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Directed polymer, 1+1 KPZ universality class

Statistical physics model of path in random environment

ω(i , j) i.i.d. r.v.; ξ(t, x): random field

{Si} random walk; {Bt}: Brownian motion

partition function Zt = Ee
∑t

i=1 ω(i ,Si ), Zt = Ee
∫ t
0 ξ(s,Bs)ds

(in d = 1) free energy logZt ∼ γt + t1/3χ

(in d = 1) polymer endpoint St ,Bt ∼ t2/3

More on the polymer endpoint: localization

for quenched polymer measure (a.e realization of random
environment), the endpoint stays in a bounded region near the
“favorite” point with high probability

localization and the 1 : 2 : 3 KPZ scaling seem to be two different
aspects of the model

Question: is there a relation between localization and KPZ scaling?
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Plan of the talk

questions I’d like to ask

what we can do



Poincare inequality and replica overlap

The partition function Zt = Ee
∑t

i=1 ω(i ,Si ), assuming {ω(i , j)} are i.i.d
N(0, 1)

Poincare inequality Var logZt≤
∑

i ,j E|Di ,j logZt |2
derivative Di ,j logZt = quenched probability passing (i , j)

Di ,j logZt =
Di ,jZt

Zt
=

E[e
∑t

i=1 ω(i ,Si )1Si=j ]

Zt
= P̂t [Si = j ]

Upper bound by Poincare: Var logZt ≤ t∑
i ,j

E|Di ,j logZt |2 =
∑
i ,j

EP̂t [Si = j ]2≤
∑
i ,j

EP̂t [Si = j ] = t

localization and paths overlap: S1,S2 independently sampled from P̂t∑
i ,j

P̂t [Si = j ]2 = Êt

t∑
i=1

1S1
i =S2

i
∼ O(t)

localization provides an incorrect upper bound



Poincare inequality and replica overlap

The partition function Zt = Ee
∑t

i=1 ω(i ,Si ), assuming {ω(i , j)} are i.i.d
N(0, 1)

Poincare inequality Var logZt≤
∑

i ,j E|Di ,j logZt |2

derivative Di ,j logZt = quenched probability passing (i , j)

Di ,j logZt =
Di ,jZt

Zt
=

E[e
∑t

i=1 ω(i ,Si )1Si=j ]

Zt
= P̂t [Si = j ]

Upper bound by Poincare: Var logZt ≤ t∑
i ,j

E|Di ,j logZt |2 =
∑
i ,j

EP̂t [Si = j ]2≤
∑
i ,j

EP̂t [Si = j ] = t

localization and paths overlap: S1,S2 independently sampled from P̂t∑
i ,j

P̂t [Si = j ]2 = Êt
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t∑
i=1

1S1
i =S2

i
∼ O(t)

localization provides an incorrect upper bound



Poincare inequality and replica overlap

The partition function Zt = Ee
∑t

i=1 ω(i ,Si ), assuming {ω(i , j)} are i.i.d
N(0, 1)

Poincare inequality Var logZt≤
∑

i ,j E|Di ,j logZt |2
derivative Di ,j logZt = quenched probability passing (i , j)

Di ,j logZt =
Di ,jZt

Zt
=

E[e
∑t

i=1 ω(i ,Si )1Si=j ]

Zt
= P̂t [Si = j ]

Upper bound by Poincare: Var logZt ≤ t∑
i ,j

E|Di ,j logZt |2 =
∑
i ,j

EP̂t [Si = j ]2≤
∑
i ,j

EP̂t [Si = j ] = t

localization and paths overlap: S1, S2 independently sampled from P̂t∑
i ,j

P̂t [Si = j ]2 = Êt
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A variance identity: Clark-Ocone formula

Stochastic calculus: let W be a BM, X be “smooth” r.v. depends on
{Wt}t≥0:

martingale representation: X − EX =
∫∞
0 fsdWs

Clark-Ocone formula:
fs = E[DsX |Fs ]

Ds : the (Malliavin) derivative of X on the infinitesimal increment of
W at s
Ito isometry

VarX =

∫ ∞

0
Ef 2s ds =

∫ ∞

0
E|E[DsX |Fs ]|2ds

Cauchy-Schwarz leads to Gaussian Poincare: VarX ≤
∫∞
0 E|DsX |2ds

in spacetime setting Zt = Ee
∫ t
0 ξ(s,Bs)ds

logZt − E logZt =

∫ t

0

∫
Rd

E[Ds,y logZt |Fs ]ξ(s, y)dyds

Ds,y logZt : quenched density of polymer at (s, y)
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Polymer path overlap again

