KPZ fluctuations and semi-localization

Yu Gu (University of Maryland)

KPZ meet KPZ 2024

Directed polymer, $1+1 \mathrm{KPZ}$ universality class

Statistical physics model of path in random environment

Directed polymer, $1+1 \mathrm{KPZ}$ universality class

Statistical physics model of path in random environment

- $\omega(i, j)$ i.i.d. r.v.; $\xi(t, x)$: random field

Directed polymer, $1+1 \mathrm{KPZ}$ universality class

Statistical physics model of path in random environment

- $\omega(i, j)$ i.i.d. r.v.; $\xi(t, x)$: random field
- $\left\{S_{i}\right\}$ random walk; $\left\{B_{t}\right\}$: Brownian motion

Directed polymer, $1+1 \mathrm{KPZ}$ universality class

Statistical physics model of path in random environment

- $\omega(i, j)$ i.i.d. r.v.; $\xi(t, x)$: random field
- $\left\{S_{i}\right\}$ random walk; $\left\{B_{t}\right\}$: Brownian motion
- partition function $Z_{t}=\mathbb{E} e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)}, \quad Z_{t}=\mathbb{E} e^{\int_{0}^{t} \xi\left(s, B_{s}\right) d s}$

Directed polymer, $1+1 \mathrm{KPZ}$ universality class

Statistical physics model of path in random environment

- $\omega(i, j)$ i.i.d. r.v.; $\xi(t, x)$: random field
- $\left\{S_{i}\right\}$ random walk; $\left\{B_{t}\right\}$: Brownian motion
- partition function $Z_{t}=\mathbb{E} e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)}, \quad Z_{t}=\mathbb{E} e^{\int_{0}^{t} \xi\left(s, B_{s}\right) d s}$
- (in $d=1$) free energy $\log Z_{t} \sim \gamma t+t^{1 / 3} \chi$

Directed polymer, $1+1 \mathrm{KPZ}$ universality class

Statistical physics model of path in random environment

- $\omega(i, j)$ i.i.d. r.v.; $\xi(t, x)$: random field
- $\left\{S_{i}\right\}$ random walk; $\left\{B_{t}\right\}$: Brownian motion
- partition function $Z_{t}=\mathbb{E} e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)}, \quad Z_{t}=\mathbb{E} e^{\int_{0}^{t} \xi\left(s, B_{s}\right) d s}$
- (in $d=1$) free energy $\log Z_{t} \sim \gamma t+t^{1 / 3} \chi$
- (in $d=1$) polymer endpoint $S_{t}, B_{t} \sim t^{2 / 3}$

Directed polymer, $1+1 \mathrm{KPZ}$ universality class

Statistical physics model of path in random environment

- $\omega(i, j)$ i.i.d. r.v.; $\xi(t, x)$: random field
- $\left\{S_{i}\right\}$ random walk; $\left\{B_{t}\right\}$: Brownian motion
- partition function $Z_{t}=\mathbb{E} e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)}, \quad Z_{t}=\mathbb{E} e^{\int_{0}^{t} \xi\left(s, B_{s}\right) d s}$
- (in $d=1$) free energy $\log Z_{t} \sim \gamma t+t^{1 / 3} \chi$
- (in $d=1$) polymer endpoint $S_{t}, B_{t} \sim t^{2 / 3}$

Directed polymer, $1+1 \mathrm{KPZ}$ universality class

Statistical physics model of path in random environment

- $\omega(i, j)$ i.i.d. r.v.; $\xi(t, x)$: random field
- $\left\{S_{i}\right\}$ random walk; $\left\{B_{t}\right\}$: Brownian motion
- partition function $Z_{t}=\mathbb{E} e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)}, \quad Z_{t}=\mathbb{E} e^{\int_{0}^{t} \xi\left(s, B_{s}\right) d s}$
- (in $d=1$) free energy $\log Z_{t} \sim \gamma t+t^{1 / 3} \chi$
- (in $d=1$) polymer endpoint $S_{t}, B_{t} \sim t^{2 / 3}$

More on the polymer endpoint: localization

- for quenched polymer measure (a.e realization of random environment), the endpoint stays in a bounded region near the "favorite" point with high probability

Directed polymer, $1+1 \mathrm{KPZ}$ universality class

Statistical physics model of path in random environment

- $\omega(i, j)$ i.i.d. r.v.; $\xi(t, x)$: random field
- $\left\{S_{i}\right\}$ random walk; $\left\{B_{t}\right\}$: Brownian motion
- partition function $Z_{t}=\mathbb{E} e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)}, \quad Z_{t}=\mathbb{E} e^{\int_{0}^{t} \xi\left(s, B_{s}\right) d s}$
- (in $d=1$) free energy $\log Z_{t} \sim \gamma t+t^{1 / 3} \chi$
- (in $d=1$) polymer endpoint $S_{t}, B_{t} \sim t^{2 / 3}$

More on the polymer endpoint: localization

- for quenched polymer measure (a.e realization of random environment), the endpoint stays in a bounded region near the "favorite" point with high probability
- localization and the 1:2:3 KPZ scaling seem to be two different aspects of the model

Directed polymer, $1+1 \mathrm{KPZ}$ universality class

Statistical physics model of path in random environment

- $\omega(i, j)$ i.i.d. r.v.; $\xi(t, x)$: random field
- $\left\{S_{i}\right\}$ random walk; $\left\{B_{t}\right\}$: Brownian motion
- partition function $Z_{t}=\mathbb{E} e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)}, \quad Z_{t}=\mathbb{E} e^{\int_{0}^{t} \xi\left(s, B_{s}\right) d s}$
- (in $d=1$) free energy $\log Z_{t} \sim \gamma t+t^{1 / 3} \chi$
- (in $d=1$) polymer endpoint $S_{t}, B_{t} \sim t^{2 / 3}$

More on the polymer endpoint: localization

- for quenched polymer measure (a.e realization of random environment), the endpoint stays in a bounded region near the "favorite" point with high probability
- localization and the $1: 2: 3 \mathrm{KPZ}$ scaling seem to be two different aspects of the model
Question: is there a relation between localization and KPZ scaling?

Plan of the talk

- questions I'd like to ask
- what we can do

Poincare inequality and replica overlap

The partition function $Z_{t}=\mathbb{E} e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)}$, assuming $\{\omega(i, j)\}$ are i.i.d $N(0,1)$

Poincare inequality and replica overlap

The partition function $Z_{t}=\mathbb{E} e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)}$, assuming $\{\omega(i, j)\}$ are i.i.d $N(0,1)$

- Poincare inequality $\operatorname{Var} \log Z_{t} \leq \sum_{i, j} \mathbf{E}\left|D_{i, j} \log Z_{t}\right|^{2}$

Poincare inequality and replica overlap

The partition function $Z_{t}=\mathbb{E} e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)}$, assuming $\{\omega(i, j)\}$ are i.i.d $N(0,1)$

- Poincare inequality $\operatorname{Var} \log Z_{t} \leq \sum_{i, j} \mathbf{E}\left|D_{i, j} \log Z_{t}\right|^{2}$
- derivative $D_{i, j} \log Z_{t}=$ quenched probability passing (i, j)

$$
D_{i, j} \log Z_{t}=\frac{D_{i, j} Z_{t}}{Z_{t}}=\frac{\mathbb{E}\left[e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)} 1_{s_{i}=j}\right]}{Z_{t}}=\hat{\mathbb{P}}_{t}\left[S_{i}=j\right]
$$

Poincare inequality and replica overlap

The partition function $Z_{t}=\mathbb{E} e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)}$, assuming $\{\omega(i, j)\}$ are i.i.d $N(0,1)$

