3. Descriptive Set Theory

Recall Theorem 2.10 from the second lecture:
Theorem 2.10
(i) For all TI] set A C X there is a continuous f: X — 2 such that A = f~{WO|.

(ii) For all TI sets A C X there is a recursive function f: X — 2% such that A =
ol

Remark. True if X is w®.
Descriptive Set Theory and Equivalence Relations.

e Hjorth, Greg; Kechris, Alexander S.: New dichotomies for Borel equivalence relations.
Bulletin of Symbolic Logic; 3(1997), p.329

Next week: Polish group actions and DST;

(i) Becker - Kechris: The DST of Polish Group Actions

(ii) Hjorth: Classification and Orbit Equivalence Relations;
Context: X - Polish space ( wlog X = w* ); E - an equivalence relation on X; E C X x X
( pointset in the product space ); So E is Borel, X1, etc. ( as a pointset in X x X).
Remark. zEy, A C X, [A]g = saturation of A = {y|3z € A zEy}; [z]|g - equivalence
class of E. A is invariant if A = [A]g. Sometimes we consider E[A.
Remark. Invariant DST - prove invariant versions of regular DST - theorems;
Invariant version of 2.10:
Suppose that F is £}, A C X, II] and invariant. Then there exists Borel function
f:A— 2 with f7Y[WO] = A and if z,y € A and zEy, then |f(z)| = |f(y)|.
Invariant separation
3.1 Theorem. Suppose E is ¥} equivalence relation on X and A, B disjoint, E-
invariant and ¥.}. There is an invariant A} set D such that A C D, DN B = .

e Given an equivalence relation “how many” equivalence classes there are?

Definition. A has perfectly many E-equivalence classes if there is a continuous 1 — 1
function f:2% — A such that if z # y then (f(x), f(y)) ¢ E.

Example. Space 2¥. Define zEy <= (z,y € WO & |z| = |y| or z,y ¢ WO). Then
E is an Yl-equivalence relation. Suppose that there were perfectly many equivalence
classes. There is a ¥} well-ordering of that perfect set and this violates Fubini’s Theorem.

3.2 Theorem. ( Silver’s Theorem or the 1st Dichotomy Theorem) Suppose that E is
a TI} equivalence relation, and A is a X1 set. Then either A has countably many or
perfectly many F-equivalence classes.

Note that if E is “=", then X1 sets have the perfect set property ( there was given a
proof of this fact in the summer course).

Remark. A T} equivalence relation, restricted to a IIj - invariant set, may violate the
dichotomy:
2Ey <= [z =yor (z,y e WO & |z| =|y|] -

Then E[WO violates the dichotomy.
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3.3 Theorem. Let E be a Borel equivalence relation on w*; A C w¥;

(i) If IIi-sets have the perfect set property, then for any II1 (or X1 ) set A, A has
countably many ( or perfectly many ) classes.

(i) PD implies that for any projective A, A has countably many or perfectly many
classes.

3.4 Theorem.

(i) A II equivalence relation restricted to a X1 set has countably many ; ¥; and
not perfectly many, or perfectly many equivalence classes.

(ii) Similarly for a ¥ equivalence relation, restricted to any projective set.

Remark. There are 3 types: countable, Ny, perfectly many;

3.5 Theorem. (PD) For any projective equivalence relation E and any projective
set A, either A has perfectly many E-equivalence classes, or the E-equivalence classes
admit a projective well-ordering.

Remark. So far we have seen R, X; many equivalence classes; What about Ny7 Assume
1] - determinancy. Here is a Al equivalence relation E: Define f:w“ — Ord by f(z) =
successor in L(z) of X} and zFy <= f(x) = f(y). It is consistent with large cardinals
that there exists Ns classes! But it is still an open question about Nj.
Proof of Silver’s Theorem: Work with w¥, E a Il equivalence relation; Consider
two topologies on w*: u = usual topology, ¢ = Gandy - Harrington topology.
Proposition. Let z € w¥. TFAE:
(i) The t interior of [z]g is nonempty.

(ii) There exists ¥] set S C w* with S C [z]g.

(iii) There exists Al set D C w* such that D € [z]g.
Proof. ii implies iii: y € [z]g <= Vz[z € S — yEz|, which is IT}. So w¥\[z]g is X1,
S is ¥1; separate by a Al set. 0

Definition. An F-equivalence class is big if i — iii of the above proposition hold.
Notice: If E is =, a big class is a Al point.

