First four classes:

- Classical Descriptive Set Theory
- Effective Methods and Strong Axioms
- Equivalence relations
- Polish Group Actions

Literature:

- Kechris, Classical Descriptive Set Theory
- Moschovakis, Descriptive Set Theory

Polish spaces = separable completely metrizable spaces

Example. \mathbb{R}

Proposition.

- (i) Finite or Countable product of Polish spaces is Polish.
- (ii) A subspace of a Polish space is Polish iff it is G_{δ} .

Examples.

- $[0,1], [0,1]^{\omega} = [0,1]^{\mathbb{N}} = \text{Hilbert cube}$
- $\omega = \mathbb{N}$ (countable discrete)
- $\omega^{\omega} = \text{Baire Space}$
- $2^{\omega} = \text{Cantor space}$
- Any separable Banach space.
- Suppose K is compact metrizable and X is Polish. Then the space C(K,X) of all continuous functions from K into X, with metric $d(f,g) = \sup_{y \in K} d_X(f(y), g(y))$ is Polish. In case $X = \mathbb{R}$, we simply refer to the above space as C(K).
- ullet For any Polish space X the hyperspace K(X) whose points are the compact subsets of X and has the Hausdorff metric $d(K,L)=\sup_{x\in K,y\in L}\{d_X(x,L),d_X(y,K)\}$ is Polish. Note that the Hausdorff metric is compatible with the Vietoris topology.

Definition. It T is a tree on A, then $f \in A^{\omega}$ is called an infinite branch through T if $f | n \in T$ for all $n \in \mathbb{N}$.

Definition. For any set A, a tree on A is a set of finite sequences from A, closed under initial segments.

Example. The full binary tree.

Definition. For any tree T, denote by [T] the body of T, i.e. the set of all infinite branches of T.

Definition. A tree T is called well-founded if $[T] = \emptyset$ (i.e. it does not have infinite branches).

Definition. Given a well-founded tree T one can consider recursively defined functions on T. In particular, we refer to $rk_T: T \to \text{Ord}$, where $rk_T(\sigma) = \min\{\alpha : \alpha > rk_T(\mu) \text{ for all } \mu < \sigma\}$ as a rank-function on T.

Example. For any set $A \neq \emptyset$, considered with the discrete topology, one can consider the space A^{ω} . The closed subsets of A^{ω} have the form [T], where T is a tree on A.

Example. The Polish space Tr of trees on \mathbb{N} : note that any tree on \mathbb{N} can be viewed as a subset of $\mathbb{N}^{<\mathbb{N}}$ and so identified with its characteristic function. The set of all trees on \mathbb{N} - Tr is a closed subset of $2^{\omega^{<\omega}}$, where $\omega^{<\omega}$ is the set of all finite sequences from ω .

Definition. Let A be a set; infinite game of perfect information on A:

$$I$$
 a_0 a_2 ...
 II a_1 a_3 ...
 $a_i \in A$; get $(a_0, a_1, ...) \in A^{\omega}$;

A game on A is a subset B of A^{ω} . We say that I wins a run of the game if $(a_0, a_1, ...) \in B$, otherwise II wins.

Since we work on topological spaces, it is natural to consider closed, borel, etc. games.

Definition. For Y - a topological space, consider the *Choquet game* of Y:

$$I U_0 U_2 \dots$$

$$II U_1 U_3 \dots$$

The sets U_i 's are open and decreasing $U_0 \supset U_1 \supset U_1$... We say that II wins if $\cap_i U_i \neq \emptyset$.

Definition. A topological space Y is called a *Choquet space*, if II has a winning strategy.

Definition. Given a topological space Y consider the Strong Choquet Game:

$$I (U_0, x_0) (U_2, x_2) \dots$$
 $II U_1 U_3 \dots$

The sets U_i are open and decreasing; $x_i \in U_i$ and $x_i \in U_{i+1}$ for every even i. We say that II wins a if $\cap_i U_i \neq \emptyset$.

Definition. A topological space is called *Strong Choquet space* if the second player has a winning strategy.

Example. All nonempty completely metrizable spaces are strong Choquet.

Proposition.

- (i) Any strong Choquet space is Choquet.
- (ii) Products of strong Choquet spaces are strong Choquet.

complete metric spaces \subset

Strong Choquet
$$\subset$$
 Choquet \subset Baire

- **1.1 Theorem.** (Choquet) Y a metrizable space. TFAE:
 - (i) Y is strong Choquet.
 - (ii) Y is completely metrizable.
- **1.2 Corollary.** Y a topological space. TFAE:
 - (i) Y is Polish.
 - (ii) Y is T_1 , regular, second countable and strong Choquet.