- Poincare inequality $\operatorname{Var} \log Z_{t} \leq \sum_{i, j} \mathbf{E}\left|D_{i, j} \log Z_{t}\right|^{2}$
- derivative $D_{i, j} \log Z_{t}=$ quenched probability passing (i, j)

$$
D_{i, j} \log Z_{t}=\frac{D_{i, j} Z_{t}}{Z_{t}}=\frac{\mathbb{E}\left[e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)} 1_{s_{i}=j}\right]}{Z_{t}}=\hat{\mathbb{P}}_{t}\left[S_{i}=j\right]
$$

- Upper bound by Poincare: Var $\log Z_{t} \leq t$

$$
\sum_{i, j} \mathbf{E}\left|D_{i, j} \log Z_{t}\right|^{2}=\sum_{i, j} \mathbf{E} \hat{\mathbb{P}}_{t}\left[S_{i}=j\right]^{2} \leq \sum_{i, j} \mathbf{E} \hat{\mathbb{P}}_{t}\left[S_{i}=j\right]=t
$$

Poincare inequality and replica overlap

The partition function $Z_{t}=\mathbb{E} e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)}$, assuming $\{\omega(i, j)\}$ are i.i.d $N(0,1)$

- Poincare inequality $\operatorname{Var} \log Z_{t} \leq \sum_{i, j} \mathbf{E}\left|D_{i, j} \log Z_{t}\right|^{2}$
- derivative $D_{i, j} \log Z_{t}=$ quenched probability passing (i, j)

$$
D_{i, j} \log Z_{t}=\frac{D_{i, j} Z_{t}}{Z_{t}}=\frac{\mathbb{E}\left[e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)} 1_{s_{i}=j}\right]}{Z_{t}}=\hat{\mathbb{P}}_{t}\left[S_{i}=j\right]
$$

- Upper bound by Poincare: Var $\log Z_{t} \leq t$

$$
\sum_{i, j} \mathbf{E}\left|D_{i, j} \log Z_{t}\right|^{2}=\sum_{i, j} \mathbf{E} \hat{\mathbb{P}}_{t}\left[S_{i}=j\right]^{2} \leq \sum_{i, j} \mathbf{E} \hat{\mathbb{P}}_{t}\left[S_{i}=j\right]=t
$$

- localization and paths overlap: S^{1}, S^{2} independently sampled from $\hat{\mathbb{P}}_{t}$

$$
\sum_{i, j} \hat{\mathbb{P}}_{t}\left[S_{i}=j\right]^{2}=\hat{\mathbb{E}}_{t} \sum_{i=1}^{t} 1_{S_{i}^{1}=S_{i}^{2}} \sim O(t)
$$

Poincare inequality and replica overlap

The partition function $Z_{t}=\mathbb{E} e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)}$, assuming $\{\omega(i, j)\}$ are i.i.d $N(0,1)$

- Poincare inequality $\operatorname{Var} \log Z_{t} \leq \sum_{i, j} \mathbf{E}\left|D_{i, j} \log Z_{t}\right|^{2}$
- derivative $D_{i, j} \log Z_{t}=$ quenched probability passing (i, j)

$$
D_{i, j} \log Z_{t}=\frac{D_{i, j} Z_{t}}{Z_{t}}=\frac{\mathbb{E}\left[e^{\sum_{i=1}^{t} \omega\left(i, S_{i}\right)} 1_{s_{i}=j}\right]}{Z_{t}}=\hat{\mathbb{P}}_{t}\left[S_{i}=j\right]
$$

- Upper bound by Poincare: Var $\log Z_{t} \leq t$

$$
\sum_{i, j} \mathbf{E}\left|D_{i, j} \log Z_{t}\right|^{2}=\sum_{i, j} \mathbf{E} \hat{\mathbb{P}}_{t}\left[S_{i}=j\right]^{2} \leq \sum_{i, j} \mathbf{E} \hat{\mathbb{P}}_{t}\left[S_{i}=j\right]=t
$$

- localization and paths overlap: S^{1}, S^{2} independently sampled from $\hat{\mathbb{P}}_{t}$

$$
\sum_{i, j} \hat{\mathbb{P}}_{t}\left[S_{i}=j\right]^{2}=\hat{\mathbb{E}}_{t} \sum_{i=1}^{t} 1_{S_{i}^{1}=S_{i}^{2}} \sim O(t)
$$

- localization provides an incorrect upper bound

A variance identity: Clark-Ocone formula

Stochastic calculus: let W be a BM, X be "smooth" r.v. depends on $\left\{W_{t}\right\}_{t \geq 0}$:

- martingale representation: $X-\mathbf{E} X=\int_{0}^{\infty} f_{s} d W_{s}$

A variance identity: Clark-Ocone formula

Stochastic calculus: let W be a BM, X be "smooth" r.v. depends on $\left\{W_{t}\right\}_{t \geq 0}$:

- martingale representation: $X-\mathbf{E} X=\int_{0}^{\infty} f_{s} d W_{s}$
- Clark-Ocone formula:

$$
f_{s}=\mathbf{E}\left[D_{s} X \mid \mathcal{F}_{s}\right]
$$

D_{s} : the (Malliavin) derivative of X on the infinitesimal increment of W at s

A variance identity: Clark-Ocone formula

Stochastic calculus: let W be a BM, X be "smooth" r.v. depends on $\left\{W_{t}\right\}_{t \geq 0}$:

- martingale representation: $X-\mathbf{E} X=\int_{0}^{\infty} f_{s} d W_{s}$
- Clark-Ocone formula:

$$
f_{s}=\mathbf{E}\left[D_{s} X \mid \mathcal{F}_{s}\right]
$$

D_{s} : the (Malliavin) derivative of X on the infinitesimal increment of W at s

- Ito isometry

$$
\operatorname{Var} X=\int_{0}^{\infty} \mathbf{E} f_{s}^{2} d s=\int_{0}^{\infty} \mathbf{E}\left|\mathbf{E}\left[D_{s} X \mid \mathcal{F}_{s}\right]\right|^{2} d s
$$

A variance identity: Clark-Ocone formula

Stochastic calculus: let W be a BM, X be "smooth" r.v. depends on $\left\{W_{t}\right\}_{t \geq 0}$:

- martingale representation: $X-\mathbf{E} X=\int_{0}^{\infty} f_{s} d W_{s}$
- Clark-Ocone formula:

$$
f_{s}=\mathbf{E}\left[D_{s} X \mid \mathcal{F}_{s}\right]
$$

D_{s} : the (Malliavin) derivative of X on the infinitesimal increment of W at s

- Ito isometry

$$
\operatorname{Var} X=\int_{0}^{\infty} \mathbf{E} f_{s}^{2} d s=\int_{0}^{\infty} \mathbf{E}\left|\mathbf{E}\left[D_{s} X \mid \mathcal{F}_{s}\right]\right|^{2} d s
$$

- Cauchy-Schwarz leads to Gaussian Poincare: $\operatorname{Var} X \leq \int_{0}^{\infty} \mathbf{E}\left|D_{s} X\right|^{2} d s$

A variance identity: Clark-Ocone formula

Stochastic calculus: let W be a BM, X be "smooth" r.v. depends on $\left\{W_{t}\right\}_{t \geq 0}$:

- martingale representation: $X-\mathbf{E} X=\int_{0}^{\infty} f_{s} d W_{s}$
- Clark-Ocone formula:

$$
f_{s}=\mathbf{E}\left[D_{s} X \mid \mathcal{F}_{s}\right]
$$

D_{s} : the (Malliavin) derivative of X on the infinitesimal increment of W at s

- Ito isometry

$$
\operatorname{Var} X=\int_{0}^{\infty} \mathbf{E} f_{s}^{2} d s=\int_{0}^{\infty} \mathbf{E}\left|\mathbf{E}\left[D_{s} X \mid \mathcal{F}_{s}\right]\right|^{2} d s
$$