3.6 Theorem. (Main Theorem) E alIl} - equivalence relation, S C w*, S is ¥:1. Either
S has perfectly many equivalence classes, or every E-equivalence class that intersects S
is big.

Proof. We make use of the following Lemmas:

Lemma (A). X - Polish, F - arbitrary equivalence relation on X; If E is meager, there
are perfectly many classes.

w* has 2 topologies - u, t = Gandy-Harrington. Thus 3 - topologies on w* X w“: u X u,
t x t, t = Gandy- Harrington topology on (w*)?. Note that ¢ is finer then ¢ x t.

Lemma (B). The projection maps are # - to - ¢ open.

Lemma (C). For any X! set § C w®, either S has perfectly many E - equivalence

~

classes, or S interesct at least one big class.

Outline of a Proof of Lemma (C):
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Let S=5n {z:wi = w?K} (the set {z : wi = wch} is dense open with respect to
t). Note that ¢ is Polish on S and hence also on S. Now E[S is 31 with respect to u X «,
hence with respect the finer topology ¢ x t. 31 sets in Polish spaces have the property
of Baire. So E'[S has the Baire property with respect to ¢ x t. That means we have two
cases:

Case 1: E[S is t X t - meager.

Case 2: There exists ¢ X t open neighborhood A x B ( A, B are X1, such that E[§ =txt
- comeager in A x B.)

Proof of Case 1: By Lemma A, there are perfectly many classes in S, hence in S.

Proof of Case 2: Using Lemma B and strictly topological arguments, E is also t-
comeager in A x B. But E is II1, hence t - closed. So Ax B C E, and FE is an equivalence
relation, so A is in 1-equivalence class. It is big.

Proof of 3.6 ( Main Theorem)

S is 1. To show perfectly many or all big: Let P = {z : 3aAlD Cc w*, x € Dand D C
[z]g}. Now if S\P = 0 - done ( all classes are big). So assume S\ P # ().

Claim: P is IT}.

Assume the claim and apply Lemma C to S = S\ P, which is ¥} and nonempty. S
intersects no big classes, so it has perfectly many classes.

Proof of the Claim:

By Theorem 2.12 from last class, there exists: K C w which is II}, L C w X w* which is
I} and M C w x w® which is ¥, such that:

(ii) VALD there exists i € K such that D = L; = M;.
xr€P < Fifie K, (i,z) € L& Vy,2((i,y) € M and (i,2) € M — yEz)]. O
Remark. For the rest of the lecture we will consider only Borel equivalence relations
on all of w®.

Definition. E - equivalence realtion is smooth if 3 a countable collection B; of FE-
invariant Borel sets, such that Vz,y: zFy <= Vi(z € B; <> y € B;).

Remark. {B;} is called a separating family. Equivalently: smooth means that there
exists a Borel function f:w* — 2¢ such that xEy <= f(z) = f(y). The quotient
space, i.e. the set of equivalence classes, is ¥} subset of 2.

Definition. Fj equivalence relation on 2¢: xEyy <= (InVm > n)(z(m) = y(m)).

Remark. Lebesgue measure is Ey - ergodic, i.e. all Borel invariant sets have measure
0orl.

Remark. A smooth equivalence relation has no non-trivial Ergodic measure.

3.7 Theorem. ( The Second Dichotomy Theorem - Glimm-Effros Dichotomy). If E
is a Borel equivalence relation, then either E is smooth or there exists f:2% — w such
that for all z,y € 2¥ zEyy < f(z)Ef(y).
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Definition. If £ and F' are equivalence relations on X, Y then write £ <p F' if there
exists a Borel f: X — Y such that zEy < f(z)Ef(y).

Remark. Let E be a Borel equivalence relation, n a Borel equivalence relation with n
classes, Ny Borel equivalence relation with Ny classes, and A - equality on 2%. Then:
The 1st Dichotomy: Either F <p ¥y or A <p FE.

The 2nd Dichotomy: Either F <g A or Ey <p F.

Remark. Initial segments of <p: 1 <p2<p...<pWog<pA<p Ey<p ?

Is there a 3rd Dichotomy? The answer is - No! Above Ej it is a mess!

3.8 Theorem. There are 28 pairwise - incomparable ( with respect to <p ) Borel
equivalence relations.

- Restrict attention to special types of Borel equivalence relations and try to get a
structure!

Definition. F is a countable equivalence relation, if every E-equivalence class is count-
able;

3.9 Theorem. There exists a <p - largest countable Borel equivalence relation.



