KPZ fluctuations and semi-localization

Yu Gu (University of Maryland)

KPZ meet KPZ 2024

Statistical physics model of path in random environment ω(i,j) i.i.d. r.v.; ξ(t,x): random field

- $\omega(i,j)$ i.i.d. r.v.; $\xi(t,x)$: random field
- $\{S_i\}$ random walk; $\{B_t\}$: Brownian motion

- $\omega(i,j)$ i.i.d. r.v.; $\xi(t,x)$: random field
- $\{S_i\}$ random walk; $\{B_t\}$: Brownian motion
- partition function $Z_t = \mathbb{E} e^{\sum_{i=1}^t \omega(i,S_i)}, \qquad Z_t = \mathbb{E} e^{\int_0^t \xi(s,B_s) ds}$

- $\omega(i,j)$ i.i.d. r.v.; $\xi(t,x)$: random field
- $\{S_i\}$ random walk; $\{B_t\}$: Brownian motion
- partition function $Z_t = \mathbb{E}e^{\sum_{i=1}^t \omega(i,S_i)}, \qquad Z_t = \mathbb{E}e^{\int_0^t \xi(s,B_s)ds}$
- (in d=1) free energy log $Z_t \sim \gamma t + t^{1/3} \chi$

- $\omega(i,j)$ i.i.d. r.v.; $\xi(t,x)$: random field
- $\{S_i\}$ random walk; $\{B_t\}$: Brownian motion
- partition function $Z_t = \mathbb{E}e^{\sum_{i=1}^t \omega(i,S_i)}, \qquad Z_t = \mathbb{E}e^{\int_0^t \xi(s,B_s)ds}$
- (in d=1) free energy log $Z_t \sim \gamma t + t^{1/3} \chi$
- (in d=1) polymer endpoint $S_t, B_t \sim t^{2/3}$

- $\omega(i,j)$ i.i.d. r.v.; $\xi(t,x)$: random field
- $\{S_i\}$ random walk; $\{B_t\}$: Brownian motion
- partition function $Z_t = \mathbb{E}e^{\sum_{i=1}^t \omega(i,S_i)}, \qquad Z_t = \mathbb{E}e^{\int_0^t \xi(s,B_s)ds}$
- (in d=1) free energy log $Z_t \sim \gamma t + t^{1/3} \chi$
- (in d=1) polymer endpoint $S_t, B_t \sim t^{2/3}$

Statistical physics model of path in random environment

- $\omega(i,j)$ i.i.d. r.v.; $\xi(t,x)$: random field
- $\{S_i\}$ random walk; $\{B_t\}$: Brownian motion
- partition function $Z_t = \mathbb{E}e^{\sum_{i=1}^t \omega(i,S_i)}, \qquad Z_t = \mathbb{E}e^{\int_0^t \xi(s,B_s)ds}$
- (in d=1) free energy log $Z_t \sim \gamma t + t^{1/3} \chi$
- (in d=1) polymer endpoint $S_t, B_t \sim t^{2/3}$

More on the polymer endpoint: localization

 for quenched polymer measure (a.e realization of random environment), the endpoint stays in a bounded region near the "favorite" point with high probability

Statistical physics model of path in random environment

- $\omega(i,j)$ i.i.d. r.v.; $\xi(t,x)$: random field
- $\{S_i\}$ random walk; $\{B_t\}$: Brownian motion
- partition function $Z_t = \mathbb{E}e^{\sum_{i=1}^t \omega(i,S_i)}, \qquad Z_t = \mathbb{E}e^{\int_0^t \xi(s,B_s)ds}$
- (in d=1) free energy log $Z_t \sim \gamma t + t^{1/3} \chi$
- (in d=1) polymer endpoint $S_t, B_t \sim t^{2/3}$

More on the polymer endpoint: localization

- for quenched polymer measure (a.e realization of random environment), the endpoint stays in a bounded region near the "favorite" point with high probability
- localization and the 1 : 2 : 3 KPZ scaling seem to be two different aspects of the model

Statistical physics model of path in random environment

- $\omega(i,j)$ i.i.d. r.v.; $\xi(t,x)$: random field
- $\{S_i\}$ random walk; $\{B_t\}$: Brownian motion
- partition function $Z_t = \mathbb{E}e^{\sum_{i=1}^t \omega(i,S_i)}, \qquad Z_t = \mathbb{E}e^{\int_0^t \xi(s,B_s)ds}$
- (in d=1) free energy log $Z_t \sim \gamma t + t^{1/3} \chi$
- (in d=1) polymer endpoint $S_t, B_t \sim t^{2/3}$

More on the polymer endpoint: localization

- for quenched polymer measure (a.e realization of random environment), the endpoint stays in a bounded region near the "favorite" point with high probability
- localization and the 1 : 2 : 3 KPZ scaling seem to be two different aspects of the model

Question: is there a relation between localization and KPZ scaling?

- questions I'd like to ask
- what we can do

The partition function $Z_t = \mathbb{E}e^{\sum_{i=1}^t \omega(i,S_i)}$, assuming $\{\omega(i,j)\}$ are i.i.d N(0,1)

The partition function $Z_t = \mathbb{E}e^{\sum_{i=1}^t \omega(i,S_i)}$, assuming $\{\omega(i,j)\}$ are i.i.d N(0,1)

• Poincare inequality $\operatorname{Var} \log Z_t \leq \sum_{i,j} \mathbf{E} |D_{i,j} \log Z_t|^2$

The partition function $Z_t = \mathbb{E}e^{\sum_{i=1}^t \omega(i,S_i)}$, assuming $\{\omega(i,j)\}$ are i.i.d N(0,1)

- Poincare inequality $\operatorname{Var} \log Z_t \leq \sum_{i,j} \mathbf{E} |D_{i,j} \log Z_t|^2$
- derivative $D_{i,j} \log Z_t$ = quenched probability passing (i,j)

$$D_{i,j} \log Z_t = \frac{D_{i,j} Z_t}{Z_t} = \frac{\mathbb{E}[e^{\sum_{i=1}^t \omega(i,S_i)} \mathbf{1}_{S_i=j}]}{Z_t} = \hat{\mathbb{P}}_t[S_i = j]$$

The partition function $Z_t = \mathbb{E}e^{\sum_{i=1}^t \omega(i,S_i)}$, assuming $\{\omega(i,j)\}$ are i.i.d N(0,1)