- Cauchy-Schwarz leads to Gaussian Poincare: $\operatorname{Var} X \leq \int_{0}^{\infty} \mathbf{E}\left|D_{s} X\right|^{2} d s$
- in spacetime setting $Z_{t}=\mathbb{E} e^{\int_{0}^{t} \xi\left(s, B_{s}\right) d s}$

$$
\log Z_{t}-\mathbf{E} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}^{d}} \mathbf{E}\left[D_{s, y} \log Z_{t} \mid \mathcal{F}_{s}\right] \xi(s, y) d y d s
$$

$D_{s, y} \log Z_{t}:$ quenched density of polymer at (s, y)

Polymer path overlap again

Continuous setting: $Z_{t}=\mathbb{E} e^{\int_{0}^{t} \xi\left(r, B_{r}\right) d r}$

- quenched density ($D_{s, y}$ is the derivative with respect to $\xi(s, y)$)

$$
\rho_{t}(s, y):=D_{s, y} \log Z_{t}=\frac{\mathbb{E}\left[e \int_{0}^{t} \xi\left(r, B_{r}\right) d r \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

Polymer path overlap again

Continuous setting: $Z_{t}=\mathbb{E} e^{\int_{0}^{t} \xi\left(r, B_{r}\right) d r}$

- quenched density ($D_{s, y}$ is the derivative with respect to $\xi(s, y)$)

$$
\rho_{t}(s, y):=D_{s, y} \log Z_{t}=\frac{\mathbb{E}\left[e \int_{0}^{t} \xi\left(r, B_{r}\right) d r \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

- Clark-Ocone formula

$$
\log Z_{t}-\mathbf{E} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}^{d}} \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \xi(s, y) d y d s
$$

Polymer path overlap again

Continuous setting: $Z_{t}=\mathbb{E} e^{\int_{0}^{t} \xi\left(r, B_{r}\right) d r}$

- quenched density ($D_{s, y}$ is the derivative with respect to $\xi(s, y)$)

$$
\rho_{t}(s, y):=D_{s, y} \log Z_{t}=\frac{\mathbb{E}\left[e \int_{0}^{t} \xi\left(r, B_{r}\right) d r \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

- Clark-Ocone formula

$$
\log Z_{t}-\mathbf{E} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}^{d}} \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \xi(s, y) d y d s
$$

- Ito isometry (assume ξ is white noise)

$$
\operatorname{Var} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}} \mathbf{E}\left[\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right] d y d s
$$

Polymer path overlap again

Continuous setting: $Z_{t}=\mathbb{E} e^{\int_{0}^{t} \xi\left(r, B_{r}\right) d r}$

- quenched density ($D_{s, y}$ is the derivative with respect to $\xi(s, y)$)

$$
\rho_{t}(s, y):=D_{s, y} \log Z_{t}=\frac{\mathbb{E}\left[e \int_{0}^{t} \xi\left(r, B_{r}\right) d r \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

- Clark-Ocone formula

$$
\log Z_{t}-\mathbf{E} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}^{d}} \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \xi(s, y) d y d s
$$

- Ito isometry (assume ξ is white noise)

$$
\operatorname{Var} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}} \mathbf{E}\left[\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right] d y d s
$$

- fluctuation of free energy is related to overlap of "conditioned midpoint density"

Polymer path overlap again

Continuous setting: $Z_{t}=\mathbb{E} e^{\int_{0}^{t} \xi\left(r, B_{r}\right) d r}$

- quenched density ($D_{s, y}$ is the derivative with respect to $\xi(s, y)$)

$$
\rho_{t}(s, y):=D_{s, y} \log Z_{t}=\frac{\mathbb{E}\left[e \int_{0}^{t} \xi\left(r, B_{r}\right) d r \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

- Clark-Ocone formula

$$
\log Z_{t}-\mathbf{E} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}^{d}} \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \xi(s, y) d y d s
$$

- Ito isometry (assume ξ is white noise)

$$
\operatorname{Var} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}} \mathbf{E}\left[\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right] d y d s
$$

- fluctuation of free energy is related to overlap of "conditioned midpoint density"
- it reduces to study how the random density $\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]$ overlap with itself

Three levels of localization

$\operatorname{Var} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}} \mathbf{E}\left[\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right] d y d s$

Three levels of localization

$$
\operatorname{Var} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}} \mathbf{E}\left[\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right] d y d s
$$

- if there is no conditional expectation (as if apply Gaussian-Poincare)

$$
\int_{\mathbb{R}} \rho_{t}(s, y)^{2} d y \sim O(1)
$$

measures the overlap of the quenched density (complete localization) $\operatorname{Var} \log Z_{t} \lesssim t$

Three levels of localization

$$
\operatorname{Var} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}} \mathbf{E}\left[\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right] d y d s
$$

- if there is no conditional expectation (as if apply Gaussian-Poincare)

$$
\int_{\mathbb{R}} \rho_{t}(s, y)^{2} d y \sim O(1)
$$

measures the overlap of the quenched density (complete localization) $\operatorname{Var} \log Z_{t} \lesssim t$

- if we replace conditional expectation by full expectation

$$
\int_{\mathbb{R}} \mathbf{E}\left[\rho_{t}(s, y)\right] \mathbf{E}\left[\rho_{t}(s, y)\right] d y \sim \int\left(\frac{1}{s^{2 / 3}} 1_{\left[-s^{2 / 3}, s^{2 / 3}\right]}(y)\right)^{2} d y \sim s^{-2 / 3}
$$

no localization and $\operatorname{Var} \log Z_{t} \gtrsim t^{1 / 3}$

Three levels of localization

$$
\operatorname{Var} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}} \mathbf{E}\left[\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right] d y d s
$$

- if there is no conditional expectation (as if apply Gaussian-Poincare)

$$
\int_{\mathbb{R}} \rho_{t}(s, y)^{2} d y \sim O(1)
$$

measures the overlap of the quenched density (complete localization) $\operatorname{Var} \log Z_{t} \lesssim t$

- if we replace conditional expectation by full expectation

$$
\int_{\mathbb{R}} \mathbf{E}\left[\rho_{t}(s, y)\right] \mathbf{E}\left[\rho_{t}(s, y)\right] d y \sim \int\left(\frac{1}{s^{2 / 3}} 1_{\left[-s^{2 / 3}, s^{2 / 3}\right]}(y)\right)^{2} d y \sim s^{-2 / 3}
$$

no localization and $\operatorname{Var} \log Z_{t} \gtrsim t^{1 / 3}$

- The KPZ fluctuation Var $\log Z_{t} \sim t^{2 / 3}$ is in between

Semi-localization

$$
\operatorname{Var} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}} \mathbf{E}\left[\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right] d y d s
$$

- the study of fluctuations of $\log Z_{t}$ reduces to the overlap of the conditional density $\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]$

Semi-localization

$$
\operatorname{Var} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}} \mathbf{E}\left[\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right] d y d s
$$

- the study of fluctuations of $\log Z_{t}$ reduces to the overlap of the conditional density $\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]$
- the (obvious) conjecture is that in $d=1$

$$
\int_{\mathbb{R}} \mathbf{E}\left[\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right] d y \sim s^{-1 / 3}
$$

Semi-localization

$$
\operatorname{Var} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}} \mathbf{E}\left[\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right] d y d s
$$

- the study of fluctuations of $\log Z_{t}$ reduces to the overlap of the conditional density $\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]$
- the (obvious) conjecture is that in $d=1$

$$
\int_{\mathbb{R}} \mathbf{E}\left[\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right] d y \sim s^{-1 / 3}
$$

- it may be easier to think about the zero-temperature case where $\log Z_{t}$ is replaced by sum of r.v. along geodesics, but there is a complicated correlation.

