2. Descriptive Set Theory

Main reference for this lecture: Moskowakis;

Definition. A subset A of X has the perfect set property if either A is countable or A has a perfect subset.

2.1 Theorem. Σ_1^1 sets are universally measurable, have the property of Baire and the perfect set property.

Definition. A pointclass is a collection of pointsets in various spaces.

Definition. A pointclass Γ has the separation property if any pair of disjoint Γ sets can be separated by a Δ set, where $\Delta = \Gamma \cap \Gamma$ ($\Gamma = \text{complements of } \Gamma \text{ sets}$)

2.2 Theorem. Σ_1^1 and Π_2^1 have separation property; Π_1^1 and Σ_2^1 do not.

Remark. The axiom V = L implies that there is a Δ_2^1 well-ordering of \mathbb{R} .

- **2.3 Theorem.** V = L implies:
- (i) There is a Σ^1_2 set which is not Lebesgue measurable and does not have the Baire property.
 - (ii) There is a Π_1^1 set violating the perfect set property.
- (iii) For $n \geq 2$, $\Pi_{\mathbf{n}}^{\mathbf{1}}$ has separation, $\Sigma_{\mathbf{n}}^{\mathbf{1}}$ does not.

Definition. By Projective Determinancy (PD) we abriviate the principle that all games $G(\mathbb{N},X)$ where X is projective, are determined.

2.4 Theorem.

- (i) PD implies that all projective sets are universally measurable, have the Baire property and have the perfect set property.
 - (ii) The pointclasses Σ_1^1 , Π_2^1 , Σ_3^1 , Π_4^1 , Σ_5^1 etc. have separation, the others do not.

Remark. Recall that a subset A of ω^{ω} determines a game of perfect information between two players:

$$I \qquad a_0 \qquad a_2 \qquad a_4 \qquad \dots$$
 $II \qquad a_1 \qquad a_3 \qquad a_5 \qquad \dots$

- II a_1 a_3 a_5 ...

 $\Pi_{\mathbf{n}}^{\mathbf{1}}$ determinancy: For any $\Pi_{\mathbf{n}}^{\mathbf{1}}$ set $A \subset \omega^{\omega}$, the game A is determined, i.e. either player I or player II has a winning strategy. Note that $\forall n \; \Sigma_{\mathbf{n}}^{\mathbf{1}}$ determinancy $\iff \Pi_{\mathbf{n}}^{\mathbf{1}}$ determinancy.
- PD $\iff \forall n \; \Pi_{\mathbf{n}}^{\mathbf{1}} \; \text{determinancy.}$

Definition. A *-game for $A \subset 2^{\omega}$

$$I$$
 s_0 s_1 s_2 \dots II i_0 i_1 i_2 \dots

The player I plays $s_n < 2^{<\omega}$ (i.e. finite sequence from 2); II plays $i_n \in \{0,1\}$; After ω moves we get $x = s_0 \hat{i}_0 \hat{s}_1 \hat{i}_1 \hat{s}_2 \hat{i}_2 \dots \in 2^{\omega}$. We say that I wins the round of the game iff $x \in A$.

Remark. This is a game on a countable set.

2.5 Theorem.

(i) If I has a winning strategy, then A has a perfect subset.

 $\mathbf{2}$ Descriptive Set Theory

(ii) If II has a winning strategy, then A is countable.

Proof.

- (i) Let σ be a winning strategy for I. Define $f: 2^{\omega} \to 2^{\omega}$ as follows: f(y) is the outcome of the game, when I follows σ and II plays $(i_0, i_1, i_2, \ldots) = y$; f is one-to-one and continuous. Since σ is a winning strategy, Im(f) is in A. So A has a perfect subset.
- (ii) Let τ be a winning strategy for II. Let $p = \langle s_0, i_0, \ldots, i_n \rangle$ be a position in the game in which it is I's turn to move. Let $x \in 2^{\omega}$. We say that τ rejects x at p if:
- p is an initial segment of x;
- for any s_{n+1} played by I, τ calls for II to play an i_{n+1} such that $p\hat{s}_{n+1}\hat{i}_{n+1}$ is not an initial segment of x;

For any $x \in A$, there is a position p such that τ rejects x at p - if not I could play so that the outcome is x, thus defeating the allegedly winning strategy τ . There are countably many positions. Two points cannot be rejected at the same position. So A is countable.