Continuous setting: Zt = Ee
∫ t
0 ξ(r ,Br )dr

quenched density (Ds,y is the derivative with respect to ξ(s, y))

ρt(s, y) := Ds,y logZt =
E[e

∫ t
0 ξ(r ,Br )drδ(Bs − y)]

Zt

Clark-Ocone formula

logZt − E logZt =

∫ t

0

∫
Rd

E[ρt(s, y)|Fs ]ξ(s, y)dyds

Ito isometry (assume ξ is white noise)

Var logZt =

∫ t

0

∫
R
E

[
E[ρt(s, y)|Fs ]E[ρt(s, y)|Fs ]

]
dyds

fluctuation of free energy is related to overlap of “conditioned
midpoint density”
it reduces to study how the random density E[ρt(s, y)|Fs ] overlap
with itself
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Three levels of localization

Var logZt =

∫ t

0

∫
R
E

[
E[ρt(s, y)|Fs ]E[ρt(s, y)|Fs ]

]
dyds

if there is no conditional expectation (as if apply Gaussian-Poincare)∫
R
ρt(s, y)

2dy ∼ O(1)

measures the overlap of the quenched density (complete localization)
Var logZt ≲ t

if we replace conditional expectation by full expectation∫
R
E[ρt(s, y)]E[ρt(s, y)]dy ∼

∫ ( 1

s2/3
1[−s2/3,s2/3](y)

)2
dy ∼ s−2/3

no localization and Var logZt ≳ t1/3

The KPZ fluctuation Var logZt ∼ t2/3 is in between
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Semi-localization

Var logZt =

∫ t

0

∫
R
E

[
E[ρt(s, y)|Fs ]E[ρt(s, y)|Fs ]

]
dyds

the study of fluctuations of logZt reduces to the overlap of the
conditional density E[ρt(s, y)|Fs ]

the (obvious) conjecture is that in d = 1∫
R
E

[
E[ρt(s, y)|Fs ]E[ρt(s, y)|Fs ]

]
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zero temperature/LPP version

Quenched density

ρt(s, y) =
E[eβ

∫ t
0 ξ(r ,Br )drδ(Bs − y)]

Zt

β = ∞: ρt(s, y) = δ(πs − y) becomes the Dirac mass along the (random)
geodesics

Discrete setting∑
y ρt(s, y)

2 = 1 (complete localization)

expect
∑

y |Eρt(s, y)|2 ∼ s−2/3 (no localization)

expect
∑

y |E[ρt(s, y)|Fs ]|2 ∼ s−1/3 (semi-localization, but why?)

Question: for each realization of random environment, the geodesic and its
midpoint is given, but if we average half of random environment out, what
does the midpoint look like?
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Geometric questions to ask

midpoint density

ρt(s, y)
E[e

∫ t
0 ξ(r ,Br )drδ(Bs − y)]

Zt

half-averaged midpoint density ρ̃t(s, y) := E[ρt(s, y)|Fs ]

properties of ρ̃t(s, ·)?
size of the overlap

∑
y |ρ̃t(s, y)|2?

a simpler toy problem: let B1,B2 be two independent Brownian
bridge on [0, 1], and M = argmax{B1(x) + B2(x)}, and µ = δM is a
(random) probability measure on [0, 1]. (i) µ is a Dirac (ii) Eµ is
Lebesgue (iii) How about E[µ|B1]?

how to relate the answers to the KPZ fluctuations?

I don’t know if it’s easier to approach these questions from geometric
or analytic perspective
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What we can do from a more analytic perspective

we will try to understand the 1:2:3 scaling in d = 1 by working on a
simpler problem: R 7→ T

for compact case, the fluctuations are diffusive

we try to understand how diffusive behaviors become sub- or
super-diffusive behaviors

we work on a continuous model which is the KPZ equation

∂th =
1

2
∆h +

1

2
|∇h|2 + ξ, t > 0, x ∈ Td
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Invariant measure for KPZ/Burgers in d = 1

∂th = 1
2∆h + 1

2 |∇h|2 + ξ

the evolution of the height only depends on the relative height
h(t, x)− h(t, 0) or equivalently ∇h(t, x)

U = ∇h solves the stochastic Burgers equation of the form

∂tU = 1
2∆U + U∇U +∇ξ

for spacetime white noise, the invariant measure for Burgers is the
spatial white noise (Bertini-Giacomin,Funaki-Quastel,...)

