers in Ω, each having
LQG measure at most 𝛿, whose union forms a connected
set that includes x and y .



Main result

Notation: if ℜ is a box, let ℜ∗ be a box with three times the side
lengths, centered around ℜ.

Theorem
Suppose that 𝛾 < 2. Let ℜ be a rectangular subset of R2. For
any sequence 𝛿n ↓ 0, there is a subsequence (𝛿nk ) and a
nontrivial random metric d :ℜ×ℜ→ R so that

Q−1
𝛿nk

dLGD
ℜ∗,ℜ, 𝛿nk

→ d

in distribution with respect to the uniform topology of functions
ℜ×ℜ→ R. Here Q𝛿 is the median Liouville graph distance
between and left- and right-hand sides of ℜ.

▶ No assumption of high temperature beyond subcriticality.
▶ Don’t need to know the scaling exponent (size of Q).



Multiscale analysis: the effect of the coarse field
▶ We would like to understand the LGD metric using

multiscale analysis.
▶ If 𝔖 is a subbox of ℜ, we would like to be able to relate

dLGD
ℜ∗ ,𝔖, 𝛿

and dLGD
𝔖∗ ,𝔖, 𝛿

.
▶ There is a relationship between hℜ∗ and h𝔖∗ : we can

couple the GFFs so that hℜ∗ ↾𝔖∗= h𝔖∗ +hℜ∗:𝔖∗ , where hℜ∗:𝔖∗

(“coarse field”) is the harmonic interpolation of hℜ∗ on h𝔖∗

(hence smooth). Moreover, hℜ∗:𝔖∗ and h𝔖∗ (“fine field”) are
independent.
▶ Compare this to the branching random walk picture.
▶ This means that

dLGD
ℜ∗ ,𝔖, 𝛿′′ ≤ dLGD

ℜ∗ ,𝔖, 𝛿
≤ dLGD

ℜ∗ ,𝔖, 𝛿′ ,

where

𝛿′′ = exp

{
−𝛾min

x∈𝔖
hℜ∗:𝔖∗ (x)

}
, 𝛿′ = exp

{
−𝛾max

x∈𝔖
hℜ∗:𝔖∗ (x)

}
.



Multiscale analysis: the effect of the coarse field
▶ dLGD

ℜ∗,𝔖, 𝛿′′ ≤ dLGD
ℜ∗,𝔖, 𝛿

≤ dLGD
ℜ∗,𝔖, 𝛿′ , where

𝛿′′ = exp {−𝛾minx∈𝔖 hℜ∗:𝔖∗ (x)} 𝛿,
𝛿′ = exp {−𝛾maxx∈𝔖 hℜ∗:𝔖∗ (x)} 𝛿.

▶ Also have scaling property of LQG:

dLGD
𝛼ℜ∗,𝛼𝔖,𝛼2+𝛾2/2 𝛿

law
= dLGD

ℜ∗,𝔖, 𝛿
.

▶ Maximum of the Gaussian free field: if 𝔖1, . . . ,𝔖K 2 is a set
of translates of 1

K ℜ, all contained in ℜ, then we have

K 2

min
i=1

min
x∈𝔖

hℜ∗:𝔖∗ (x) ≳ −2 logK ;
K 2

max
i=1

max
x∈𝔖

hℜ∗:𝔖∗ (x) ≲ 2 logK

with Gaussian concentration.
▶ Putting this all together: we have that

dLGD
𝛼i𝔖

∗
i ,𝛼i𝔖i , 𝛿

≲ dLGD
ℜ∗,𝔖i , 𝛿

≲ dLGD
𝛽i𝔖

∗,𝛽i𝔖i , 𝛿
,

where (since 𝛾 < 2)

max
i

𝛽i ≤ K
2𝛾

2+𝛾2/2 < K .



Subcriticality leads to averaging

▶ Recall that 𝔖1, . . . ,𝔖K 2 is a set of translates of 1
K ℜ.

▶ dLGD
𝛼i𝔖

∗
i ,𝛼i𝔖i , 𝛿

≤ dLGD
ℜ∗,𝔖i , 𝛿

≲ dLGD
𝛽i𝔖

∗,𝛽i𝔖i , 𝛿
, where

maxi 𝛽i ≤ K
𝛾

2+𝛾2/2 < K .

▶ “Subboxes look smaller than the overall box, even after
considering the coarse field.”

▶ Idea: the crossing weight across a large box should feel
the weight from many subboxes, and thus should be doing
some kind of averaging, leading to concentration.



Chaining argument
▶ Mechanism to show tightness: show that the metric is

Hölder continuous.
▶ Use a chaining argument:

▶ Ingredients:
▶ Concentration for the left–right crossing distance at each

scale.
▶ Crossing distances grow at least polynomially in the scale:

median(dLGD
Kℜ∗ ,Kℜ, 𝛿

) ≳ K cmedian(dLGD
ℜ∗ ,ℜ, 𝛿

)

▶ =⇒ summability.



Percolation arguments
▶ Left–tails and right–tails of the crossings, as well as

relationships between crossing distances at different
scales, can be obtained through “percolation arguments”:

▶ A left–right crossing of the large box must include many
left–right crossings of smaller boxes.

▶ A left–right crossing of the large box can be assembled
from left–right circuits around smaller annuli.

▶ Similar to strategies used extensively before, most closely
in Ding–D. high-temperature result and Dubédat–Falconet
result for *-scale invariant fields.



Concentration through percolation

▶

▶ Problem: the left and right tails aren’t in terms of quite the
same thing.
▶ Left tail in terms of small quantiles of “easy” crossings at

smaller scales.
▶ Right tail in terms of large quantiles of “hard” crossings at

smaller scales.
▶ So... need to relate easy and hard crossings, and need to

relate small and large (but fixed) quantiles.