Remark. Note that Γ determinancy implies that Γ sets have the perfect set property. Furthermore: Γ determinancy implies that $\exists^{\omega^{\omega}} \Gamma$ sets have the perfect set property. For example Π^1_n determinancy implies that Σ^1_{n+1} sets have the perfect set property, (closed set) - determinancy implies that Σ_1^1 sets have the perfect set property.

Unfolding the quantifiers: $A(x) \iff (\exists y \in \omega^{\omega}) B(x,y)$

$$i_1 i_0 i_1 i_2 \dots$$

of the game imlpies that A has the perfect set property (see the proof of 2.5).

Effective methods

- Recursion theory computability theory; recursive partial functions on the integers $f:\omega^n\to\omega$; recursively presented Polish spaces;
- This is an alternative approach to recursively presented Polish spaces; work with finite products of ω , ω^{ω} , 2^{ω} (all Polish spaces are Borel isomorphic);
- \bullet Consider a canonical bases: $\{B_n\}$ (determined by finite sequences) and recall that the open sets (or the Σ_1^0 sets) are sets of the form $\cup B_{f(n)}$, for some function $f:\omega\to\omega$. The effectively open sets (= Σ_1^0 sets) are sets of the form $\cup B_{f(n)}$, where $f: \omega \to \omega$ is a recursive function. Furthermore one defines the lightface (or Kleene) classes in the following way:

$$\begin{split} \Sigma_0^1 = & \text{ all effectively open sets,} \\ \Sigma_{n+1}^0 = \exists^\omega \neg \Sigma_n^0, \\ \Pi_n^0 = \neg \Sigma_n^0, \\ \Delta_n^0 = \Sigma_n^0 \cap \Pi_n^0. \end{split}$$

Descriptive Set Theory 3

$$\begin{split} \Sigma_1^1 &= \exists^{\omega^\omega} \Pi_1^0, \\ \Sigma_{n+1}^1 &= \exists^{\omega^\omega} \neg \Sigma_n^1, \\ \Pi_n^1 &= \neg \Sigma_n^1, \\ \Delta_n^1 &= \Sigma_n^1 \cap \Pi_n^1. \end{split}$$

Note the analogy with the bold face (i.e. Borel and Luzin) pointclasses:

$$oxed{\Pi_0^1} = ext{complement of } oldsymbol{\Sigma_1^0} \qquad eta_0^1 = ext{complement of } \Sigma_1^0 = oxed{\Sigma_1^0}$$
 $oxed{\Sigma_0^2} = \exists^\omega \Pi_1^0 \qquad \qquad \Sigma_0^2 = \exists^\omega \Pi_1^0 = oxed{\Sigma_1^1} = \exists^{\omega^\omega} \Pi_1^0 = oxed{\Sigma_1^1} = oxed{\Sigma_1^0}$

Hyperarithmetic = Effectively Borel

- The bold face classes are ω^{ω} parametrized: i.e. there exists a pointset $U \subset \omega^{\omega} \times X$, which is universal for $\Sigma_{\mathbf{n}}^{\mathbf{1}}[X]$.
- The lightface classes are ω -parametrized.
- **2.6 Theorem.** Let Γ be Σ_n^0 , Π_n^0 , Σ_n^1 or Π_n^1 . Let Y be a recursively presented Polish space. Then there exists $U \subset \omega \times Y$ such that U is in Γ and every Γ subset of Y is a vertical section of U.

Consider Σ_1^0 - the effectively open sets in ω^{ω} . Define $U(n,x) \iff \exists i [\varphi_n(i) \downarrow \& \varphi_n(i) < x]$, where φ_n is a recursive partial function from ω into $\omega^{<\omega}$ with index n. If U(n,x,y) is universal for $\Pi_1^0 \lceil (X \times Y)$ then $V(n,x) \iff \exists y U(n,x,y)$ is universal for $\Sigma_1^1 \lceil X$. This is a good parametrization (have recursive S - m - n functions).