- Poincare inequality $\operatorname{Var} \log Z_t \leq \sum_{i,i} \mathbf{E} |D_{i,j} \log Z_t|^2$
- derivative $D_{i,j} \log Z_t$ = quenched probability passing (i,j)

$$D_{i,j}\log Z_t = \frac{D_{i,j}Z_t}{Z_t} = \frac{\mathbb{E}[e^{\sum_{i=1}^t \omega(i,S_i)} \mathbf{1}_{S_i=j}]}{Z_t} = \hat{\mathbb{P}}_t[S_i=j]$$

• Upper bound by Poincare: $\operatorname{Var} \log Z_t \leq t$

$$\sum_{i,j} \mathbf{E} |D_{i,j} \log Z_t|^2 = \sum_{i,j} \mathbf{E} \hat{\mathbb{P}}_t [S_i = j]^2 \leq \sum_{i,j} \mathbf{E} \hat{\mathbb{P}}_t [S_i = j] = t$$

The partition function $Z_t = \mathbb{E}e^{\sum_{i=1}^t \omega(i,S_i)}$, assuming $\{\omega(i,j)\}$ are i.i.d N(0,1)

- Poincare inequality $\operatorname{Var} \log Z_t \leq \sum_{i,i} \mathbf{E} |D_{i,j} \log Z_t|^2$
- derivative $D_{i,j} \log Z_t$ = quenched probability passing (i,j)

$$D_{i,j} \log Z_t = \frac{D_{i,j} Z_t}{Z_t} = \frac{\mathbb{E}[e^{\sum_{i=1}^t \omega(i,S_i)} \mathbf{1}_{S_i=j}]}{Z_t} = \hat{\mathbb{P}}_t[S_i = j]$$

• Upper bound by Poincare: $\operatorname{Var} \log Z_t \leq t$

$$\sum_{i,j} \mathbf{E} |D_{i,j} \log Z_t|^2 = \sum_{i,j} \mathbf{E} \hat{\mathbb{P}}_t [S_i = j]^2 \leq \sum_{i,j} \mathbf{E} \hat{\mathbb{P}}_t [S_i = j] = t$$

• localization and paths overlap: S^1, S^2 independently sampled from $\hat{\mathbb{P}}_t$

$$\sum_{i,j} \hat{\mathbb{P}}_t [S_i = j]^2 = \hat{\mathbb{E}}_t \sum_{i=1}^t \mathbb{1}_{S_i^1 = S_i^2} \sim O(t)$$

The partition function $Z_t = \mathbb{E}e^{\sum_{i=1}^t \omega(i,S_i)}$, assuming $\{\omega(i,j)\}$ are i.i.d N(0,1)

- Poincare inequality $\operatorname{Var} \log Z_t \leq \sum_{i,i} \mathbf{E} |D_{i,j} \log Z_t|^2$
- derivative $D_{i,j} \log Z_t$ = quenched probability passing (i,j)

$$D_{i,j} \log Z_t = \frac{D_{i,j}Z_t}{Z_t} = \frac{\mathbb{E}[e^{\sum_{i=1}^t \omega(i,S_i)} \mathbf{1}_{S_i=j}]}{Z_t} = \hat{\mathbb{P}}_t[S_i=j]$$

• Upper bound by Poincare: $\operatorname{Var} \log Z_t \leq t$

$$\sum_{i,j} \mathbf{E} |D_{i,j} \log Z_t|^2 = \sum_{i,j} \mathbf{E} \hat{\mathbb{P}}_t [S_i = j]^2 \leq \sum_{i,j} \mathbf{E} \hat{\mathbb{P}}_t [S_i = j] = t$$

• localization and paths overlap: S^1, S^2 independently sampled from $\hat{\mathbb{P}}_t$

$$\sum_{i,j} \hat{\mathbb{P}}_t [S_i = j]^2 = \hat{\mathbb{E}}_t \sum_{i=1}^t \mathbb{1}_{S_i^1 = S_i^2} \sim O(t)$$

localization provides an incorrect upper bound

Stochastic calculus: let W be a BM, X be "smooth" r.v. depends on $\{W_t\}_{t\geq 0}$:

• martingale representation: $X - \mathbf{E}X = \int_0^\infty f_s dW_s$

Stochastic calculus: let W be a BM, X be "smooth" r.v. depends on $\{W_t\}_{t\geq 0}$:

- martingale representation: $X \mathbf{E}X = \int_0^\infty f_s dW_s$
- Clark-Ocone formula:

$$f_s = \mathbf{E}[D_s X | \mathcal{F}_s]$$

 D_s : the (Malliavin) derivative of X on the infinitesimal increment of W at s

Stochastic calculus: let W be a BM, X be "smooth" r.v. depends on $\{W_t\}_{t\geq 0}$:

- martingale representation: $X \mathbf{E}X = \int_0^\infty f_s dW_s$
- Clark-Ocone formula:

$$f_s = \mathbf{E}[D_s X | \mathcal{F}_s]$$

 D_s : the (Malliavin) derivative of X on the infinitesimal increment of W at s

Ito isometry

$$\operatorname{Var} X = \int_0^\infty \mathsf{E} f_s^2 ds = \int_0^\infty \mathsf{E} |\mathsf{E}[D_s X | \mathcal{F}_s]|^2 ds$$

Stochastic calculus: let W be a BM, X be "smooth" r.v. depends on $\{W_t\}_{t\geq 0}$:

- martingale representation: $X \mathbf{E}X = \int_0^\infty f_s dW_s$
- Clark-Ocone formula:

$$f_s = \mathbf{E}[D_s X | \mathcal{F}_s]$$

 D_s : the (Malliavin) derivative of X on the infinitesimal increment of W at s

Ito isometry

$$\operatorname{Var} X = \int_0^\infty \mathsf{E} f_s^2 ds = \int_0^\infty \mathsf{E} |\mathsf{E}[D_s X | \mathcal{F}_s]|^2 ds$$

• Cauchy-Schwarz leads to Gaussian Poincare: $VarX \le \int_0^\infty \mathbf{E} |D_sX|^2 ds$

Stochastic calculus: let W be a BM, X be "smooth" r.v. depends on $\{W_t\}_{t\geq 0}$:

- martingale representation: $X \mathbf{E}X = \int_0^\infty f_s dW_s$
- Clark-Ocone formula:

$$f_s = \mathbf{E}[D_s X | \mathcal{F}_s]$$

 D_s : the (Malliavin) derivative of X on the infinitesimal increment of W at s

Ito isometry

$$\operatorname{Var} X = \int_0^\infty \mathsf{E} f_s^2 ds = \int_0^\infty \mathsf{E} |\mathsf{E}[D_s X | \mathcal{F}_s]|^2 ds$$

• Cauchy-Schwarz leads to Gaussian Poincare: $\mathrm{Var} X \leq \int_0^\infty \mathsf{E} |D_s X|^2 ds$