RSW result: relate easy and hard crossing quantiles

▶ First results: Russo, Seymour, Welsh for Bernoulli
percolation in 1979–’80.

▶ Ding–D. high-temperature result for LFPP: adapted
intricate inductive RSW result due to V. Tassion (2016).

▶ Dubédat–Falconet: introduced very simple RSW proof
based on conformal invariance.
▶ We adapt the Dubédat–Falconet proof to Liouville graph

distance.



RSW strategy
▶ Dubédat–Falconet RSW strategy: map

y

x0

x1

X Y

𝔈1 𝔉1

Fy
Fy (X )Fy (x0)

Fy (x1) Fy (y )

▶ A positive fraction of easy–crossing geodesics can be
mapped to hard–crossing geodesics if y is chosen
correctly.

▶ Uses approximate conformal invariance of LGD (coming
from conformal invariance of GFF).



Relating small and large quantiles

▶ In order to tie together the percolation arguments and the
RSW arguments, we need to relate different quantiles of
the crossing distances.

▶ To do this, we seek to bound Var
(
logdℜ∗,ℜ, 𝛿 (left–right )

)
.

▶ Then p < q quantiles of dℜ∗,ℜ, 𝛿 (left–right ) are related by a
multiplicative factor of at most

exp

{(
q−1/2 + (1−q)−1/2

) √︃
Var

(
logdℜ∗,ℜ, 𝛿 (left–right )

)}
.



Efron–Stein argument

▶ The field can be subdivided into a sum of “fine” and
“coarse” pieces using the “white-noise decomposition.”

▶ “Fine” here means concentrated on boxes a factor of K
smaller, where K is very large but fixed.

▶ Efron–Stein inequality:

Var
(
logdℜ∗,ℜ, 𝛿 (left–right )

)
≤
∑︁

i

E©«log
d̃ (i )
ℜ∗,ℜ, 𝛿

(left–right )

dℜ∗,ℜ, 𝛿 (left–right )
ª®¬

2

,

where d̃ (i )
ℜ∗,ℜ, 𝛿

is the metric where piece i has been
resampled.

▶ So the goal becomes to control the ratio between the
resampled and original distances.



Resampling the coarse field

▶ The coarse field is smooth, and when it is resampled it has
a Lipschitz effect on the crossing distance.

▶ Gaussian concentration and a variance bound on the
coarse field implies that the variance coming from
resampling the coarse field is bounded by logK .



Resampling the fine field
▶ When we resample the fine field in a box, the weight

coming from most of the geodesic (the part far away from
where the field is resampled) doesn’t change much.

▶ On the other hand, we can bound the change in the weight
of the geodesic close to the resampled location by
replacing the path with an annular crossing in that region.

▶ So the variance coming from resampling the small boxes is
like∑︁

i

E©«
d̃ (i )
ℜ∗,𝔖i , 𝛿

(circuit)

dℜ∗,ℜ, 𝛿 (left–right )
ª®¬

2

≤ ©«
∑︁

i

d̃ (i )
ℜ∗,𝔖i , 𝛿

(circuit)

dℜ∗,ℜ, 𝛿 (left–right )
ª®¬©«max

i

d̃ (i )
ℜ∗,𝔖i , 𝛿

(circuit)

dℜ∗,ℜ, 𝛿 (left–right )
ª®¬ .

▶ Here, ℭi is a box containing the area where the field is
resampled, and d̃ (i )

ℜ∗,𝔖i , 𝛿
(circuit) is the weight of an annular

circuit around ℭi .



The effect of subcriticality
▶ In the inequality

∑︁
i

E©«
d̃ (i )
ℜ∗,𝔖i , 𝛿

(circuit)

dℜ∗,ℜ, 𝛿 (left–right )
ª®¬

2

≤ ©«
∑︁

i

d̃ (i )
ℜ∗,𝔖i , 𝛿

(circuit)

dℜ∗,ℜ, 𝛿 (left–right )
ª®¬©«max

i

d̃ (i )
ℜ∗,𝔖i , 𝛿

(circuit)

dℜ∗,ℜ, 𝛿 (left–right )
ª®¬ ,

the first factor is on the order of exp
{
C
√

V
}
, where V is the

variance bound inductively attained at the smaller scale.
▶ That is, by the concentration at the smaller scale, size of

first factor does not depend on K , but it does depend on the
previously-attained variance bound which is necessary for
the concentration at the smaller scale.

▶ The second factor is order exp
{
C
√

V
}

K −c , because, as
previously discussed, boxes at the smaller scale “look
smaller,” even after considering the coarse field.



The bound on the variance of the logarithm

▶ Combining fine- and coarse-field contributions, obtain

V ′ B Var
(
logdℜ∗,ℜ, 𝛿 (left–right )

)
≤ C

(
logK +eC

√
V K −c

)
.

▶ In order to close the induction, need a V so that

C
(
logK +eC

√
V K −c

)
≤ V .

▶ V can be taken to be a small constant times logK .
▶ Actually, there is an additional term in the variance bound,

which goes to 0 as S →∞ but to ∞ as K →∞.
▶ Comes from the inability of the path to be subdivided in the

presence of LGD balls with large Euclidean diameter.
▶ Thus the base case of the induction imposes additional

challenges: use an a priori bound of J. Ding–O. Zeitouni–F.
Zhang (preprint, 2018).



Further questions

▶ Can the result be extended toto other similar discrete
approximations? To other models?
▶ What are good techniques for RSW results in the absence

of conformal invariance?
▶ What are the scaling exponents?
▶ Any question you want to ask about the limiting metrics.