Semi-localization

$$
\operatorname{Var} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}} \mathbf{E}\left[\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right] d y d s
$$

- the study of fluctuations of $\log Z_{t}$ reduces to the overlap of the conditional density $\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]$
- the (obvious) conjecture is that in $d=1$

$$
\int_{\mathbb{R}} \mathbf{E}\left[\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right] d y \sim s^{-1 / 3}
$$

- it may be easier to think about the zero-temperature case where $\log Z_{t}$ is replaced by sum of r.v. along geodesics, but there is a complicated correlation.
- in the identity $\log Z_{t}-\mathbf{E} \log Z_{t}=\int_{0}^{t} \int_{\mathbb{R}} \mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right] \xi(s, y) d y d s$, there is no correlation

zero temperature/LPP version

Quenched density

$$
\rho_{t}(s, y)=\frac{\mathbb{E}\left[e^{\beta \int_{0}^{t} \xi\left(r, B_{r}\right) d r} \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

$\beta=\infty: \rho_{t}(s, y)=\delta\left(\pi_{s}-y\right)$ becomes the Dirac mass along the (random) geodesics

zero temperature/LPP version

Quenched density

$$
\rho_{t}(s, y)=\frac{\mathbb{E}\left[e^{\beta \int_{0}^{t} \xi\left(r, B_{r}\right) d r} \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

$\beta=\infty: \rho_{t}(s, y)=\delta\left(\pi_{s}-y\right)$ becomes the Dirac mass along the (random) geodesics

Discrete setting

- $\sum_{y} \rho_{t}(s, y)^{2}=1$ (complete localization)

zero temperature/LPP version

Quenched density

$$
\rho_{t}(s, y)=\frac{\mathbb{E}\left[e^{\beta \int_{0}^{t} \xi\left(r, B_{r}\right) d r} \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

$\beta=\infty: \rho_{t}(s, y)=\delta\left(\pi_{s}-y\right)$ becomes the Dirac mass along the (random) geodesics

Discrete setting

- $\sum_{y} \rho_{t}(s, y)^{2}=1$ (complete localization)
- expect $\sum_{y}\left|\mathbf{E}_{\rho_{t}}(s, y)\right|^{2} \sim s^{-2 / 3}$ (no localization)

zero temperature/LPP version

Quenched density

$$
\rho_{t}(s, y)=\frac{\mathbb{E}\left[e^{\beta \int_{0}^{t} \xi\left(r, B_{r}\right) d r} \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

$\beta=\infty: \rho_{t}(s, y)=\delta\left(\pi_{s}-y\right)$ becomes the Dirac mass along the (random) geodesics

Discrete setting

- $\sum_{y} \rho_{t}(s, y)^{2}=1$ (complete localization)
- expect $\sum_{y}\left|\mathbf{E} \rho_{t}(s, y)\right|^{2} \sim s^{-2 / 3}$ (no localization)
- expect $\sum_{y}\left|\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right|^{2} \sim s^{-1 / 3}$ (semi-localization, but why?)

zero temperature/LPP version

Quenched density

$$
\rho_{t}(s, y)=\frac{\mathbb{E}\left[e^{\beta \int_{0}^{t} \xi\left(r, B_{r}\right) d r} \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

$\beta=\infty: \rho_{t}(s, y)=\delta\left(\pi_{s}-y\right)$ becomes the Dirac mass along the (random) geodesics

Discrete setting

- $\sum_{y} \rho_{t}(s, y)^{2}=1$ (complete localization)
- expect $\sum_{y}\left|\mathbf{E} \rho_{t}(s, y)\right|^{2} \sim s^{-2 / 3}$ (no localization)
- expect $\sum_{y}\left|\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]\right|^{2} \sim s^{-1 / 3}$ (semi-localization, but why?)

Question: for each realization of random environment, the geodesic and its midpoint is given, but if we average half of random environment out, what does the midpoint look like?

Geometric questions to ask

midpoint density

$$
\rho_{t}(s, y) \frac{\mathbb{E}\left[e^{\int_{0}^{t} \xi\left(r, B_{r}\right) d r} \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

half-averaged midpoint density $\tilde{\rho}_{t}(s, y):=\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]$

Geometric questions to ask

midpoint density

$$
\rho_{t}(s, y) \frac{\mathbb{E}\left[e^{\int_{0}^{t} \xi\left(r, B_{r}\right) d r} \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

half-averaged midpoint density $\tilde{\rho}_{t}(s, y):=\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]$

- properties of $\tilde{\rho}_{t}(s, \cdot)$?

Geometric questions to ask

midpoint density

$$
\rho_{t}(s, y) \frac{\mathbb{E}\left[e^{\int_{0}^{t} \xi\left(r, B_{r}\right) d r} \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

half-averaged midpoint density $\tilde{\rho}_{t}(s, y):=\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]$

- properties of $\tilde{\rho}_{t}(s, \cdot)$?
- size of the overlap $\sum_{y}\left|\tilde{\rho}_{t}(s, y)\right|^{2}$?

Geometric questions to ask

midpoint density

$$
\rho_{t}(s, y) \frac{\mathbb{E}\left[e^{\int_{0}^{t} \xi\left(r, B_{r}\right) d r} \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

half-averaged midpoint density $\tilde{\rho}_{t}(s, y):=\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]$

- properties of $\tilde{\rho}_{t}(s, \cdot)$?
- size of the overlap $\sum_{y}\left|\tilde{\rho}_{t}(s, y)\right|^{2}$?
- a simpler toy problem: let B_{1}, B_{2} be two independent Brownian bridge on $[0,1]$, and $M=\operatorname{argmax}\left\{B_{1}(x)+B_{2}(x)\right\}$, and $\mu=\delta_{M}$ is a (random) probability measure on $[0,1]$.

Geometric questions to ask

midpoint density

$$
\rho_{t}(s, y) \frac{\mathbb{E}\left[e^{\int_{0}^{t} \xi\left(r, B_{r}\right) d r} \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

half-averaged midpoint density $\tilde{\rho}_{t}(s, y):=\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]$

- properties of $\tilde{\rho}_{t}(s, \cdot)$?
- size of the overlap $\sum_{y}\left|\tilde{\rho}_{t}(s, y)\right|^{2}$?
- a simpler toy problem: let B_{1}, B_{2} be two independent Brownian bridge on $[0,1]$, and $M=\operatorname{argmax}\left\{B_{1}(x)+B_{2}(x)\right\}$, and $\mu=\delta_{M}$ is a (random) probability measure on $[0,1]$. (i) μ is a Dirac (ii) $\mathrm{E} \mu$ is Lebesgue (iii) How about $\mathbf{E}\left[\mu \mid B_{1}\right]$?

Geometric questions to ask

midpoint density

$$
\rho_{t}(s, y) \frac{\mathbb{E}\left[e^{\int_{0}^{t} \xi\left(r, B_{r}\right) d r} \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

half-averaged midpoint density $\tilde{\rho}_{t}(s, y):=\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]$

- properties of $\tilde{\rho}_{t}(s, \cdot)$?
- size of the overlap $\sum_{y}\left|\tilde{\rho}_{t}(s, y)\right|^{2}$?
- a simpler toy problem: let B_{1}, B_{2} be two independent Brownian bridge on $[0,1]$, and $M=\operatorname{argmax}\left\{B_{1}(x)+B_{2}(x)\right\}$, and $\mu=\delta_{M}$ is a (random) probability measure on $[0,1]$. (i) μ is a Dirac (ii) $\mathrm{E} \mu$ is Lebesgue (iii) How about $\mathbf{E}\left[\mu \mid B_{1}\right]$?
- how to relate the answers to the KPZ fluctuations?