• in spacetime setting $Z_t = \mathbb{E} e^{\int_0^t \xi(s,B_s) ds}$

$$\log Z_t - \mathsf{E} \log Z_t = \int_0^t \int_{\mathbb{R}^d} \mathsf{E}[D_{s,y} \log Z_t | \mathcal{F}_s] \xi(s,y) dy ds$$

 $D_{s,y} \log Z_t$: quenched density of polymer at (s, y)

Continuous setting: $Z_t = \mathbb{E}e^{\int_0^t \xi(r,B_r)dr}$ • quenched density $(D_{s,y}$ is the derivative with respect to $\xi(s,y)$)

$$\rho_t(s, y) := D_{s,y} \log Z_t = \frac{\mathbb{E}[e^{\int_0^t \xi(r, B_r) dr} \delta(B_s - y)]}{Z_t}$$

Continuous setting: $Z_t = \mathbb{E}e^{\int_0^t \xi(r,B_r)dr}$ • quenched density $(D_{s,y}$ is the derivative with respect to $\xi(s,y)$)

$$\rho_t(s, y) := D_{s,y} \log Z_t = \frac{\mathbb{E}[e^{\int_0^t \xi(r, B_r) dr} \delta(B_s - y)]}{Z_t}$$

Clark-Ocone formula

$$\log Z_t - \mathsf{E} \log Z_t = \int_0^t \int_{\mathbb{R}^d} \mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \xi(s, y) dy ds$$

Continuous setting: $Z_t = \mathbb{E}e^{\int_0^t \xi(r,B_r)dr}$ • quenched density $(D_{s,y}$ is the derivative with respect to $\xi(s,y)$)

$$\rho_t(s, y) := D_{s,y} \log Z_t = \frac{\mathbb{E}[e^{\int_0^t \xi(r, B_r) dr} \delta(B_s - y)]}{Z_t}$$

Clark-Ocone formula

$$\log Z_t - \mathsf{E} \log Z_t = \int_0^t \int_{\mathbb{R}^d} \mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \xi(s, y) dy ds$$

• Ito isometry (assume ξ is white noise)

$$\operatorname{Var} \log Z_t = \int_0^t \int_{\mathbb{R}} \mathsf{E} \bigg[\mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \bigg] dy ds$$

Continuous setting: $Z_t = \mathbb{E}e^{\int_0^t \xi(r,B_r)dr}$ • quenched density $(D_{s,y}$ is the derivative with respect to $\xi(s,y)$)

$$\rho_t(s, y) := D_{s,y} \log Z_t = \frac{\mathbb{E}[e^{\int_0^t \xi(r, B_r) dr} \delta(B_s - y)]}{Z_t}$$

Clark-Ocone formula

$$\log Z_t - \mathsf{E} \log Z_t = \int_0^t \int_{\mathbb{R}^d} \mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \xi(s, y) dy ds$$

• Ito isometry (assume ξ is white noise)

$$\operatorname{Var} \log Z_t = \int_0^t \int_{\mathbb{R}} \mathsf{E} \bigg[\mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \bigg] dy ds$$

 fluctuation of free energy is related to overlap of "conditioned midpoint density"

Continuous setting: $Z_t = \mathbb{E}e^{\int_0^t \xi(r,B_r)dr}$ • quenched density $(D_{s,y}$ is the derivative with respect to $\xi(s,y)$)

$$\rho_t(s, y) := D_{s,y} \log Z_t = \frac{\mathbb{E}[e^{\int_0^t \xi(r, B_r) dr} \delta(B_s - y)]}{Z_t}$$

Clark-Ocone formula

$$\log Z_t - \mathsf{E} \log Z_t = \int_0^t \int_{\mathbb{R}^d} \mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \xi(s, y) dy ds$$

• Ito isometry (assume ξ is white noise)

$$\operatorname{Var} \log Z_t = \int_0^t \int_{\mathbb{R}} \mathsf{E} \bigg[\mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \bigg] dy ds$$

- fluctuation of free energy is related to overlap of "conditioned midpoint density"
- it reduces to study how the random density E[\(\rho_t(s, y) | \mathcal{F}_s\)] overlap with itself

Three levels of localization

$$\operatorname{Var} \log Z_t = \int_0^t \int_{\mathbb{R}} \mathsf{E} \bigg[\mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \bigg] dy ds$$

$$\operatorname{Var} \log Z_t = \int_0^t \int_{\mathbb{R}} \mathsf{E} \Big[\mathsf{E} \big[\rho_t(s, y) | \mathcal{F}_s \big] \mathsf{E} \big[\rho_t(s, y) | \mathcal{F}_s \big] \Big] dy ds$$

• if there is no conditional expectation (as if apply Gaussian-Poincare)

$$\int_{\mathbb{R}} \rho_t(s, y)^2 dy \sim O(1)$$

measures the overlap of the quenched density (complete localization) $\operatorname{Var} \log Z_t \lesssim t$

$$\operatorname{Var} \log Z_t = \int_0^t \int_{\mathbb{R}} \mathsf{E} \bigg[\mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \bigg] dy ds$$

• if there is no conditional expectation (as if apply Gaussian-Poincare)

$$\int_{\mathbb{R}} \rho_t(s, y)^2 dy \sim O(1)$$

measures the overlap of the quenched density (complete localization) $\operatorname{Var} \log Z_t \lesssim t$

• if we replace conditional expectation by full expectation

$$\int_{\mathbb{R}} \mathsf{E}[\rho_t(s,y)] \mathsf{E}[\rho_t(s,y)] dy \sim \int \big(\frac{1}{s^{2/3}} \mathbb{1}_{[-s^{2/3},s^{2/3}]}(y)\big)^2 dy \sim s^{-2/3}$$

no localization and $\operatorname{Var} \log Z_t \gtrsim t^{1/3}$

$$\operatorname{Var} \log Z_t = \int_0^t \int_{\mathbb{R}} \mathsf{E} \bigg[\mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \bigg] dy ds$$

• if there is no conditional expectation (as if apply Gaussian-Poincare)

$$\int_{\mathbb{R}} \rho_t(s, y)^2 dy \sim O(1)$$

measures the overlap of the quenched density (complete localization) $\operatorname{Var} \log Z_t \lesssim t$