Claim. If A and B are Σ_1^1 , so is $A \cap B$.

Furthermore this holds uniformly. That means that if U(n,x) are universal sets there is a recursive function $f: \omega \times \omega \to \omega$ such that $U_{f(i,j)} = U_i \cap U_j$ for all i, j.

Definition. The Gandy-Harrington topology (on a recursively presented Polish topology) is the topology whose basis is the Σ_1^1 sets.

Two important properties:

- (i) It is second countable, strong Choquet and finer than the usual topology.
- (ii) The bases (i.e. the Σ^1_1 sets) have a good parametrization.
- **2.7 Theorem.** There exists a Gandy-Harrington comeager subset of ω^{ω} which is a Polish space in its relative topology.

Separation: Two disjoint Σ_1^1 sets can be separated by a Δ_1^1 set.

Effective version: Two disjoint Σ_1^1 sets can be separated by a Δ_1^1 set.

Effective Theory

In \mathbb{R} or ω^{ω} , or 2^{ω} the points become interesting! A Δ_1^1 -point $x \in \omega^{\omega}$: $\{x\}$ is $\Delta_1^1 \iff \{x\}$ is $\Sigma_1^1 \iff (x \text{ is a } \Delta_1^1 \text{ subset of } \omega^2)$.

4 Descriptive Set Theory

2.8 Theorem. (Effective Perfect Set Theorem) If A is Σ_1^1 , then either A has a perfect subset or all members of A are Δ_1^1 points.

2.9 Theorem. Π_1^1 is closed under quantification of the form $(\exists x \in \Delta_1^1(y))$. That is, if A(x,y) is Π_1^1 and $B(y) \iff (\exists x \in \Delta_1^1(y))A(x,y)$, then B is Π_1^1 .

From Theorem 2.9 one can deduce that $\exists!$ Borel is Π_1^1 . If it is unique, it is Δ_1^1 .

Ordinal Codes

Identify every point $x \in 2^{\omega}$ with a binary relation \leq_x on ω , namely $\leq_x = \{(n, m) \in \omega^2 : x(< n, m >) = 1\}$. Then let $WO = \{x : \leq_x \text{ is a well-ordering }\}$. Note that WO is Π_1^1 . For every $x \in WO$ dnote by |x| the corresponding ordinal.

Definition. If $\alpha < \omega_1$, α is a recursive ordinal if there is a recursive $x \in 2^{\omega}$ with $|x| = \alpha$.

Remark. Δ_1^1 ordinals are recursive ordinals and form a countable initial segment of ω_1 .

Definition. Denote by ω_1^{CK} the least non-recursive ordinal and by ω_1^{X} the least non-recursive in X ordinal.

Remark. Every nonempty Π_1^0 subset of 2^{ω} has a Δ_1^1 element. The statement is flase for ω^{ω} .

2.10 Theorem.

- (i) $\forall \Pi_1^1 \text{ set } A \text{ there is a continuous function } f: X \to 2^{\omega} \text{ such that } f^{-1}[WO] = A.$
- (ii) $\forall \Pi_1^{\overline{1}} \text{ set } A \subset X \text{ there is a recursive function } f: X \to 2^{\omega} \text{ such that } f^{-1}[WO] = A.$
- **2.11 Theorem.** (Gandy Basis Theorem) Any nonempty Σ_1^1 set contains a point X such that $\omega_1^X = \omega_1^{CK}$.
- **2.12 Claim.** There exist a Π_1^1 set $P \subset \omega^{\omega}$, a Π_1^1 set $Q \subset \omega \times \omega^{\omega}$ and a Σ_1^1 set $R \subset \omega \times \omega^{\omega}$ such that:
 - (i) $\forall i \in P, Q(i, x) \iff R(i, x).$
 - (ii) $\forall \Delta_1^1 \text{ set } D \subset X \text{ there exists } i \in P \text{ such that } D(x) \iff Q(i,x).$