Geometric questions to ask

midpoint density

$$
\rho_{t}(s, y) \frac{\mathbb{E}\left[e^{\int_{0}^{t} \xi\left(r, B_{r}\right) d r} \delta\left(B_{s}-y\right)\right]}{Z_{t}}
$$

half-averaged midpoint density $\tilde{\rho}_{t}(s, y):=\mathbf{E}\left[\rho_{t}(s, y) \mid \mathcal{F}_{s}\right]$

- properties of $\tilde{\rho}_{t}(s, \cdot)$?
- size of the overlap $\sum_{y}\left|\tilde{\rho}_{t}(s, y)\right|^{2}$?
- a simpler toy problem: let B_{1}, B_{2} be two independent Brownian bridge on $[0,1]$, and $M=\operatorname{argmax}\left\{B_{1}(x)+B_{2}(x)\right\}$, and $\mu=\delta_{M}$ is a (random) probability measure on $[0,1]$. (i) μ is a Dirac (ii) $\mathrm{E} \mu$ is Lebesgue (iii) How about $\mathbf{E}\left[\mu \mid B_{1}\right]$?
- how to relate the answers to the KPZ fluctuations?
- I don't know if it's easier to approach these questions from geometric or analytic perspective

What we can do from a more analytic perspective

we will try to understand the 1:2:3 scaling in $d=1$ by working on a simpler problem: $\mathbb{R} \mapsto \mathbb{T}$

What we can do from a more analytic perspective

we will try to understand the 1:2:3 scaling in $d=1$ by working on a simpler problem: $\mathbb{R} \mapsto \mathbb{T}$

- for compact case, the fluctuations are diffusive

What we can do from a more analytic perspective

we will try to understand the $1: 2: 3$ scaling in $d=1$ by working on a simpler problem: $\mathbb{R} \mapsto \mathbb{T}$

- for compact case, the fluctuations are diffusive
- we try to understand how diffusive behaviors become sub- or super-diffusive behaviors

What we can do from a more analytic perspective

we will try to understand the $1: 2: 3$ scaling in $d=1$ by working on a simpler problem: $\mathbb{R} \mapsto \mathbb{T}$

- for compact case, the fluctuations are diffusive
- we try to understand how diffusive behaviors become sub- or super-diffusive behaviors
- we work on a continuous model which is the KPZ equation

$$
\partial_{t} h=\frac{1}{2} \Delta h+\frac{1}{2}|\nabla h|^{2}+\xi, \quad t>0, x \in \mathbb{T}^{d}
$$

Invariant measure for KPZ/Burgers in $d=1$

$$
\partial_{t} h=\frac{1}{2} \Delta h+\frac{1}{2}|\nabla h|^{2}+\xi
$$

Invariant measure for KPZ/Burgers in $d=1$

$$
\partial_{t} h=\frac{1}{2} \Delta h+\frac{1}{2}|\nabla h|^{2}+\xi
$$

- the evolution of the height only depends on the relative height $h(t, x)-h(t, 0)$ or equivalently $\nabla h(t, x)$

Invariant measure for KPZ/Burgers in $d=1$

$$
\partial_{t} h=\frac{1}{2} \Delta h+\frac{1}{2}|\nabla h|^{2}+\xi
$$

- the evolution of the height only depends on the relative height $h(t, x)-h(t, 0)$ or equivalently $\nabla h(t, x)$
- $U=\nabla h$ solves the stochastic Burgers equation of the form

$$
\partial_{t} U=\frac{1}{2} \Delta U+U \nabla U+\nabla \xi
$$

Invariant measure for KPZ/Burgers in $d=1$

$$
\partial_{t} h=\frac{1}{2} \Delta h+\frac{1}{2}|\nabla h|^{2}+\xi
$$

- the evolution of the height only depends on the relative height $h(t, x)-h(t, 0)$ or equivalently $\nabla h(t, x)$
- $U=\nabla h$ solves the stochastic Burgers equation of the form

$$
\partial_{t} U=\frac{1}{2} \Delta U+U \nabla U+\nabla \xi
$$

- for spacetime white noise, the invariant measure for Burgers is the spatial white noise (Bertini-Giacomin,Funaki-Quastel, ...)

Invariant measure for KPZ/Burgers in $d=1$

$$
\partial_{t} h=\frac{1}{2} \Delta h+\frac{1}{2}|\nabla h|^{2}+\xi
$$

- the evolution of the height only depends on the relative height $h(t, x)-h(t, 0)$ or equivalently $\nabla h(t, x)$
- $U=\nabla h$ solves the stochastic Burgers equation of the form

$$
\partial_{t} U=\frac{1}{2} \Delta U+U \nabla U+\nabla \xi
$$

- for spacetime white noise, the invariant measure for Burgers is the spatial white noise (Bertini-Giacomin,Funaki-Quastel,...)
- two-sided BM or Brownian bridge is invariant for KPZ on \mathbb{R} or \mathbb{T}

Invariant measure for KPZ/Burgers in $d=1$

$\partial_{t} h=\frac{1}{2} \Delta h+\frac{1}{2}|\nabla h|^{2}+\xi$

- the evolution of the height only depends on the relative height $h(t, x)-h(t, 0)$ or equivalently $\nabla h(t, x)$
- $U=\nabla h$ solves the stochastic Burgers equation of the form

$$
\partial_{t} U=\frac{1}{2} \Delta U+U \nabla U+\nabla \xi
$$

- for spacetime white noise, the invariant measure for Burgers is the spatial white noise (Bertini-Giacomin,Funaki-Quastel, ...)
- two-sided BM or Brownian bridge is invariant for KPZ on \mathbb{R} or \mathbb{T}
- some difficulties in $d=1$ for general models or $d \geq 1$ come from the lack of understanding of invariant measures

Invariant measure for KPZ/Burgers in $d=1$

$\partial_{t} h=\frac{1}{2} \Delta h+\frac{1}{2}|\nabla h|^{2}+\xi$

- the evolution of the height only depends on the relative height $h(t, x)-h(t, 0)$ or equivalently $\nabla h(t, x)$
- $U=\nabla h$ solves the stochastic Burgers equation of the form

$$
\partial_{t} U=\frac{1}{2} \Delta U+U \nabla U+\nabla \xi
$$

- for spacetime white noise, the invariant measure for Burgers is the spatial white noise (Bertini-Giacomin,Funaki-Quastel, ...)
- two-sided BM or Brownian bridge is invariant for KPZ on \mathbb{R} or \mathbb{T}
- some difficulties in $d=1$ for general models or $d \geq 1$ come from the lack of understanding of invariant measures
- in our work we will work with white noise in $d=1$, half of our argument works for general noise and dimensions

Directed polymer in a random environment

$$
\partial_{\mathrm{t}} h=\frac{1}{2} \Delta h+\frac{1}{2}|\nabla h|^{2}+\xi, \quad x \in \mathbb{R}
$$

Directed polymer in a random environment

$$
\partial_{t} h=\frac{1}{2} \Delta h+\frac{1}{2}|\nabla h|^{2}+\xi, \quad x \in \mathbb{R}
$$

- Hopf-Cole: $h=\log Z$ with $\partial_{t} Z=\frac{1}{2} \Delta Z+Z \xi$

Directed polymer in a random environment

$$
\partial_{t} h=\frac{1}{2} \Delta h+\frac{1}{2}|\nabla h|^{2}+\xi, \quad x \in \mathbb{R}
$$

- Hopf-Cole: $h=\log Z$ with $\partial_{t} Z=\frac{1}{2} \Delta Z+Z \xi$
- polymer measure: random Gibbs measure with weight $\exp \left(\int_{0}^{t} \xi\left(s, B_{s}\right) d s\right)$

