3. Descriptive Set Theory Recall Theorem 2.10 from the second lecture: Theorem 2.10 - (i) For all Π_1^1 set $A \subset X$ there is a continuous $f: X \to 2^\omega$ such that $A = f^{-1}[WO]$. - (ii) For all Π_1^1 sets $A \subset X$ there is a recursive function $f: X \to 2^{\omega}$ such that $A = f^{-1}[WO]$. **Remark.** True if X is ω^{ω} . ## Descriptive Set Theory and Equivalence Relations. • Hjorth, Greg; Kechris, Alexander S.: New dichotomies for Borel equivalence relations. Bulletin of Symbolic Logic; 3(1997), p.329 Next week: Polish group actions and DST; - (i) Becker Kechris: The DST of Polish Group Actions - (ii) Hjorth: Classification and Orbit Equivalence Relations; Context: X - Polish space (wlog $X = \omega^{\omega}$); E - an equivalence relation on X; $E \subset X \times X$ (pointset in the product space); So E is Borel, Σ_1^1 , etc. (as a pointset in $X \times X$). **Remark.** xEy, $A \subset X$, $[A]_E$ = saturation of $A = \{y | \exists x \in A \ xEy\}$; $[x]_E$ - equivalence class of E. A is invariant if $A = [A]_E$. Sometimes we consider E[A]. **Remark.** Invariant DST - prove invariant versions of regular DST - theorems; Invariant version of 2.10: Suppose that E is Σ_1^1 , $A \subset X$, Π_1^1 and invariant. Then there exists Borel function $f: A \to 2^{\omega}$ with $f^{-1}[WO] = A$ and if $x, y \in A$ and xEy, then |f(x)| = |f(y)|. ## Invariant separation - **3.1 Theorem.** Suppose E is Σ_1^1 equivalence relation on X and A, B disjoint, E-invariant and Σ_1^1 . There is an invariant Δ_1^1 set D such that $A \subset D$, $D \cap B = \emptyset$. - Given an equivalence relation "how many" equivalence classes there are? **Definition.** A has perfectly many E-equivalence classes if there is a continuous 1-1 function $f: 2^{\omega} \to A$ such that if $x \neq y$ then $(f(x), f(y)) \notin E$. **Example.** Space 2^{ω} . Define $xEy \iff (x,y \in WO \& |x| = |y| \text{ or } x,y \notin WO)$. Then E is an Σ^1_1 -equivalence relation. Suppose that there were perfectly many equivalence classes. There is a Σ^1_1 well-ordering of that perfect set and this violates Fubini's Theorem. **3.2 Theorem.** (Silver's Theorem or the 1st Dichotomy Theorem) Suppose that E is a Π_1^1 equivalence relation, and A is a Σ_1^1 set. Then either A has countably many or perfectly many E-equivalence classes. Note that if E is "=", then Σ_1^1 sets have the perfect set property (there was given a proof of this fact in the summer course). **Remark.** A Π_1^1 equivalence relation, restricted to a Π_1^1 - invariant set, may violate the dichotomy: $$xEy \iff [x = y \text{ or } (x, y \in WO \& |x| = |y|].$$ Then E[WO violates the dichotomy.] $\mathbf{2}$ Descriptive Set Theory - **3.3 Theorem.** Let E be a Borel equivalence relation on ω^{ω} ; $A \subset \omega^{\omega}$; - (i) If Π_1^1 -sets have the perfect set property, then for any Π_1^1 (or Σ_2^1) set A, A has countably many (or perfectly many) classes. - (ii) PD implies that for any projective A, A has countably many or perfectly many classes. ## 3.4 Theorem. - (i) A Π_2^1 equivalence relation restricted to a Σ_2^1 set has countably many; \aleph_1 and not perfectly many, or perfectly many equivalence classes. - (ii) Similarly for a Σ_2^1 equivalence relation, restricted to any projective set. **Remark.