• if we replace conditional expectation by full expectation

$$\int_{\mathbb{R}} \mathsf{E}[\rho_t(s,y)] \mathsf{E}[\rho_t(s,y)] dy \sim \int \big(\frac{1}{s^{2/3}} \mathbb{1}_{[-s^{2/3},s^{2/3}]}(y)\big)^2 dy \sim s^{-2/3}$$

no localization and $\operatorname{Var} \log Z_t \gtrsim t^{1/3}$

• The KPZ fluctuation $\operatorname{Var}\log Z_t \sim t^{2/3}$ is in between

$$\operatorname{Var} \log Z_t = \int_0^t \int_{\mathbb{R}} \mathsf{E} \bigg[\mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \bigg] dy ds$$

• the study of fluctuations of log Z_t reduces to the overlap of the conditional density $\mathbf{E}[\rho_t(s, y)|\mathcal{F}_s]$

$$\operatorname{Var} \log Z_t = \int_0^t \int_{\mathbb{R}} \mathsf{E} \Big[\mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \Big] dy ds$$

- the study of fluctuations of log Z_t reduces to the overlap of the conditional density $\mathbf{E}[\rho_t(s, y)|\mathcal{F}_s]$
- the (obvious) conjecture is that in d=1

$$\int_{\mathbb{R}} \mathsf{E} \bigg[\mathsf{E} \big[\rho_t(s, y) | \mathcal{F}_s \big] \mathsf{E} \big[\rho_t(s, y) | \mathcal{F}_s \big] \bigg] dy \sim s^{-1/3}$$

$$\operatorname{Var} \log Z_t = \int_0^t \int_{\mathbb{R}} \mathsf{E} \Big[\mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \mathsf{E}[\rho_t(s, y) | \mathcal{F}_s] \Big] dy ds$$

- the study of fluctuations of log Z_t reduces to the overlap of the conditional density E[ρ_t(s, y)|F_s]
- the (obvious) conjecture is that in d=1

$$\int_{\mathbb{R}} \mathsf{E} \bigg[\mathsf{E} \big[\rho_t(s, y) | \mathcal{F}_s] \mathsf{E} \big[\rho_t(s, y) | \mathcal{F}_s \big] \bigg] dy \sim s^{-1/3}$$

• it may be easier to think about the zero-temperature case where log Z_t is replaced by sum of r.v. along geodesics, but there is a complicated correlation.

$$\operatorname{Var} \log Z_t = \int_0^t \int_{\mathbb{R}} \mathsf{E} \Big[\mathsf{E} \big[\rho_t(s, y) | \mathcal{F}_s \big] \mathsf{E} \big[\rho_t(s, y) | \mathcal{F}_s \big] \Big] dy ds$$

- the study of fluctuations of log Z_t reduces to the overlap of the conditional density E[ρ_t(s, y)|F_s]
- the (obvious) conjecture is that in d=1

$$\int_{\mathbb{R}} \mathsf{E} \bigg[\mathsf{E} \big[\rho_t(s, y) | \mathcal{F}_s \big] \mathsf{E} \big[\rho_t(s, y) | \mathcal{F}_s \big] \bigg] dy \sim s^{-1/3}$$

- it may be easier to think about the zero-temperature case where log Z_t is replaced by sum of r.v. along geodesics, but there is a complicated correlation.
- in the identity $\log Z_t \mathbf{E} \log Z_t = \int_0^t \int_{\mathbb{R}} \mathbf{E}[\rho_t(s, y) | \mathcal{F}_s] \xi(s, y) dy ds$, there is no correlation
$$\rho_t(s,y) = \frac{\mathbb{E}[e^{\beta \int_0^t \xi(r,B_r)dr} \delta(B_s - y)]}{Z_t}$$

 $\beta = \infty$: $\rho_t(s, y) = \delta(\pi_s - y)$ becomes the Dirac mass along the (random) geodesics

$$\rho_t(s,y) = \frac{\mathbb{E}[e^{\beta \int_0^t \xi(r,B_r)dr} \delta(B_s - y)]}{Z_t}$$

 $\beta = \infty$: $\rho_t(s, y) = \delta(\pi_s - y)$ becomes the Dirac mass along the (random) geodesics

Discrete setting

• $\sum_{y} \rho_t(s, y)^2 = 1$ (complete localization)

$$\rho_t(s,y) = \frac{\mathbb{E}[e^{\beta \int_0^t \xi(r,B_r)dr} \delta(B_s - y)]}{Z_t}$$

 $\beta = \infty$: $\rho_t(s, y) = \delta(\pi_s - y)$ becomes the Dirac mass along the (random) geodesics

Discrete setting

- $\sum_{y} \rho_t(s, y)^2 = 1$ (complete localization)
- expect $\sum_{y} |\mathbf{E}
 ho_t(s, y)|^2 \sim s^{-2/3}$ (no localization)

$$\rho_t(s,y) = \frac{\mathbb{E}[e^{\beta \int_0^t \xi(r,B_r)dr} \delta(B_s - y)]}{Z_t}$$

 $\beta = \infty$: $\rho_t(s, y) = \delta(\pi_s - y)$ becomes the Dirac mass along the (random) geodesics

Discrete setting

- $\sum_{y} \rho_t(s, y)^2 = 1$ (complete localization)
- expect $\sum_{y} |\mathbf{E}
 ho_t(s, y)|^2 \sim s^{-2/3}$ (no localization)
- expect $\sum_{y} |\mathbf{E}[\rho_t(s,y)|\mathcal{F}_s]|^2 \sim s^{-1/3}$ (semi-localization, but why?)

$$\rho_t(s,y) = \frac{\mathbb{E}[e^{\beta \int_0^t \xi(r,B_r)dr} \delta(B_s - y)]}{Z_t}$$

 $\beta = \infty$: $\rho_t(s, y) = \delta(\pi_s - y)$ becomes the Dirac mass along the (random) geodesics

Discrete setting

- $\sum_{y} \rho_t(s, y)^2 = 1$ (complete localization)
- expect $\sum_{y} |\mathbf{E}
 ho_t(s, y)|^2 \sim s^{-2/3}$ (no localization)

• expect $\sum_{y} |\mathbf{E}[\rho_t(s, y)|\mathcal{F}_s]|^2 \sim s^{-1/3}$ (semi-localization, but why?)

Question: for each realization of random environment, the geodesic and its midpoint is given, but if we average half of random environment out, what does the midpoint look like?

Geometric questions to ask

midpoint density

$$\rho_t(s,y) \frac{\mathbb{E}[e^{\int_0^t \xi(r,B_r)dr} \delta(B_s-y)]}{Z_t}$$

Geometric questions to ask

midpoint density

$$\rho_t(s,y) \frac{\mathbb{E}[e^{\int_0^t \xi(r,B_r)dr} \delta(B_s-y)]}{Z_t}$$

half-averaged midpoint density $\tilde{\rho}_t(s, y) := \mathbf{E}[\rho_t(s, y) | \mathcal{F}_s]$

• properties of $\tilde{\rho}_t(s, \cdot)$?