Directed polymer in a random environment

$$
\partial_{t} h=\frac{1}{2} \Delta h+\frac{1}{2}|\nabla h|^{2}+\xi, \quad x \in \mathbb{R}
$$

- Hopf-Cole: $h=\log Z$ with $\partial_{t} Z=\frac{1}{2} \Delta Z+Z \xi$
- polymer measure: random Gibbs measure with weight $\exp \left(\int_{0}^{t} \xi\left(s, B_{s}\right) d s\right)$
- polymer endpoint distribution $(Z(0, x)=\delta(x))$

$$
\rho(t, x)=\frac{Z(t, x)}{\int Z\left(t, x^{\prime}\right) d x^{\prime}}=\frac{\mathbb{E}\left[e^{\int_{0}^{t} \xi\left(s, B_{s}\right) d s} \delta\left(B_{t}-x\right)\right]}{\mathbb{E}\left[e^{\int_{0}^{t} \xi\left(s, B_{s}\right) d s}\right]}
$$

Directed polymer in a random environment

$$
\partial_{t} h=\frac{1}{2} \Delta h+\frac{1}{2}|\nabla h|^{2}+\xi, \quad x \in \mathbb{R}
$$

- Hopf-Cole: $h=\log Z$ with $\partial_{t} Z=\frac{1}{2} \Delta Z+Z \xi$
- polymer measure: random Gibbs measure with weight $\exp \left(\int_{0}^{t} \xi\left(s, B_{s}\right) d s\right)$
- polymer endpoint distribution $(Z(0, x)=\delta(x))$

$$
\rho(t, x)=\frac{Z(t, x)}{\int Z\left(t, x^{\prime}\right) d x^{\prime}}=\frac{\mathbb{E}\left[e^{\int_{0}^{t} \xi\left(s, B_{s}\right) d s} \delta\left(B_{t}-x\right)\right]}{\mathbb{E}\left[e^{\int_{0}^{t} \xi\left(s, B_{s}\right) d s}\right]}
$$

- projective process, Markovian

Directed polymer in a random environment

$$
\partial_{t} h=\frac{1}{2} \Delta h+\frac{1}{2}|\nabla h|^{2}+\xi, \quad x \in \mathbb{R}
$$

- Hopf-Cole: $h=\log Z$ with $\partial_{t} Z=\frac{1}{2} \Delta Z+Z \xi$
- polymer measure: random Gibbs measure with weight $\exp \left(\int_{0}^{t} \xi\left(s, B_{s}\right) d s\right)$
- polymer endpoint distribution $(Z(0, x)=\delta(x))$

$$
\rho(t, x)=\frac{Z(t, x)}{\int Z\left(t, x^{\prime}\right) d x^{\prime}}=\frac{\mathbb{E}\left[e^{\int_{0}^{t} \xi\left(s, B_{s}\right) d s} \delta\left(B_{t}-x\right)\right]}{\mathbb{E}\left[e^{\int_{0}^{t} \xi\left(s, B_{s}\right) d s}\right]}
$$

- projective process, Markovian
- on torus, unique invariant measure $e^{B(x)} / \int e^{B\left(x^{\prime}\right)} d x^{\prime}$ with Brownian bridge B :

$$
\rho(t, x)=\frac{Z(t, x)}{\int Z\left(t, x^{\prime}\right) d x^{\prime}}=\frac{e^{h(t, x)}}{\int e^{h\left(t, x^{\prime}\right)} d x^{\prime}}=\frac{e^{h(t, x)-h(t, 0)}}{\int e^{h\left(t, x^{\prime}\right)-h(t, 0)} d x^{\prime}}
$$

What happens on a torus: CLT

$\partial_{t} h_{L}=\frac{1}{2} \Delta h_{L}+\frac{1}{2}\left|\nabla h_{L}\right|^{2}+\beta \xi, \quad x \in \mathbb{T}_{L}$
$h_{L}=\log Z, \quad \partial_{t} Z=\frac{1}{2} \Delta Z+\beta Z \xi, \quad Z(0, x):$ arbitrary measure

What happens on a torus: CLT

$$
\begin{aligned}
& \partial_{t} h_{L}=\frac{1}{2} \Delta h_{L}+\frac{1}{2}\left|\nabla h_{L}\right|^{2}+\beta \xi, \quad x \in \mathbb{T}_{L} \\
& h_{L}=\log Z, \quad \partial_{t} Z=\frac{1}{2} \Delta Z+\beta Z \xi, \quad Z(0, x): \text { arbitrary measure }
\end{aligned}
$$

Theorem (G.-Komorowski 21, Dunlap-G.-Komorowski 21)
There exists $\gamma_{L}, \sigma_{L}>0$ such that for any $x \in \mathbb{T}_{L}$, as $t \rightarrow \infty$,

$$
\frac{h_{L}(t, x)+\gamma_{L} t}{\sqrt{t}} \Rightarrow N\left(0, \sigma_{L}^{2}\right)
$$

What happens on a torus: CLT

$$
\begin{aligned}
& \partial_{t} h_{L}=\frac{1}{2} \Delta h_{L}+\frac{1}{2}\left|\nabla h_{L}\right|^{2}+\beta \xi, \quad x \in \mathbb{T}_{L} \\
& h_{L}=\log Z, \quad \partial_{t} Z=\frac{1}{2} \Delta Z+\beta Z \xi, \quad Z(0, x): \text { arbitrary measure }
\end{aligned}
$$

Theorem (G.-Komorowski 21, Dunlap-G.-Komorowski 21)

There exists $\gamma_{L}, \sigma_{L}>0$ such that for any $x \in \mathbb{T}_{L}$, as $t \rightarrow \infty$,

$$
\frac{h_{L}(t, x)+\gamma_{L} t}{\sqrt{t}} \Rightarrow N\left(0, \sigma_{L}^{2}\right)
$$

- the same result holds for colored noise in all dimensions

What happens on a torus: CLT

$$
\begin{aligned}
& \partial_{t} h_{L}=\frac{1}{2} \Delta h_{L}+\frac{1}{2}\left|\nabla h_{L}\right|^{2}+\beta \xi, \quad x \in \mathbb{T}_{L} \\
& h_{L}=\log Z, \quad \partial_{t} Z=\frac{1}{2} \Delta Z+\beta Z \xi, \quad Z(0, x): \text { arbitrary measure }
\end{aligned}
$$

Theorem (G.-Komorowski 21, Dunlap-G.-Komorowski 21)

There exists $\gamma_{L}, \sigma_{L}>0$ such that for any $x \in \mathbb{T}_{L}$, as $t \rightarrow \infty$,

$$
\frac{h_{L}(t, x)+\gamma_{L} t}{\sqrt{t}} \Rightarrow N\left(0, \sigma_{L}^{2}\right)
$$

- the same result holds for colored noise in all dimensions
- $h_{L}(t, \cdot)-h_{L}(t, 0)$ converges exponentially fast to the invariant measure

What happens on a torus: CLT

$$
\begin{aligned}
& \partial_{t} h_{L}=\frac{1}{2} \Delta h_{L}+\frac{1}{2}\left|\nabla h_{L}\right|^{2}+\beta \xi, \quad x \in \mathbb{T}_{L} \\
& h_{L}=\log Z, \quad \partial_{t} Z=\frac{1}{2} \Delta Z+\beta Z \xi, \quad Z(0, x): \text { arbitrary measure }
\end{aligned}
$$

Theorem (G.-Komorowski 21, Dunlap-G.-Komorowski 21)

