2. Descriptive Set Theory
Main reference for this lecture: Moskowalkis;

Definition. A subset A of X has the perfect set property if either A is countable or A
has a perfect subset.

2.1 Theorem. X} sets are universally measurable, have the property of Baire and the
perfect set property.

Definition. A pointclass is a collection of pointsets in various spaces.

Definition. A pointclass T' has the separation property if any pair of disjoint I' sets
can be separated by a A set, where A =T'NT (I' = complements of T sets )

2.2 Theorem. X} and II have separation property; I} and £} do not.

Remark. The axiom V = L implies that there is a Al well-ordering of R.

2.3 Theorem. V = L implies:
(i) There is a ¥} set which is not Lebesgue measurable and does not have the Baire
property.
(ii) There is a TI] set violating the perfect set property.
(iii) For m > 2, II} has separation, X} does not.

Definition. By Projective Determinancy (PD) we abriviate the principle that all games
G(IN, X) where X is projective, are determined.

2.4 Theorem.

(i) PD implies that all projective sets are universally measurable, have the Baire
property and have the perfect set property.

(ii) The pointclasses 1, I3, X1 TI1, 1. etc. have separation, the others do not.

Remark. Recall that a subset A of w* determines a game of perfect information between
two players:
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e I1! - determinancy: For any IT! set A C w*, the game A is determined, i.e. either
player I or player I has a winning strategy. Note that Vn X1 determinancy <= IIl
determinancy.

e PD <= Vn II! determinancy.

Definition. A x-game for A C 2¢
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The player I plays s, < 2<% ( i.e. finite sequence from 2 ); IT plays i, € {0,1}; After
w moves we get x = s¢ 49 81 11 82 42... € 2. We say that I wins the round of the
game iff z € A.

Remark. This is a game on a countable set.

2.5 Theorem.
(i) IfI has a winning strategy, then A has a perfect subset.
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(ii) IfII has a winning strategy, then A is countable.
Proof.

(i) Let o be a winning strategy for I. Define f:2% — 2“ as follows: f(y) is the
outcome of the game, when I follows o and I1 plays (ig,i1,42,...) = y; f is one-to-one
and continuous. Since o is a winning strategy, Im(f) is in A. So A has a perfect subset.

(ii) Let 7 be a winning strategy for 1. Let p =< sy, %o, - - ., in > be a position in the
game in which it is I’s turn to move. Let z € 2“. We say that T rejects z at p if:

e p is an initial segment of x;

e for any s,41 played by I, 7 calls for I] to play an 4,11 such that p“s, 41 4,41 is not
an initial segment of x;

For any = € A, there is a position p such that 7 rejects x at p - if not I could play
so that the outcome is x, thus defeating the allegedly winning strategy 7. There are
countably many positions. Two points cannot be rejected at the same position. So A is
countable. O

Remark. Note that T' determinancy implies that T sets have the perfect set property.
Furthermore: T' determinancy implies that 3¢°T' sets have the perfect set property. For
example IT} determinancy implies that 31 41 sets have the perfect set property, ( closed
set ) - determinancy implies that 3] sets have the perfect set property.

Unfolding the quantifiers: A(z) < (Jy € w¥)B(z,y)

I s0,9(0)  s1,y(l)  s2,9(2)

11 10 i1 19 .

At the outcome we get x = s¢ 4" 51 41 .... Player I wins iff (z,y) € B. Determinancy
of the game imlpies that A has the perfect set property ( see the proof of 2.5).

Effective methods

e Recursion theory - computability theory; recursive partial functions on the integers
f:w™ — w; recursively presented Polish spaces;

e This is an alternative approach to recursively presented Polish spaces; work with finite
products of w, w*, 2¢ ( all Polish spaces are Borel isomorphic);

e Consider a canonical bases:{ B, } ( determined by finite sequences) and recall that the
open sets (or the X9 sets ) are sets of the form UBj(,), for some function f:w — w.
The effectivley open sets ( = X sets ) are sets of the form UBy(,), where f:w — w is
a recursive function. Furthermore one defines the lightface ( or Kleene) classes in the
following way:

¥} = all effectivley open sets,

EO

. Jw 0
n+1 — _'En’

H?L = _'Z?w
A9 = 30 ATIO.