Geometric questions to ask

midpoint density

$$\rho_t(s,y) \frac{\mathbb{E}[e^{\int_0^t \xi(r,B_r)dr} \delta(B_s-y)]}{Z_t}$$

- properties of $\tilde{\rho}_t(s, \cdot)$?
- size of the overlap $\sum_{y} |\tilde{\rho}_t(s, y)|^2$?

$$\rho_t(s,y) \frac{\mathbb{E}[e^{\int_0^t \xi(r,B_r)dr} \delta(B_s-y)]}{Z_t}$$

- properties of $\tilde{\rho}_t(s, \cdot)$?
- size of the overlap $\sum_{y} |\tilde{\rho}_t(s, y)|^2$?
- a simpler toy problem: let B₁, B₂ be two independent Brownian bridge on [0, 1], and M = argmax{B₁(x) + B₂(x)}, and μ = δ_M is a (random) probability measure on [0, 1].

$$\rho_t(s,y) \frac{\mathbb{E}[e^{\int_0^t \xi(r,B_r)dr} \delta(B_s-y)]}{Z_t}$$

- properties of $\tilde{\rho}_t(s, \cdot)$?
- size of the overlap $\sum_{y} |\tilde{\rho}_t(s, y)|^2$?
- a simpler toy problem: let B₁, B₂ be two independent Brownian bridge on [0, 1], and M = argmax{B₁(x) + B₂(x)}, and μ = δ_M is a (random) probability measure on [0, 1]. (i) μ is a Dirac (ii) E_μ is Lebesgue (iii) How about E[μ|B₁]?

$$\rho_t(s,y) \frac{\mathbb{E}[e^{\int_0^t \xi(r,B_r)dr} \delta(B_s-y)]}{Z_t}$$

- properties of $\tilde{\rho}_t(s, \cdot)$?
- size of the overlap $\sum_{y} |\tilde{\rho}_t(s, y)|^2$?
- a simpler toy problem: let B₁, B₂ be two independent Brownian bridge on [0, 1], and M = argmax{B₁(x) + B₂(x)}, and μ = δ_M is a (random) probability measure on [0, 1]. (i) μ is a Dirac (ii) E_μ is Lebesgue (iii) How about E[μ|B₁]?
- how to relate the answers to the KPZ fluctuations?

$$\rho_t(s,y) \frac{\mathbb{E}[e^{\int_0^t \xi(r,B_r)dr} \delta(B_s-y)]}{Z_t}$$

- properties of $\tilde{\rho}_t(s, \cdot)$?
- size of the overlap $\sum_{y} |\tilde{\rho}_t(s, y)|^2$?
- a simpler toy problem: let B₁, B₂ be two independent Brownian bridge on [0, 1], and M = argmax{B₁(x) + B₂(x)}, and μ = δ_M is a (random) probability measure on [0, 1]. (i) μ is a Dirac (ii) Eμ is Lebesgue (iii) How about E[μ|B₁]?
- how to relate the answers to the KPZ fluctuations?
- I don't know if it's easier to approach these questions from geometric or analytic perspective

• for compact case, the fluctuations are diffusive

- for compact case, the fluctuations are diffusive
- we try to understand how diffusive behaviors become sub- or super-diffusive behaviors

- for compact case, the fluctuations are diffusive
- we try to understand how diffusive behaviors become sub- or super-diffusive behaviors
- we work on a continuous model which is the KPZ equation

$$\partial_t h = \frac{1}{2}\Delta h + \frac{1}{2}|\nabla h|^2 + \xi, \qquad t > 0, x \in \mathbb{T}^d$$

$$\partial_t h = \frac{1}{2}\Delta h + \frac{1}{2}|\nabla h|^2 + \xi$$

 $\partial_t h = \frac{1}{2}\Delta h + \frac{1}{2}|\nabla h|^2 + \xi$

• the evolution of the height only depends on the relative height h(t,x) - h(t,0) or equivalently $\nabla h(t,x)$

- the evolution of the height only depends on the relative height h(t,x) h(t,0) or equivalently $\nabla h(t,x)$
- $U = \nabla h$ solves the stochastic Burgers equation of the form

$$\partial_t U = \frac{1}{2}\Delta U + U\nabla U + \nabla \xi$$

 $\partial_t h = \frac{1}{2}\Delta h + \frac{1}{2}|\nabla h|^2 + \xi$

- the evolution of the height only depends on the relative height h(t,x) h(t,0) or equivalently $\nabla h(t,x)$
- $U = \nabla h$ solves the stochastic Burgers equation of the form

$$\partial_t U = \frac{1}{2} \Delta U + U \nabla U + \nabla \xi$$

 for spacetime white noise, the invariant measure for Burgers is the spatial white noise (Bertini-Giacomin,Funaki-Quastel,...)

- the evolution of the height only depends on the relative height h(t,x) h(t,0) or equivalently $\nabla h(t,x)$
- $U = \nabla h$ solves the stochastic Burgers equation of the form

$$\partial_t U = \frac{1}{2} \Delta U + U \nabla U + \nabla \xi$$

- for spacetime white noise, the invariant measure for Burgers is the spatial white noise (Bertini-Giacomin,Funaki-Quastel,...)
- \bullet two-sided BM or Brownian bridge is invariant for KPZ on ${\mathbb R}$ or ${\mathbb T}$

- the evolution of the height only depends on the relative height h(t,x) h(t,0) or equivalently $\nabla h(t,x)$
- $U = \nabla h$ solves the stochastic Burgers equation of the form

$$\partial_t U = \frac{1}{2} \Delta U + U \nabla U + \nabla \xi$$

- for spacetime white noise, the invariant measure for Burgers is the spatial white noise (Bertini-Giacomin,Funaki-Quastel,...)
- \bullet two-sided BM or Brownian bridge is invariant for KPZ on ${\mathbb R}$ or ${\mathbb T}$
- some difficulties in d = 1 for general models or $d \ge 1$ come from the lack of understanding of invariant measures