** There are 3 types: countable, \aleph_1 , perfectly many; **3.5 Theorem.** (PD) For any projective equivalence relation E and any projective set A, either A has perfectly many E-equivalence classes, or the E-equivalence classes admit a projective well-ordering. **Remark.** So far we have seen \aleph_0 , \aleph_1 many equivalence classes; What about \aleph_2 ? Assume Π_1^1 - determinancy. Here is a Δ_3^1 equivalence relation E: Define $f:\omega^\omega\to Ord$ by f(x)=successor in L(x) of \aleph_1^v and $xEy \iff f(x) = f(y)$. It is consistent with large cardinals that there exists \aleph_2 classes! But it is still an open question about \aleph_3 . **Proof of Silver's Theorem:** Work with ω^{ω} , E a Π_1^1 equivalence relation; Consider two topologies on ω^{ω} : u = usual topology, t = Gandy - Harrington topology. **Proposition.** Let $x \in \omega^{\omega}$. TFAE: - (i) The t interior of $[x]_E$ is nonempty. - (ii) There exists Σ_1^1 set $S \subset \omega^{\omega}$ with $S \subset [x]_E$. (iii) There exists Δ_1^1 set $D \subset \omega^{\omega}$ such that $D \in [x]_E$. **Proof.** ii implies iii: $y \in [x]_E \iff \forall z[z \in S \to yEz]$, which is Π^1_1 . So $\omega^{\omega} \setminus [x]_E$ is Σ^1_1 , S is Σ_1^1 ; separate by a Δ_1^1 set. **Definition.** An E-equivalence class is big if i – iii of the above proposition hold. Notice: If E is =, a big class is a Δ_1^1 point. **3.6 Theorem.** (Main Theorem) E a Π_1^1 - equivalence relation, $S \subset \omega^{\omega}$, S is Σ_1^1 . Either S has perfectly many equivalence classes, or every E-equivalence class that intersects Sis big. **Proof.** We make use of the following Lemmas: **Lemma** (A). X - Polish, E - arbitrary equivalence relation on X; If E is meager, there are perfectly many classes. ω^{ω} has 2 topologies - u, t = Gandy-Harrington. Thus 3 - topologies on $\omega^{\omega} \times \omega^{\omega}$: $u \times u$, $t \times t$, $\hat{t} = \text{Gandy- Harrington topology on } (\omega^{\omega})^2$. Note that \hat{t} is finer then $t \times t$. **Lemma** (B). The projection maps are \hat{t} - to - t open. **Lemma** (C). For any Σ_1^1 set $\widehat{S} \subset \omega^{\omega}$, either \widehat{S} has perfectly many E - equivalence classes, or \widehat{S} interesct at least one big class. Outline of a Proof of Lemma (C): Descriptive Set Theory 3 Let $\tilde{S} = \hat{S} \cap \{x : \omega_1^X = \omega_1^{\text{CK}}\}\$ (the set $\{x : \omega_1^X = \omega_1^{\text{CK}}\}\$ is dense open with respect to t). Note that t is Polish on \hat{S} and hence also on \tilde{S} . Now $E\lceil \hat{S}$ is Σ_1^1 with respect to $u \times u$, hence with respect the finer topology $t \times t$. Σ_1^1 sets in Polish spaces have the property of Baire. So $E\lceil \tilde{S}$ has the Baire property with respect to $t \times t$. That means we have two cases: Case 1: $E[\tilde{S} \text{ is } t \times t \text{ - meager.