two-sided BM or Brownian bridge is invariant for KPZ on R or T
some difficulties in d = 1 for general models or d ≥ 1 come from the
lack of understanding of invariant measures

in our work we will work with white noise in d = 1, half of our
argument works for general noise and dimensions
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Directed polymer in a random environment

∂th = 1
2∆h + 1

2 |∇h|2 + ξ, x ∈ R

Hopf-Cole: h = logZ with ∂tZ = 1
2∆Z + Zξ

polymer measure: random Gibbs measure with weight
exp(

∫ t
0 ξ(s,Bs)ds)

polymer endpoint distribution (Z (0, x) = δ(x))

ρ(t, x) =
Z (t, x)∫
Z (t, x ′)dx ′

=
E
[
e
∫ t
0 ξ(s,Bs)dsδ(Bt − x)

]
E
[
e
∫ t
0 ξ(s,Bs)ds

]
projective process, Markovian

on torus, unique invariant measure eB(x)/
∫
eB(x ′)dx ′ with Brownian

bridge B:

ρ(t, x) =
Z (t, x)∫
Z (t, x ′)dx ′

=
eh(t,x)∫
eh(t,x ′)dx ′

=
eh(t,x)−h(t,0)∫
eh(t,x ′)−h(t,0)dx ′
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What happens on a torus: CLT

∂thL = 1
2∆hL +

1
2 |∇hL|2 + βξ, x ∈ TL

hL = logZ , ∂tZ = 1
2∆Z + βZξ, Z (0, x) : arbitrary measure

Theorem (G.-Komorowski 21, Dunlap-G.-Komorowski 21)

There exists γL, σL > 0 such that for any x ∈ TL, as t → ∞,

hL(t, x) + γLt√
t

⇒ N(0, σ2
L)

the same result holds for colored noise in all dimensions
hL(t, ·)− hL(t, 0) converges exponentially fast to the invariant
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Fluctuation diffusivity and 1:2:3 scaling

hL(t,x)+γLt√
t

⇒ N(0, σ2
L)

explicit diffusivity: with Bi independent Brownian bridges on [0, L],

σ2
L = β2LE

1∫ L
0 eβ(B1(x)+B2(x))dx

∫ L
0 eβ(B1(x)+B3(x)dx

we do not know how to evaluate the expectation, conjectured integral
form by Brunet-Derrida through replica method

VarhL(t, 0) ∼ σ2
Lt, Varh(t, 0) ∼ t2/3, we show σ2

L ∼ 1/
√
L

hL(t, x) = hL(t, 0) +
(
hL(t, x)− hL(t, 0)

)
VarhL(t, 0) ∼ σ2

Lt ∼ t/
√
L Var(hL(t, ·)− hL(t, 0)) ∼ L

balance t/
√
L ∼ L leads to 1 : 2 : 3
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Non-handwaving: sending t, L → ∞ together

∂thL = 1
2∆hL +

1
2 |∇hL|2 + ξ, x ∈ TL

hL(0, ·) = Brownian bridge

Theorem (Dunlap-G.-Komorowski 21)

Let L = λtα. There exists a constant δ > 0 such that as t → ∞

VarhL(t, x) ∝
t√
L
∝

{
t1−

α
2 , α ∈ [0, 23), λ < ∞

t
2
3 , α = 2

3 , λ < δ

optimal variance bounds on the super-relaxation and part of
relaxation regime

for α ≥ 2/3, expect VarhL(t, 0) ∝ t2/3 (open)

much more precise results on periodic TASEP in all regimes by
Baik-Liu, Baik-Liu-Silva
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Effective diffusivity for the height function

h solves KPZ with noise ξ

h(t, x)− Eh(t, x) =

∫ t

0

∫
T
E[Ds,yh(t, x)|Fs ]ξ(s, y)dyds

Ds,yh(t, x): quenched (midpoint) density of polymer at (s, y)

endpoint distribution (for t ≫ 1)

Z (t, x)∫
Z (t, x ′)dx ′

=
eh(t,x)∫
eh(t,x ′)dx ′

=
eh(t,x)−h(t,0)∫
eh(t,x ′)−h(t,0)dx ′

≈ eB(x)∫
eB(x ′)dx ′

midpoint distribution (for s ≫ 1 and t − s ≫ 1)

Ds,yh(t, x) ≈
eB1(y)+B2(y)∫

eB1(y ′)+B2(y ′)dy ′

so we have E[Ds,yh(t, x)|Fs ] ≈ E[ eB1(y)+B2(y)∫
eB1(y

′)+B2(y
′)dy ′ |B1]

take the rhs, square it, integrate in y , take the expectation, obtain σ2
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