- the evolution of the height only depends on the relative height h(t,x) h(t,0) or equivalently $\nabla h(t,x)$
- $U = \nabla h$ solves the stochastic Burgers equation of the form

$$\partial_t U = \frac{1}{2} \Delta U + U \nabla U + \nabla \xi$$

- for spacetime white noise, the invariant measure for Burgers is the spatial white noise (Bertini-Giacomin,Funaki-Quastel,...)
- \bullet two-sided BM or Brownian bridge is invariant for KPZ on ${\mathbb R}$ or ${\mathbb T}$
- some difficulties in d = 1 for general models or $d \ge 1$ come from the lack of understanding of invariant measures
- in our work we will work with white noise in d = 1, half of our argument works for general noise and dimensions

$$\partial_t h = \frac{1}{2}\Delta h + \frac{1}{2}|\nabla h|^2 + \xi, \qquad x \in \mathbb{R}$$

$$\partial_t h = \frac{1}{2}\Delta h + \frac{1}{2}|\nabla h|^2 + \xi, \qquad x \in \mathbb{R}$$

• Hopf-Cole: $h = \log Z$ with $\partial_t Z = \frac{1}{2}\Delta Z + Z\xi$

$$\partial_t h = \frac{1}{2}\Delta h + \frac{1}{2}|\nabla h|^2 + \xi, \qquad x \in \mathbb{R}$$

- Hopf-Cole: $h = \log Z$ with $\partial_t Z = \frac{1}{2}\Delta Z + Z\xi$
- polymer measure: random Gibbs measure with weight $\exp(\int_0^t \xi(s, B_s) ds)$

$$\partial_t h = \frac{1}{2}\Delta h + \frac{1}{2}|\nabla h|^2 + \xi, \qquad x \in \mathbb{R}$$

- Hopf-Cole: $h = \log Z$ with $\partial_t Z = \frac{1}{2}\Delta Z + Z\xi$
- polymer measure: random Gibbs measure with weight $\exp(\int_0^t \xi(s, B_s) ds)$
- polymer endpoint distribution $(Z(0,x) = \delta(x))$

$$\rho(t,x) = \frac{Z(t,x)}{\int Z(t,x')dx'} = \frac{\mathbb{E}\left[e^{\int_0^t \xi(s,B_s)ds}\delta(B_t-x)\right]}{\mathbb{E}\left[e^{\int_0^t \xi(s,B_s)ds}\right]}$$

$$\partial_t h = \frac{1}{2}\Delta h + \frac{1}{2}|\nabla h|^2 + \xi, \qquad x \in \mathbb{R}$$

- Hopf-Cole: $h = \log Z$ with $\partial_t Z = \frac{1}{2}\Delta Z + Z\xi$
- polymer measure: random Gibbs measure with weight $\exp(\int_0^t \xi(s, B_s) ds)$
- polymer endpoint distribution $(Z(0,x) = \delta(x))$

$$\rho(t,x) = \frac{Z(t,x)}{\int Z(t,x')dx'} = \frac{\mathbb{E}\left[e^{\int_0^t \xi(s,B_s)ds}\delta(B_t-x)\right]}{\mathbb{E}\left[e^{\int_0^t \xi(s,B_s)ds}\right]}$$

• projective process, Markovian

$$\partial_t h = \frac{1}{2}\Delta h + \frac{1}{2}|\nabla h|^2 + \xi, \qquad x \in \mathbb{R}$$

- Hopf-Cole: $h = \log Z$ with $\partial_t Z = \frac{1}{2}\Delta Z + Z\xi$
- polymer measure: random Gibbs measure with weight $\exp(\int_0^t \xi(s, B_s) ds)$
- polymer endpoint distribution $(Z(0,x) = \delta(x))$

$$\rho(t,x) = \frac{Z(t,x)}{\int Z(t,x')dx'} = \frac{\mathbb{E}\left[e^{\int_0^t \xi(s,B_s)ds}\delta(B_t-x)\right]}{\mathbb{E}\left[e^{\int_0^t \xi(s,B_s)ds}\right]}$$

- projective process, Markovian
- on torus, unique invariant measure e^{B(x)} / ∫ e^{B(x')} dx' with Brownian bridge B:

$$\rho(t,x) = \frac{Z(t,x)}{\int Z(t,x')dx'} = \frac{e^{h(t,x)}}{\int e^{h(t,x')}dx'} = \frac{e^{h(t,x)-h(t,0)}}{\int e^{h(t,x')-h(t,0)}dx'}$$

$$\begin{array}{l} \partial_t h_L = \frac{1}{2} \Delta h_L + \frac{1}{2} |\nabla h_L|^2 + \beta \xi, \quad x \in \mathbb{T}_L \\ h_L = \log Z, \qquad \partial_t Z = \frac{1}{2} \Delta Z + \beta Z \xi, \quad Z(0,x): \text{ arbitrary measure} \end{array}$$

$$\begin{array}{l} \partial_t h_L = \frac{1}{2} \Delta h_L + \frac{1}{2} |\nabla h_L|^2 + \beta \xi, \quad x \in \mathbb{T}_L \\ h_L = \log Z, \qquad \partial_t Z = \frac{1}{2} \Delta Z + \beta Z \xi, \quad Z(0,x): \text{ arbitrary measure} \end{array}$$

There exists $\gamma_L, \sigma_L > 0$ such that for any $x \in \mathbb{T}_L$, as $t \to \infty$,

$$\frac{h_L(t,x) + \gamma_L t}{\sqrt{t}} \Rightarrow N(0,\sigma_L^2)$$

$$\begin{array}{l} \partial_t h_L = \frac{1}{2} \Delta h_L + \frac{1}{2} |\nabla h_L|^2 + \beta \xi, \quad x \in \mathbb{T}_L \\ h_L = \log Z, \qquad \partial_t Z = \frac{1}{2} \Delta Z + \beta Z \xi, \quad Z(0,x): \text{ arbitrary measure} \end{array}$$

There exists $\gamma_L, \sigma_L > 0$ such that for any $x \in \mathbb{T}_L$, as $t \to \infty$,

$$\frac{h_L(t,x) + \gamma_L t}{\sqrt{t}} \Rightarrow N(0,\sigma_L^2)$$

• the same result holds for colored noise in all dimensions

$$\begin{array}{l} \partial_t h_L = \frac{1}{2} \Delta h_L + \frac{1}{2} |\nabla h_L|^2 + \beta \xi, \quad x \in \mathbb{T}_L \\ h_L = \log Z, \qquad \partial_t Z = \frac{1}{2} \Delta Z + \beta Z \xi, \quad Z(0,x): \text{ arbitrary measure} \end{array}$$

