Beyond Instantaneous Partnerships

Re-Examining the Force of Infection Equation in Compartmental HIV Transmission Models

Jesse Knight

Unity Health Toronto & University of Toronto

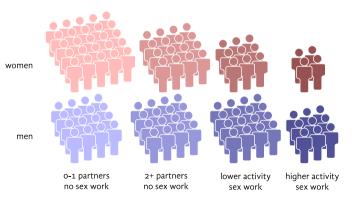
2024 Feb 13

Colloquium on Mathematics for Public Health

Outline

- Motivation: modelling HIV & sex work in Eswatini
- Instantaneous partnerships: why, how, & issues
- Effective Partnerships Adjustment: a new approach
- Experiment: comparing approaches
- Appendix: mathy details

Motivation


Modelling HIV & Sex Work in Eswatini

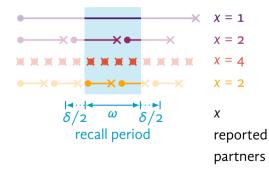
Research Question:

What unmet needs drive HIV transmission in Eswatini?

Model Structure:

8 risk groups

Modelling HIV & Sex Work in Eswatini


Model Structure:

4 partnership types

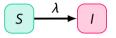
Quantifying Partnerships from Survey Data

How many sexual partners (x) did you have in the past 12 months (ω)?

- Effective recall period: $\omega' =$
 - $\omega' = \omega + \delta$
- Partnership change **rate**:

$$Q=\frac{x}{\omega+\delta}$$

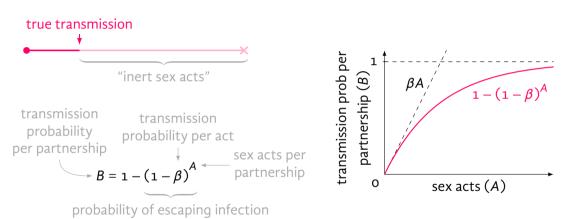
• Current partner **number**: $K = Q \delta$

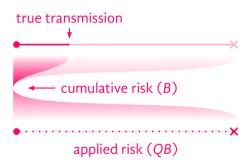

Instantaneous Partnerships

Jesse Knight jesse.x.knight@protonmail.com

Rationale for Instantaneous Partnerships

Problem: compartments are *homogeneous* & *memoryless*


 \rightarrow cannot track sex acts before vs after transmission


Solution: estimate *cumulative probability of transmission per partnership* (B) \rightarrow multiply by average *partnership change rate* (Q)

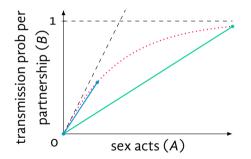
force of infection
$$\longrightarrow \lambda = \sum_{n \in \mathbb{Z}} QB \frac{l}{n} \leftarrow \text{infection prevalence}$$

partnership change rate transmission probability
per partnership

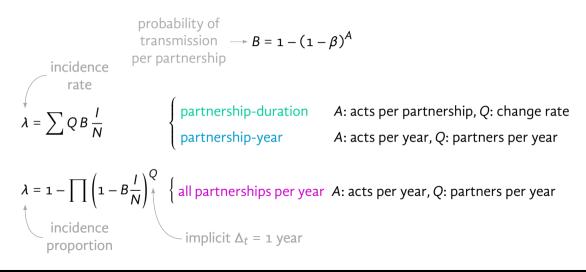
Probability of Transmission per Partnership (B)

Issue 1: Transmission is Instantaneous

- Dynamic risk within partnerships not *anticipated*
- Instant onward transmission via same partnership


Issue 2: Trade-Off when Adjusting for Inert Sex Acts

"Inert Sex Acts":


after transmission, within the same partnership

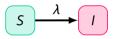
Adjustment may consider:

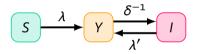
- 1 partnership, full duration \rightarrow frontload inert
- 1 partnership, 1 year \rightarrow ignore inert
- all partnerships, 1 year \rightarrow ignore inert

Issue 2: Trade-Off when Adjusting for Inert Sex Acts

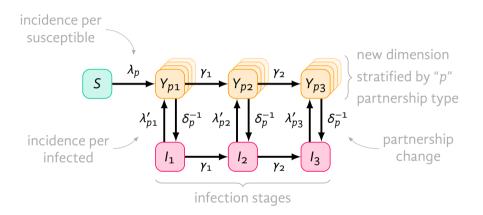
Effective Partnerships Adjustment

Effective Partnerships Adjustment


Problem: compartments are *homogeneous* & *memoryless*


 \rightarrow cannot track sex acts before vs after transmission

Solution: track who recently *acquired or transmitted* \rightarrow new "holding state" compartment (Y)