Similarly
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1 =3v"119,
Ekﬂ =3 -5,
Hl — _|21
Al = 51 ATIL,
Note the analogy with the bold face ( i.e. Borel and Luzin ) pointclasses:

I} = complement of X9 11§ = complement of XY
52 = 3vII9 N2 = 3T
>} =3%"I1¢ ¥ =311

Hyperarithmetic = Effectively Borel

e The bold face classes are w*- parametrized: i.e. there exists a pointset U C w* x X,
which is universal for 31 [X.
e The lightface classes are w-parametrized.

2.6 Theorem. Let ' be X0 T2 ¥l or ITL. Let Y be a recursively presented Polish
space. Then there exists U C w x Y such that U is in I and every I' subset of Y is a
vertical section of U.

Consider X9 - the effectivley open sets in w*. Define U(n,z) <= 3i[p, (i) | &pn(i) <
x], where ¢,, is a recursive partial function from w into w<* with index n. If U(n, z,y)
is universal for II{[(X x Y) then V(n,z) <= 3JyU(n,x,y) is universal for ¥1[X. This
is a good parametrization ( have recursive S — m — n functions).

Claim. If A and B are %1, so is AN B.

Furthermore this holds uniformly. That means that if U(n,z) are universal sets there
is a recursive function f:w X w — w such that Uy; ;) = U; N U; for all 4, j.

Definition. The Gandy-Harrington topology ( on a recursively presented Polish topol-
ogy) is the topology whose basis is the .1 sets.

Two important properties:
(i) It is second countable, strong Choquet and finer than the usual topology.

(ii) The bases ( i.e. the X! sets ) have a good parametrization.

2.7 Theorem. There exists a Gandy-Harrington comeager subset of w“ which is a
Polish space in its relative topology.

Separation: Two disjoint 3] sets can be separated by a A} set.

Effective version: Two disjoint X1 sets can be separated by a Al set.
Effective Theory

In IR or w*, or 2 the points become interesting! A Ai-point z € w*: {z} is A] <=
{z} is 1 <= (= is a A] subset of w?).
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2.8 Theorem. (Effective Perfect Set Theorem) If A is X1, then either A has a perfect
subset or all members of A are Al points.

2.9 Theorem. II} is closed under quantification of the form (3x € A}(y)). That is, if
A(z,y) is 11} and B(y) <= (3r € Al(y))A(z,vy), then B is I11.

From Theorem 2.9 one can deduce that 3!'Borel is IT}. If it is unique, it is Al.
Ordinal Codes

Identify every point z € 2% with a binary relation <, on w, namely <, = {(n,m) €
w? 1 z(< n,m >) = 1}. Then let WO = {z : <, is a well-ordering }. Note that WO is
1. For every x € WO dnote by |z| the corresponding ordinal.

Definition. If & < wy, a is a recursive ordinal if there is a recursive z € 2% with |z| = a.

Remark. Al ordinals are recursive ordinals and form a countable initial segment of w;.

CK

Definition. Denote by w; the least non-recursvie ordinal and by w;* the least

non-recursive in X ordinal.

Remark. Every nonempty ITJ subset of 2¢ has a A] element. The statement is flase
for w?.

2.10 Theorem.

(i) VII} set A there is a continuous function f: X — 2% such that f~1[WO] = A.
(ii) VII! set A C X there is a recursive function f: X — 2% such that f~[WQ0] = A.

2.11 Theorem. ( Gandy Basis Theorem ) Any nonempty i set contains a point X
such that wit = w; CK.

2.12 Claim. There exist a [T} set P C w*, aIl} set Q C wxw® and a ¥} set R C wxw¥
such that:

(i) Vie P,Q(i,z) < R(i,x).

(ii) VAL set D C X there exists ¢ € P such that D(z) <= Q(i, 7).