There exists $\gamma_L, \sigma_L > 0$ such that for any $x \in \mathbb{T}_L$, as $t \to \infty$,

$$\frac{h_L(t,x) + \gamma_L t}{\sqrt{t}} \Rightarrow N(0,\sigma_L^2)$$

- the same result holds for colored noise in all dimensions
- *h*_L(*t*, ·) − *h*_L(*t*, 0) converges exponentially fast to the invariant measure

$$\begin{array}{l} \partial_t h_L = \frac{1}{2} \Delta h_L + \frac{1}{2} |\nabla h_L|^2 + \beta \xi, \quad x \in \mathbb{T}_L \\ h_L = \log Z, \qquad \partial_t Z = \frac{1}{2} \Delta Z + \beta Z \xi, \quad Z(0,x): \text{ arbitrary measure} \end{array}$$

There exists $\gamma_L, \sigma_L > 0$ such that for any $x \in \mathbb{T}_L$, as $t \to \infty$,

$$\frac{h_L(t,x) + \gamma_L t}{\sqrt{t}} \Rightarrow N(0,\sigma_L^2)$$

- the same result holds for colored noise in all dimensions
- *h*_L(*t*, ·) − *h*_L(*t*, 0) converges exponentially fast to the invariant measure
- explicit drift (using Marc Yor's density formula)

$$\gamma_{L} = \frac{1}{2}\beta^{2}L\mathbb{E}\frac{1}{(\int_{0}^{L}e^{\beta B(x)}dx)^{2}} = \frac{\beta^{2}}{2L} + \frac{\beta^{4}}{24}$$

Fluctuation diffusivity and 1:2:3 scaling

$$\frac{h_L(t,x)+\gamma_L t}{\sqrt{t}} \Rightarrow N(0,\sigma_L^2)$$

Fluctuation diffusivity and 1:2:3 scaling

$$\frac{h_L(t,x) + \gamma_L t}{\sqrt{t}} \Rightarrow N(0,\sigma_L^2)$$

• explicit diffusivity: with B_i independent Brownian bridges on [0, L],

$$\sigma_L^2 = \beta^2 L \mathbb{E} \frac{1}{\int_0^L e^{\beta(B_1(x) + B_2(x))} dx \int_0^L e^{\beta(B_1(x) + B_3(x))} dx}$$
$$\frac{h_L(t,x) + \gamma_L t}{\sqrt{t}} \Rightarrow N(0,\sigma_L^2)$$

• explicit diffusivity: with B_i independent Brownian bridges on [0, L],

$$\sigma_L^2 = \beta^2 L \mathbb{E} \frac{1}{\int_0^L e^{\beta(B_1(x) + B_2(x))} dx \int_0^L e^{\beta(B_1(x) + B_3(x))} dx}$$

• we do not know how to evaluate the expectation, conjectured integral form by Brunet-Derrida through replica method

$$\frac{h_L(t,x) + \gamma_L t}{\sqrt{t}} \Rightarrow N(0,\sigma_L^2)$$

• explicit diffusivity: with B_i independent Brownian bridges on [0, L],

$$\sigma_L^2 = \beta^2 L \mathbb{E} \frac{1}{\int_0^L e^{\beta(B_1(x) + B_2(x))} dx \int_0^L e^{\beta(B_1(x) + B_3(x)} dx}$$

- we do not know how to evaluate the expectation, conjectured integral form by Brunet-Derrida through replica method
- $\mathrm{Var}h_L(t,0)\sim\sigma_L^2t,~~\mathrm{Var}h(t,0)\sim t^{2/3},$ we show $\sigma_L^2\sim 1/\sqrt{L}$

$$\frac{h_L(t,x) + \gamma_L t}{\sqrt{t}} \Rightarrow N(0,\sigma_L^2)$$

• explicit diffusivity: with B_i independent Brownian bridges on [0, L],

$$\sigma_{L}^{2} = \beta^{2} L \mathbb{E} \frac{1}{\int_{0}^{L} e^{\beta(B_{1}(x) + B_{2}(x))} dx \int_{0}^{L} e^{\beta(B_{1}(x) + B_{3}(x)} dx}$$

- we do not know how to evaluate the expectation, conjectured integral form by Brunet-Derrida through replica method
- $\operatorname{Var} h_L(t,0) \sim \sigma_L^2 t$, $\operatorname{Var} h(t,0) \sim t^{2/3}$, we show $\sigma_L^2 \sim 1/\sqrt{L}$
- $h_L(t,x) = h_L(t,0) + (h_L(t,x) h_L(t,0))$

$$\frac{h_L(t,x) + \gamma_L t}{\sqrt{t}} \Rightarrow N(0,\sigma_L^2)$$

• explicit diffusivity: with B_i independent Brownian bridges on [0, L],

$$\sigma_{L}^{2} = \beta^{2} L \mathbb{E} \frac{1}{\int_{0}^{L} e^{\beta(B_{1}(x) + B_{2}(x))} dx \int_{0}^{L} e^{\beta(B_{1}(x) + B_{3}(x)} dx}$$

- we do not know how to evaluate the expectation, conjectured integral form by Brunet-Derrida through replica method
- $\operatorname{Var} h_L(t,0) \sim \sigma_L^2 t$, $\operatorname{Var} h(t,0) \sim t^{2/3}$, we show $\sigma_L^2 \sim 1/\sqrt{L}$
- $h_L(t,x) = h_L(t,0) + (h_L(t,x) h_L(t,0))$
- $\operatorname{Var} h_L(t,0) \sim \sigma_L^2 t \sim t/\sqrt{L}$ $\operatorname{Var} (h_L(t,\cdot) h_L(t,0)) \sim L$ balance $t/\sqrt{L} \sim L$ leads to 1 : 2 : 3

$$\begin{array}{ll} \partial_t h_L = \frac{1}{2} \Delta h_L + \frac{1}{2} |\nabla h_L|^2 + \xi, \quad x \in \mathbb{T}_L \\ h_L(0, \cdot) = & \text{Brownian bridge} \end{array}$$

$$\begin{array}{ll} \partial_t h_L = \frac{1}{2} \Delta h_L + \frac{1}{2} |\nabla h_L|^2 + \xi, \quad x \in \mathbb{T}_L \\ h_L(0, \cdot) = & \text{Brownian bridge} \end{array}$$

Theorem (Dunlap-G.-Komorowski 21)

Let $L = \lambda t^{\alpha}$. There exists a constant $\delta > 0$ such that as $t \to \infty$

$$\operatorname{Var} h_L(t,x) \propto rac{t}{\sqrt{L}} \propto \left\{ egin{array}{cc} t^{1-rac{lpha}{2}}, & lpha \in [0,rac{2}{3}), & \lambda < \infty \ t^{rac{2}{3}}, & lpha = rac{2}{3}, & \lambda < \delta \end{array}
ight.$$

$$\begin{array}{ll} \partial_t h_L = \frac{1}{2} \Delta h_L + \frac{1}{2} |\nabla h_L|^2 + \xi, \quad x \in \mathbb{T}_L \\ h_L(0, \cdot) = & \text{Brownian bridge} \end{array}$$