Details:

- Y have 1 fewer partners for incidence λ (mixing unchanged)
- Y exit to I when partners change (δ^{-1})

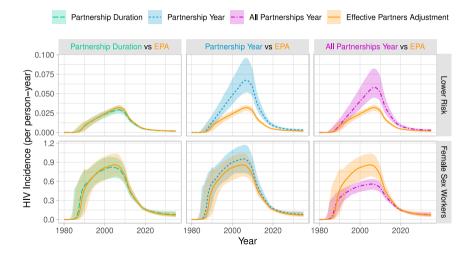
Effective Partnerships Adjustment: Major Model Changes

No "inert sex acts" adjustment \rightarrow use sex frequency per partner & number of partners

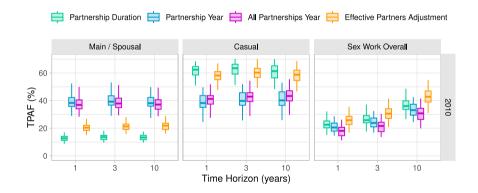
Experiment

Jesse Knight jesse.x.knight@protonmail.com

Comparing FOI Approaches: Overview


FOI Approaches Compared:

- Instantaneous, adjusting for:
 - Partnership Duration
 - Partnership Year
 - All Partnerships per Year
- Effective Partnerships Adjustment


Experiments:

- 1. Equal parameters
 - \rightarrow compare dynamics
- 2. Recalibrated parameters
 - \rightarrow compare attributable fractions

Comparing FOI Approaches: Dynamics with Equal Parameters

Comparing FOI Approaches: Attributable Fraction after Recalibration

Comparing FOI Approaches: Summary

Partnership-Year & All Partnerships per Year Adjustments:

• ignore inert sex acts \rightarrow overestimate transmission in longer partnerships

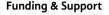
Partnership-Duration Adjustment:

• frontload inert sex acts \rightarrow slightly underestimate transmission in longer partnerships

Effective Partnerships Adjustment:

• track inert sex acts explicitly \rightarrow "just right" attribution of transmission?

What unmet needs drive HIV transmission in Eswatini? \rightarrow depends on FOI approach!


Appendix

Jesse Knight jesse.x.knight@protonmail.com

Thanks

Toronto Sharmistha Mishra Huiting Ma Linwei Wang Korryn Bodner Alex Whitlock Siyi Wang Kristy Yiu Samantha Lo Ekta Mishra Michael Escobar Rupert Kaul

External Stefan Baral Bheki Sithole Lungile Khumalo Sheree Schwartz Laura Muzart Sindy Matse Zandile Mnisi Marie Claude Boily Leigh Johnson Survey Respondents **Program Implementers**

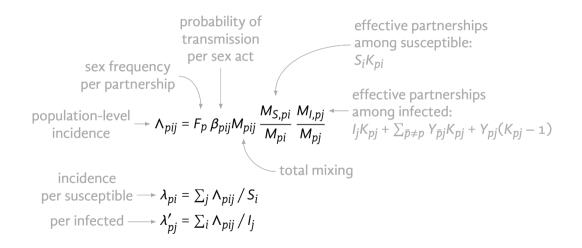
Centre for Urban Health Solutions

Digital Research Alliance of Canada

Notation Summary

Base Definitions:

- F: sex frequency per partnership
- *K*: number of current partnerships
- δ : partnership duration


"Partnership-Year" Definitions:

- $\delta_1 = \min(\delta, 1) \longrightarrow$ "up to 1 year duration"
- $Q_1 = K/\delta_1 \longrightarrow$ "at least once per year"
- $A_1 = F$ \rightarrow "sex acts per year"

• $A = F\delta$: sex acts per partnership

• $Q = K/\delta$: partnership change rate

Effective Partnerships Adjustment: Force of Infection Equation

Effective Partnerships Adjustment: What About Multiple Transmissions?

- Y_{pj} reflects % group j who cannot transmit to 1 type-p partner
- Y_{pj} can be > 100% if number of partnerships $K_{pj} > 1$
- if $Y_{pj} > 100\%$, then I_j must be *negative*, provided:

$$Y_{pj} \le \left(I_j + \sum_{\bar{p}} Y_{\bar{p}j}\right) K_{pj} \tag{(*)}$$

i.e. cannot "remove" more partnerships than group *j* has

• As (*) approaches equality, effective partnerships among infected $M_{l,pj} \rightarrow 0$ i.e. no transmission if all partnerships "removed"

Appendix

Double Checking the Force of Infection Equation

"Let's go. In and out. 20 minute adventure."

6 months later