Remark. Descriptive set theory is the study of definable sets and functions in Polish spaces. Except otherwise specified we always work with Polish spaces.

Definition. (The Borel Hierarchy) For every $\alpha: 1 \leq \alpha < \omega_1$ recursively define the classes $\Sigma^{\mathbf{0}}_{\alpha}$ and $\Pi^{\mathbf{0}}_{\alpha}$:

$$\Sigma_{1}^{0} = \text{ open sets}$$

$$\Pi_{\alpha}^{0} = \text{ complements of } \Sigma_{\alpha}^{0}$$

$$\Sigma_{\alpha}^{0} = \{A : A = \bigcup_{i \in \omega} B_{i}, \ \forall i \in \omega \ B_{i} \in \Sigma_{\beta}^{0} \text{ for some } \beta < \alpha\} \ (\forall \alpha > 1)$$

$$\Delta_{\alpha}^{0} = \Sigma_{\alpha}^{0} \cap \Pi_{\alpha}^{0}$$

Remark. Borel $= \bigcup_{\alpha} \Sigma_{\alpha}^{0}$.

1.3 Theorem. For any Polish spaces X and Y, such that X is uncountable and any $\alpha < \omega_1$, there is a set $U \subset X \times Y$ such that U is $\Sigma_{\alpha}^{\mathbf{0}}$ and a subset of Y is $\Sigma_{\alpha}^{\mathbf{0}}$ iff it is $U_x (= \{y : U(x,y)\})$ for some $x \in X$.

Remark. According to the above theorem there exists a X-universal set for $\Sigma_{\alpha}^{0}(Y)$. Similarly one can show that there exists a X-universal set for $\Pi_{\alpha}^{0}(Y)$. Note that the classes Δ_{α}^{0} cannot have X-universal sets.

Proposition. The class Σ_{α}^{0} is closed under finite unions, intersections countable unions, \exists^{ω} , continuous preimages, but not under $\forall^{\omega}, \forall^{\mathbb{R}}, \exists^{\mathbb{R}}$, continuous image.

A main method for proving that a set is Σ_{α}^{0} or Π_{α}^{0} is the Tarski - Kuratowski algorithm, which idea is sipmly - write down a formula and count quantifiers. For example consider \mathbb{R}^{ω} . We claim that the set of all convergent sequences $\langle x_{i} \rangle$ is true Π_{3}^{0} (i.e. Π_{3}^{0} , not Δ_{3}^{0}). Really the sequence

$$\langle x_i \rangle \quad \text{converges} \qquad \iff \quad (\forall \varepsilon \in \mathbb{R}^+) \quad (\exists N) \quad (\forall i, j > N) \quad (|x_i - x_j| < \varepsilon) \;,$$

$$\iff \quad (\forall \varepsilon \in \mathbb{Q}^+) \quad (\exists N) \quad (\forall i, j > N) \quad (|x_i - x_j| < \varepsilon) \;,$$

$$\iff \quad (\forall \varepsilon \in \mathbb{Q}^+) \quad (\exists N) \quad (\forall i, j > N) \quad (|x_i - x_j| \le \varepsilon) \;.$$

$$\Pi_3^0 \qquad \Sigma_2^0 \qquad \Pi_1^0 \qquad \Pi_1^0$$

1.4 Theorem.

- (i) The one-to-one image of a Borel set under a continuous (or Borel measurable) function is Borel.
- (ii) Borel set is the one-to-one continuous image of a Polish space (in fact, a closed subspace of ω^{ω}).

1.5 Corollary. Let A be a pointset in a Polish space X. TFAE:

- (i) A is Borel.
- (ii) There exists a finer Polish topology on X in which A is open.
- (iii) There exists a finer topology on X, in which A is open, such that the space is regular, second countable, strong Choquet.

Remark. For almost every countable collection \mathcal{B} of Borel sets (i.e. for a club family of countable collections), \mathcal{B} is a basis for a Polish topology.

1.6 Theorem. Any two uncountable Polish spaces X and Y are Borel-isomorphic, i.e. there exists a bijection $f: X \to Y$ such that f, f^{-1} are Borel measurable.