Theorem (Dunlap-G.-Komorowski 21)

Let $L = \lambda t^{\alpha}$. There exists a constant $\delta > 0$ such that as $t \to \infty$

$$\operatorname{Var} h_L(t,x) \propto rac{t}{\sqrt{L}} \propto \left\{ egin{array}{cc} t^{1-rac{lpha}{2}}, & lpha \in [0,rac{2}{3}), & \lambda < \infty \ t^rac{2}{3}, & lpha = rac{2}{3}, & \lambda < \delta \end{array}
ight.$$

 optimal variance bounds on the super-relaxation and part of relaxation regime

$$\begin{array}{ll} \partial_t h_L = \frac{1}{2} \Delta h_L + \frac{1}{2} |\nabla h_L|^2 + \xi, \quad x \in \mathbb{T}_L \\ h_L(0, \cdot) = & \text{Brownian bridge} \end{array}$$

Theorem (Dunlap-G.-Komorowski 21)

Let $L = \lambda t^{\alpha}$. There exists a constant $\delta > 0$ such that as $t \to \infty$

$$\operatorname{Var} h_L(t,x) \propto rac{t}{\sqrt{L}} \propto \left\{ egin{array}{cc} t^{1-rac{lpha}{2}}, & lpha \in [0,rac{2}{3}), & \lambda < \infty \ t^rac{2}{3}, & lpha = rac{2}{3}, & \lambda < \delta \end{array}
ight.$$

- optimal variance bounds on the super-relaxation and part of relaxation regime
- for $lpha \geq 2/3$, expect $\mathrm{Var} h_L(t,0) \propto t^{2/3}$ (open)

$$\begin{array}{ll} \partial_t h_L = \frac{1}{2} \Delta h_L + \frac{1}{2} |\nabla h_L|^2 + \xi, \quad x \in \mathbb{T}_L \\ h_L(0, \cdot) = & \text{Brownian bridge} \end{array}$$

Theorem (Dunlap-G.-Komorowski 21)

Let $L = \lambda t^{\alpha}$. There exists a constant $\delta > 0$ such that as $t \to \infty$

$$\operatorname{Var} h_L(t,x) \propto rac{t}{\sqrt{L}} \propto \left\{ egin{array}{cc} t^{1-rac{lpha}{2}}, & lpha \in [0,rac{2}{3}), & \lambda < \infty \ t^rac{2}{3}, & lpha = rac{2}{3}, & \lambda < \delta \end{array}
ight.$$

- optimal variance bounds on the super-relaxation and part of relaxation regime
- for $lpha \geq 2/3$, expect $\mathrm{Var}h_{L}(t,0) \propto t^{2/3}$ (open)
- much more precise results on periodic TASEP in all regimes by Baik-Liu, Baik-Liu-Silva

h solves KPZ with noise ξ

$$h(t,x) - \mathbf{E}h(t,x) = \int_0^t \int_{\mathbb{T}} \mathbf{E}[D_{s,y}h(t,x)|\mathcal{F}_s]\xi(s,y)dyds$$

 $D_{s,y}h(t,x)$: quenched (midpoint) density of polymer at (s,y)

h solves KPZ with noise ξ

$$h(t,x) - \mathbf{E}h(t,x) = \int_0^t \int_{\mathbb{T}} \mathbf{E}[D_{s,y}h(t,x)|\mathcal{F}_s]\xi(s,y)dyds$$

 $D_{s,y}h(t,x)$: quenched (midpoint) density of polymer at (s, y)• endpoint distribution (for $t \gg 1$)

$$\frac{Z(t,x)}{\int Z(t,x')dx'} = \frac{e^{h(t,x)}}{\int e^{h(t,x')}dx'} = \frac{e^{h(t,x)-h(t,0)}}{\int e^{h(t,x')-h(t,0)}dx'} \approx \frac{e^{B(x)}}{\int e^{B(x')}dx'}$$

h solves KPZ with noise ξ

$$h(t,x) - \mathbf{E}h(t,x) = \int_0^t \int_{\mathbb{T}} \mathbf{E}[D_{s,y}h(t,x)|\mathcal{F}_s]\xi(s,y)dyds$$

 $D_{s,y}h(t,x)$: quenched (midpoint) density of polymer at (s,y)• endpoint distribution (for $t \gg 1$)

$$\frac{Z(t,x)}{\int Z(t,x')dx'} = \frac{e^{h(t,x)}}{\int e^{h(t,x')}dx'} = \frac{e^{h(t,x)-h(t,0)}}{\int e^{h(t,x')-h(t,0)}dx'} \approx \frac{e^{B(x)}}{\int e^{B(x')}dx'}$$

• midpoint distribution (for $s \gg 1$ and $t - s \gg 1$)

$$D_{s,y}h(t,x) \approx rac{e^{B_1(y)+B_2(y)}}{\int e^{B_1(y')+B_2(y')}dy'}$$

so we have
$$\mathbf{E}[D_{s,y}h(t,x)|\mathcal{F}_s] \approx \mathbf{E}[\frac{e^{B_1(y)+B_2(y)}}{\int e^{B_1(y')+B_2(y')}dy'}|B_1]$$

h solves KPZ with noise ξ

$$h(t,x) - \mathbf{E}h(t,x) = \int_0^t \int_{\mathbb{T}} \mathbf{E}[D_{s,y}h(t,x)|\mathcal{F}_s]\xi(s,y)dyds$$

 $D_{s,y}h(t,x)$: quenched (midpoint) density of polymer at (s, y)• endpoint distribution (for $t \gg 1$)

$$\frac{Z(t,x)}{\int Z(t,x')dx'} = \frac{e^{h(t,x)}}{\int e^{h(t,x')}dx'} = \frac{e^{h(t,x)-h(t,0)}}{\int e^{h(t,x')-h(t,0)}dx'} \approx \frac{e^{B(x)}}{\int e^{B(x')}dx'}$$

• midpoint distribution (for $s \gg 1$ and $t - s \gg 1$)

$$D_{s,y}h(t,x) \approx rac{e^{B_1(y)+B_2(y)}}{\int e^{B_1(y')+B_2(y')}dy'}$$

so we have $\mathbf{E}[D_{s,y}h(t,x)|\mathcal{F}_s] \approx \mathbf{E}[\frac{e^{B_1(y)+B_2(y)}}{\int e^{B_1(y')+B_2(y')}dy'}|B_1]$

• take the rhs, square it, integrate in y, take the expectation, obtain σ^2