}]$ Case 2: There exists $t \times t$ open neighborhood $A \times B$ (A, B are Σ_1^1 , such that $E \lceil \widehat{S} = t \times t$ - comeager in $A \times B$.) Proof of Case 1: By Lemma A, there are perfectly many classes in \tilde{S} , hence in \hat{S} . Proof of Case 2: Using Lemma B and strictly topological arguments, E is also \hat{t} -comeager in $A \times B$. But E is Π_1^1 , hence \hat{t} - closed. So $A \times B \subset E$, and E is an equivalence relation, so A is in 1-equivalence class. It is big. Proof of 3.6 (Main Theorem) S is Σ_1^1 . To show perfectly many or all big: Let $P = \{x : \exists a \Delta_1^1 D \subset \omega^\omega, x \in D \text{ and } D \subset [x]_E\}$. Now if $S \setminus P = \emptyset$ - done (all classes are big). So assume $S \setminus P \neq \emptyset$. Claim: P is Π_1^1 . Assume the claim and apply Lemma C to $\widehat{S} = S \backslash P$, which is Σ_1^1 and nonempty. \widehat{S} intersects no big classes, so it has perfectly many classes. Proof of the Claim: By Theorem 2.12 from last class, there exists: $K \subset \omega$ which is Π_1^1 , $L \subset \omega \times \omega^{\omega}$ which is Π_1^1 and $M \subset \omega \times \omega^{\omega}$ which is Σ_1^1 , such that: - (i) $\forall i \in K \ L_i = M_i$ - (ii) $\forall \Delta_1^1 D$ there exists $i \in K$ such that $D = L_i = M_i$. $$x \in P \iff \exists i[i \in K, \ (i,x) \in L \ \& \ \forall y, z((i,y) \in M \ \text{and} \ (i,z) \in M \to yEz)]. \qquad \qquad \square$$ **Remark.** For the rest of the lecture we will consider only Borel equivalence relations on all of ω^{ω} . **Definition.** E - equivalence realtion is smooth if \exists a countable collection B_i of E-invariant Borel sets, such that $\forall x, y : xEy \iff \forall i(x \in B_i \leftrightarrow y \in B_i)$. **Remark.** $\{B_i\}$ is called a separating family. Equivalently: smooth means that there exists a Borel function $f: \omega^{\omega} \to 2^{\omega}$ such that $xEy \iff f(x) = f(y)$. The quotient space, i.e. the set of equivalence classes, is Σ_1^1 subset of 2^{ω} . **Definition.** E_0 equivalence relation on 2^{ω} : $xE_0y \iff (\exists n \forall m > n)(x(m) = y(m))$. **Remark.** Lebesgue measure is E_0 - ergodic, i.e. all Borel invariant sets have measure 0 or 1. Remark. A smooth equivalence relation has no non-trivial Ergodic measure. **3.7 Theorem.** (The Second Dichotomy Theorem - Glimm-Effros Dichotomy). If E is a Borel equivalence relation, then either E is smooth or there exists $f: 2^{\omega} \to \omega$ such that for all $x, y \in 2^{\omega}$ $xE_0y \iff f(x)Ef(y)$. 4 Descriptive Set Theory **Definition.** If E and F are equivalence relations on X, Y then write $E \leq_B F$ if there exists a Borel $f: X \to Y$ such that $xEy \iff f(x)Ef(y)$. **Remark.** Let E be a Borel equivalence relation, n a Borel equivalence relation with n classes, \aleph_0 Borel equivalence relation with \aleph_0 classes, and Δ - equality on 2^{ω} . Then: The 1st Dichotomy: Either $E \leq_B \aleph_0$ or $\Delta \leq_B E$. The 2nd Dichotomy: Either $E \leq_B \Delta$ or $E_0 \leq_B E$. **Remark.** Initial segments of \leq_B : $1 \leq_B 2 \leq_B \ldots \leq_B \aleph_0 \leq_B \Delta \leq_B E_0 \leq_B$? Is there a 3rd Dichotomy? The answer is - No! Above E_0 it is a mess! - **3.8 Theorem.** There are 2^{\aleph_0} pairwise incomparable (with respect to \leq_B) Borel equivalence relations. - Restrict attention to special types of Borel equivalence relations and try to get a structure! **Definition.** E is a countable equivalence relation, if every E-equivalence class is countable; **3.9 Theorem.** There exists a \leq_B - largest countable Borel equivalence relation.