There exists $\gamma_{L}, \sigma_{L}>0$ such that for any $x \in \mathbb{T}_{L}$, as $t \rightarrow \infty$,

$$
\frac{h_{L}(t, x)+\gamma_{L} t}{\sqrt{t}} \Rightarrow N\left(0, \sigma_{L}^{2}\right)
$$

- the same result holds for colored noise in all dimensions
- $h_{L}(t, \cdot)-h_{L}(t, 0)$ converges exponentially fast to the invariant measure
- explicit drift (using Marc Yor's density formula)

$$
\gamma_{L}=\frac{1}{2} \beta^{2} L \mathbb{E} \frac{1}{\left(\int_{0}^{L} e^{\beta B(x)} d x\right)^{2}}=\frac{\beta^{2}}{2 L}+\frac{\beta^{4}}{24}
$$

Fluctuation diffusivity and 1:2:3 scaling

$$
\frac{h_{L}(t, x)+\gamma_{L} t}{\sqrt{t}} \Rightarrow N\left(0, \sigma_{L}^{2}\right)
$$

Fluctuation diffusivity and 1:2:3 scaling

$$
\frac{h_{L}(t, x)+\gamma_{L} t}{\sqrt{t}} \Rightarrow N\left(0, \sigma_{L}^{2}\right)
$$

- explicit diffusivity: with B_{i} independent Brownian bridges on $[0, L]$,

$$
\sigma_{L}^{2}=\beta^{2} L \mathbb{E} \frac{1}{\int_{0}^{L} e^{\beta\left(B_{1}(x)+B_{2}(x)\right)} d x \int_{0}^{L} e^{\beta\left(B_{1}(x)+B_{3}(x)\right.} d x}
$$

Fluctuation diffusivity and 1:2:3 scaling

$\frac{h_{L}(t, x)+\gamma_{L} t}{\sqrt{t}} \Rightarrow N\left(0, \sigma_{L}^{2}\right)$

- explicit diffusivity: with B_{i} independent Brownian bridges on $[0, L]$,

$$
\sigma_{L}^{2}=\beta^{2} L \mathbb{E} \frac{1}{\int_{0}^{L} e^{\beta\left(B_{1}(x)+B_{2}(x)\right)} d x \int_{0}^{L} e^{\beta\left(B_{1}(x)+B_{3}(x)\right.} d x}
$$

- we do not know how to evaluate the expectation, conjectured integral form by Brunet-Derrida through replica method

Fluctuation diffusivity and 1:2:3 scaling

$\frac{h_{L}(t, x)+\gamma_{L} t}{\sqrt{t}} \Rightarrow N\left(0, \sigma_{L}^{2}\right)$

- explicit diffusivity: with B_{i} independent Brownian bridges on $[0, L]$,

$$
\sigma_{L}^{2}=\beta^{2} L \mathbb{E} \frac{1}{\int_{0}^{L} e^{\beta\left(B_{1}(x)+B_{2}(x)\right)} d x \int_{0}^{L} e^{\beta\left(B_{1}(x)+B_{3}(x)\right.} d x}
$$

- we do not know how to evaluate the expectation, conjectured integral form by Brunet-Derrida through replica method
- $\operatorname{Var} h_{L}(t, 0) \sim \sigma_{L}^{2} t, \quad \operatorname{Varh}(t, 0) \sim t^{2 / 3}$, we show $\sigma_{L}^{2} \sim 1 / \sqrt{L}$

Fluctuation diffusivity and 1:2:3 scaling

$\frac{h_{L}(t, x)+\gamma_{L} t}{\sqrt{t}} \Rightarrow N\left(0, \sigma_{L}^{2}\right)$

- explicit diffusivity: with B_{i} independent Brownian bridges on $[0, L]$,

$$
\sigma_{L}^{2}=\beta^{2} L \mathbb{E} \frac{1}{\int_{0}^{L} e^{\beta\left(B_{1}(x)+B_{2}(x)\right)} d x \int_{0}^{L} e^{\beta\left(B_{1}(x)+B_{3}(x)\right.} d x}
$$

- we do not know how to evaluate the expectation, conjectured integral form by Brunet-Derrida through replica method
- $\operatorname{Var} h_{L}(t, 0) \sim \sigma_{L}^{2} t, \quad \operatorname{Varh}(t, 0) \sim t^{2 / 3}$, we show $\sigma_{L}^{2} \sim 1 / \sqrt{L}$
- $h_{L}(t, x)=h_{L}(t, 0)+\left(h_{L}(t, x)-h_{L}(t, 0)\right)$

Fluctuation diffusivity and 1:2:3 scaling

$\frac{h_{L}(t, x)+\gamma_{L} t}{\sqrt{t}} \Rightarrow N\left(0, \sigma_{L}^{2}\right)$

- explicit diffusivity: with B_{i} independent Brownian bridges on $[0, L]$,

$$
\sigma_{L}^{2}=\beta^{2} L \mathbb{E} \frac{1}{\int_{0}^{L} e^{\beta\left(B_{1}(x)+B_{2}(x)\right)} d x \int_{0}^{L} e^{\beta\left(B_{1}(x)+B_{3}(x)\right.} d x}
$$

- we do not know how to evaluate the expectation, conjectured integral form by Brunet-Derrida through replica method
- $\operatorname{Var} h_{L}(t, 0) \sim \sigma_{L}^{2} t, \quad \operatorname{Varh}(t, 0) \sim t^{2 / 3}$, we show $\sigma_{L}^{2} \sim 1 / \sqrt{L}$
- $h_{L}(t, x)=h_{L}(t, 0)+\left(h_{L}(t, x)-h_{L}(t, 0)\right)$
- $\operatorname{Var}_{L}(t, 0) \sim \sigma_{L}^{2} t \sim t / \sqrt{L} \quad \operatorname{Var}\left(h_{L}(t, \cdot)-h_{L}(t, 0)\right) \sim L$ balance $t / \sqrt{L} \sim L$ leads to $1: 2: 3$

Non-handwaving: sending $t, L \rightarrow \infty$ together

$$
\begin{aligned}
& \partial_{t} h_{L}=\frac{1}{2} \Delta h_{L}+\frac{1}{2}\left|\nabla h_{L}\right|^{2}+\xi, \quad x \in \mathbb{T}_{L} \\
& h_{L}(0, \cdot)=\text { Brownian bridge }
\end{aligned}
$$

Non-handwaving: sending $t, L \rightarrow \infty$ together

$\partial_{t} h_{L}=\frac{1}{2} \Delta h_{L}+\frac{1}{2}\left|\nabla h_{L}\right|^{2}+\xi, \quad x \in \mathbb{T}_{L}$ $h_{L}(0, \cdot)=$ Brownian bridge

Theorem (Dunlap-G.-Komorowski 21)
Let $L=\lambda t^{\alpha}$. There exists a constant $\delta>0$ such that as $t \rightarrow \infty$

$$
\operatorname{Var} h_{L}(t, x) \propto \frac{t}{\sqrt{L}} \propto \begin{cases}t^{1-\frac{\alpha}{2}}, & \alpha \in\left[0, \frac{2}{3}\right), \quad \lambda<\infty \\ t^{\frac{2}{3}}, & \alpha=\frac{2}{3}, \quad \lambda<\delta\end{cases}
$$

Non-handwaving: sending $t, L \rightarrow \infty$ together

$\partial_{t} h_{L}=\frac{1}{2} \Delta h_{L}+\frac{1}{2}\left|\nabla h_{L}\right|^{2}+\xi, \quad x \in \mathbb{T}_{L}$
$h_{L}(0, \cdot)=$ Brownian bridge

Theorem (Dunlap-G.-Komorowski 21)