Definition. (Projective or Luzin Classes)

$$\begin{split} \boldsymbol{\Sigma}_{0}^{1} &= \boldsymbol{\Sigma}_{1}^{0} = \text{ open sets} \\ \boldsymbol{\Sigma}_{1}^{1} &= \boldsymbol{\exists}^{\omega^{\omega}} \boldsymbol{\Pi}_{1}^{0} = \boldsymbol{\exists}^{\mathrm{IR}} G_{\delta} \\ \boldsymbol{\Sigma}_{\mathrm{n+1}}^{1} &= \boldsymbol{\exists}^{\omega^{\omega}} \neg \boldsymbol{\Sigma}_{\mathrm{n}}^{1} \\ \boldsymbol{\Pi}_{\mathrm{n}}^{1} &= \neg \boldsymbol{\Sigma}_{\mathrm{n}}^{1} \\ \boldsymbol{\Delta}_{\mathrm{n}}^{1} &= \boldsymbol{\Sigma}_{\mathrm{n}}^{1} \cap \boldsymbol{\Pi}_{\mathrm{n}}^{1} \end{split}$$

Note that we have the following picture of the Projective hierarchy:

$$\Sigma_1^1$$
 Σ_2^1 \dots
Borel Δ_1^1 Δ_2^1 Δ_3^1 Π_1^1 Π_2^1 \dots

where each class belongs to the class rigth of it.

1.7 Theorem. Σ_n^1 and Π_n^1 have universal sets.

Proposition. The classes $\Sigma_{\mathbf{n}}^{\mathbf{1}}$ are closed under $\exists^{\omega}, \forall^{\omega}, \exists^{X}$ (X Polish), projections, Borel image or preimage, but not closed under $\forall^{\mathbb{R}}$.

Remark. $\Pi_1^1 = \neg \exists Borel = \neg \exists \neg Borel = \forall Borel;$

Example. The pointset of all well-founded trees in Tr is Π_1^1 . Really T is well-founded if and only if $\forall x \in \omega^\omega \exists n[x|n \notin T]$.

Example. The set $\{f: f \text{ differentiable }\}$ is Π_1^1 in C[0,1].

Proposition. Σ_1^1 =projection of a Borel set =continuous image of a Borel set

Remark. Σ_1^1 sets are called analytic sets. Equivalently analytic sets can be defined as a projection of a Borel set, or a continuous image of a Polish space.

Proposition. All analytic sets in ω^{ω} have a representation of the form

$$A(x) \iff \exists y \in \omega^{\omega}(\langle x, y \rangle \in [T])$$

where T is a tree on ω^2 .

Proposition. If $A \subset X$ is Σ_1^1 , then A has the form $A(x) \iff \exists y B(x, y)$, where B is Π_1^0 (closed) subset of $X \times \omega^{\omega}$ (or B is Π_2^0 (G_{δ}) subset of $X \times (\text{any uncountable Polish space})).$

- **1.8 Theorem.** Let A be a pointset in a Polish space X. TFAE:
 - (i) The set A is Σ_1^1 (analytic).
- (ii) There exists a finer topology \mathcal{T} on X, in which A is open, such that \mathcal{T} is second countable and strong Choquet.

Remark. For almost every countable collection of Σ_1^1 sets, \mathcal{B} is a basis for a Strong Choquet topology.

1.9 Theorem. The class Π_1^1 has the prewellordering propery - a Π_1^1 set can be written as a union of \aleph_1 Borel sets, in a simply definable way.

Let $P \subset X$ be Π^1_1 . Then there is a function $\varphi : P \to \omega_1$ such that there are Σ^1_1 relations $\leq_{\Sigma}, <_{\Sigma}$ and Π^1_1 relations $\leq_{\Pi}, <_{\Pi}$ such that for any $x \in P$

$$\{y : y \in P \text{ and } \varphi(y) < \varphi(x)\} = \{y : y <_{\Sigma} x\} = \{y : y <_{\Pi} x\}$$

Similarly for \leq .

1.10 Theorem. Any two disjoint Σ_1^1 sets can be separated by a Borel set, i.e. if A_1 and A_2 are Σ_1^1 and $A_1 \cap A_2 = \emptyset$, there exists a Borel set B with $A_1 \subset B$, $B \cap A_2 = \emptyset$.

1.11 Corollary. $\Delta_1^1 = Borel$

Remark. Note that Π^1_1 is not closed under $\exists^{\mathbb{R}}$

1.12 Theorem. If $B \subset X \times Y$ is Borel and $A \subset X$ is defined by $\exists ! y B(x, y)$, then A is Π_1^1 .

Example. The set $\{f: f'(x) \text{ exists except at exactly 1 point } \}$ is Π_1^1 in C[0,1].

1.13 Theorem. Let $A \subset \omega^{\omega}$. If A is Σ_2^1 , then A is a projection of a tree on $\omega \times \omega_1$.