Let $L=\lambda t^{\alpha}$. There exists a constant $\delta>0$ such that as $t \rightarrow \infty$

$$
\operatorname{Varh}_{L}(t, x) \propto \frac{t}{\sqrt{L}} \propto \begin{cases}t^{1-\frac{\alpha}{2}}, & \alpha \in\left[0, \frac{2}{3}\right), \quad \lambda<\infty \\ t^{\frac{2}{3}}, & \alpha=\frac{2}{3}, \quad \lambda<\delta\end{cases}
$$

- optimal variance bounds on the super-relaxation and part of relaxation regime

Non-handwaving: sending $t, L \rightarrow \infty$ together

$\partial_{t} h_{L}=\frac{1}{2} \Delta h_{L}+\frac{1}{2}\left|\nabla h_{L}\right|^{2}+\xi, \quad x \in \mathbb{T}_{L}$
$h_{L}(0, \cdot)=$ Brownian bridge

Theorem (Dunlap-G.-Komorowski 21)

Let $L=\lambda t^{\alpha}$. There exists a constant $\delta>0$ such that as $t \rightarrow \infty$

$$
\operatorname{Varh}_{L}(t, x) \propto \frac{t}{\sqrt{L}} \propto \begin{cases}t^{1-\frac{\alpha}{2}}, & \alpha \in\left[0, \frac{2}{3}\right), \quad \lambda<\infty \\ t^{\frac{2}{3}}, & \alpha=\frac{2}{3}, \quad \lambda<\delta\end{cases}
$$

- optimal variance bounds on the super-relaxation and part of relaxation regime
- for $\alpha \geq 2 / 3$, expect $\operatorname{Var} h_{L}(t, 0) \propto t^{2 / 3}$ (open)

Non-handwaving: sending $t, L \rightarrow \infty$ together

$\partial_{t} h_{L}=\frac{1}{2} \Delta h_{L}+\frac{1}{2}\left|\nabla h_{L}\right|^{2}+\xi, \quad x \in \mathbb{T}_{L}$
$h_{L}(0, \cdot)=$ Brownian bridge

Theorem (Dunlap-G.-Komorowski 21)

Let $L=\lambda t^{\alpha}$. There exists a constant $\delta>0$ such that as $t \rightarrow \infty$

$$
\operatorname{Varh}_{L}(t, x) \propto \frac{t}{\sqrt{L}} \propto \begin{cases}t^{1-\frac{\alpha}{2}}, & \alpha \in\left[0, \frac{2}{3}\right), \quad \lambda<\infty \\ t^{\frac{2}{3}}, & \alpha=\frac{2}{3}, \quad \lambda<\delta\end{cases}
$$

- optimal variance bounds on the super-relaxation and part of relaxation regime
- for $\alpha \geq 2 / 3$, expect $\operatorname{Var} h_{L}(t, 0) \propto t^{2 / 3}$ (open)
- much more precise results on periodic TASEP in all regimes by Baik-Liu, Baik-Liu-Silva

Effective diffusivity for the height function

h solves KPZ with noise ξ

$$
h(t, x)-\mathbf{E} h(t, x)=\int_{0}^{t} \int_{\mathbb{T}} \mathbf{E}\left[D_{s, y} h(t, x) \mid \mathcal{F}_{s}\right] \xi(s, y) d y d s
$$

$D_{s, y} h(t, x)$: quenched (midpoint) density of polymer at (s, y)

Effective diffusivity for the height function

h solves KPZ with noise ξ

$$
h(t, x)-\mathbf{E} h(t, x)=\int_{0}^{t} \int_{\mathbb{T}} \mathbf{E}\left[D_{s, y} h(t, x) \mid \mathcal{F}_{s}\right] \xi(s, y) d y d s
$$

$D_{s, y} h(t, x)$: quenched (midpoint) density of polymer at (s, y)

- endpoint distribution (for $t \gg 1$)

$$
\frac{Z(t, x)}{\int Z\left(t, x^{\prime}\right) d x^{\prime}}=\frac{e^{h(t, x)}}{\int e^{h\left(t, x^{\prime}\right)} d x^{\prime}}=\frac{e^{h(t, x)-h(t, 0)}}{\int e^{h\left(t, x^{\prime}\right)-h(t, 0)} d x^{\prime}} \approx \frac{e^{B(x)}}{\int e^{B\left(x^{\prime}\right)} d x^{\prime}}
$$

Effective diffusivity for the height function

h solves KPZ with noise ξ

$$
h(t, x)-\mathbf{E} h(t, x)=\int_{0}^{t} \int_{\mathbb{T}} \mathbf{E}\left[D_{s, y} h(t, x) \mid \mathcal{F}_{s}\right] \xi(s, y) d y d s
$$

$D_{s, y} h(t, x)$: quenched (midpoint) density of polymer at (s, y)

- endpoint distribution (for $t \gg 1$)

$$
\frac{Z(t, x)}{\int Z\left(t, x^{\prime}\right) d x^{\prime}}=\frac{e^{h(t, x)}}{\int e^{h\left(t, x^{\prime}\right)} d x^{\prime}}=\frac{e^{h(t, x)-h(t, 0)}}{\int e^{h\left(t, x^{\prime}\right)-h(t, 0)} d x^{\prime}} \approx \frac{e^{B(x)}}{\int e^{B\left(x^{\prime}\right)} d x^{\prime}}
$$

- midpoint distribution (for $s \gg 1$ and $t-s \gg 1$)

$$
D_{s, y} h(t, x) \approx \frac{e^{B_{1}(y)+B_{2}(y)}}{\int e^{B_{1}\left(y^{\prime}\right)+B_{2}\left(y^{\prime}\right)} d y^{\prime}}
$$

so we have $\mathbf{E}\left[D_{s, y} h(t, x) \mid \mathcal{F}_{s}\right] \approx \mathbf{E}\left[\left.\frac{e^{B_{1}(y)+B_{2}(y)}}{\int e^{B_{1}\left(y^{\prime}\right)+B_{2}\left(y^{\prime}\right)} d y^{\prime}} \right\rvert\, B_{1}\right]$

Effective diffusivity for the height function

h solves KPZ with noise ξ

$$
h(t, x)-\mathbf{E} h(t, x)=\int_{0}^{t} \int_{\mathbb{T}} \mathbf{E}\left[D_{s, y} h(t, x) \mid \mathcal{F}_{s}\right] \xi(s, y) d y d s
$$

$D_{s, y} h(t, x)$: quenched (midpoint) density of polymer at (s, y)

- endpoint distribution (for $t \gg 1$)

$$
\frac{Z(t, x)}{\int Z\left(t, x^{\prime}\right) d x^{\prime}}=\frac{e^{h(t, x)}}{\int e^{h\left(t, x^{\prime}\right)} d x^{\prime}}=\frac{e^{h(t, x)-h(t, 0)}}{\int e^{h\left(t, x^{\prime}\right)-h(t, 0)} d x^{\prime}} \approx \frac{e^{B(x)}}{\int e^{B\left(x^{\prime}\right)} d x^{\prime}}
$$

- midpoint distribution (for $s \gg 1$ and $t-s \gg 1$)

$$
D_{s, y} h(t, x) \approx \frac{e^{B_{1}(y)+B_{2}(y)}}{\int e^{B_{1}\left(y^{\prime}\right)+B_{2}\left(y^{\prime}\right)} d y^{\prime}}
$$

so we have $\mathbf{E}\left[D_{s, y} h(t, x) \mid \mathcal{F}_{s}\right] \approx \mathbf{E}\left[\left.\frac{e^{B_{1}(y)+B_{2}(y)}}{\int e^{B_{1}\left(y^{\prime}\right)+B_{2}\left(y^{\prime}\right)} d y^{\prime}} \right\rvert\, B_{1}\right]$

- take the rhs, square it, integrate in y, take the expectation, obtain σ^{2}

