1. Descriptive Set Theory

First four classes:

e Classical Descriptive Set Theory

e Effective Methods and Strong Axioms

e Equivalence relations

e Polish Group Actions

Literature:

e Kechris, Classical Descriptive Set Theory
e Moschovakis, Descriptive Set Theory

Polish spaces = separable completely metrizable spaces
Example. R

Proposition.
(i) Finite or Countable product of Polish spaces is Polish.
(ii) A subspace of a Polish space is Polish iff it is Gs.

Examples.

e [0,1], [0,1]“ = [0, 1] = Hilbert cube
e w = IN ( countable discrete )

e w* = Baire Space

e 2¢ = (Cantor space

e Any separable Banach space.

e Suppose K is compact metrizable and X is Polish. Then the space C(K, X) of all
continuous functions from K into X, with metric d(f,g) = supyexdx(f(y),g(y)) is
Polish. In case X = IR, we simply refer to the above space as C(K).

e For any Polish space X - the hyperspace K(X) whose points are the compact subsets
of X and has the Hausdorff metric d(K, L) = sup,c g yer{dx (2, L), dx(y, K)} is Polish.
Note that the Hausdorff metric is compatible with the Vietoris topology.

Definition. It T is a tree on A, then f € A% is called an infinite branch through T if
fln € T for all n € IN.

Definition. For any set A, a tree on A is a set of finite sequences from A, closed under
initial segments.

Example. The full binary tree.

Definition. For any tree T, denote by [T'] the body of T, i.e. the set of all infinite
branches of T'.

Definition. A tree T is called well-founded if [T] = (§ ( i.e. it does not have infinite
branches ).
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Definition. Given a well-founded tree T one can consider recursively defined func-
tions on T'. In particular, we refer to rkr : T — Ord, where rkr(o) = min{a : a >
rkr(p) for all p < o} asa rank-function on 7.

Example. For any set A # ), considered with the discrete topology, one can consider
the space A”. The closed subsets of A“ have the form [T'], where T is a tree on A.

Example. The Polish space Tr of trees on IN: note that any tree on IN can be viewed
as a subset of NN and so identified with its characteristic function. The set of all trees
on IN - T'r is a closed subset of 2“’<w, where w<% is the set of all finite sequences from
w.

Definition. Let A be a set; infinite game of perfect information on A:
I ag as

II ai as ..

a; € A; get (ag, a1, ...) € AY;

A game on A is a subset B of A“. We say that I wins a run of the game if (ag, a1, ...) € B,
otherwise /1 wins.

Since we work on topological spaces, it is natural to consider closed, borel, etc. games.

Definition. For Y - a topological space, consider the Choquet game of Y:

1 Uy U,

II Uy Us

The sets U;’s are open and decreasing Uy D U; D U;... We say that I wins if N;U; # 0.

Definition. A topological space Y is called a Choquet space, if I1 has a winning strategy.

Definition. Given a topological space Y consider the Strong Choquet Game:

I (Ug, o) (Us, x2)

11 Ux Us

The sets U; are open and decreasing; x; € U; and z; € U;41 for every even i. We say

that IT wins a if N;U; # 0.

Definition. A topological space is called Strong Choquet space if the second player has
a winning strategy.

Example. All nonempty completely metrizable spaces are strong Choquet.

Proposition.
(i) Any strong Choquet space is Choquet.
(ii) Products of strong Choquet spaces are strong Choquet.
complete metric spaces C
Strong Choquet C Choquet C Baire
compact Ty C
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1.1 Theorem. ( Choquet) Y a metrizable space. TFAE:
(i) Y is strong Choquet.
(ii) Y is completely metrizable.

1.2 Corollary. Y a topological space. TFAE:
(i) Y is Polish.
(ii) Y is Ty, regular, second countable and strong Choquet.

Remark. Descriptive set theory is the study of definable sets and functions in Polish
spaces. Except otherwise specified we always work with Polish spaces.

Definition. ( The Borel Hierarchy ) For every a : 1 < a < w; recursively define the
the classes X2 and TI9:

9 = open sets

I1° = complements of X0

) ={A: A=Uc,B;, Vi € w B; € I for some f < a} (Va > 1)
A% =32n11?

Remark. Borel =U,X9.

1.3 Theorem. For any Polish spaces X and Y, such that X is uncountable and any
o < wy, there is a set U C X X Y such that U is £% and a subset of Y is X9 iff it is
Uy (={y:U(z,y)}) for somezxz € X.

Remark. According to the above theorem there exists a X-universal set for X9(Y).
Similarly one can show that there exists a X-universal set for II9(Y). Note that the
classes AY cannot have X-universal sets.

Proposition. The class 39 is closed under finite unions, intersections countable unions,
3¢, continuous preimages, but not under V¢, V&, 3®_ continuous image.

A main method for proving that a set is X2 or TI? is the Tarski - Kuratowski algorithm,
which idea is sipmly - write down a formula and count quantifiers. For example consider
IR”. We claim that the set of all convergent sequences < z; > is true II3 ( i.e. II3, not
A9 ). Really the sequence

< z; > converges — (VeeR") (3AN) (Vi,j>N) (lz;—=;|<e),
= (eQh) BN) (Mii>N) (m-zl<e),
<~ (VeeQ) (3N) (Vi,j>N) (lzi—=zj|<e).
T =2 I I
1.4 Theorem.
(i) The one-to-one image of a Borel set under a continuous ( or Borel measurable )
function is Borel.

(ii) Borel set is the one-to-one continuous image of a Polish space ( in fact, a closed
subspace of w®).



4 Descriptive Set Theory

1.5 Corollary. Let A be a pointset in a Polish space X. TFAE:
(i) A is Borel.
(ii) There exists a finer Polish topology on X in which A is open.
(iii) There exists a finer topology on X, in which A is open, such that the space is
regular, second countable, strong Choquet.

Remark. For almost every countable collection B of Borel sets ( i.e. for a club family
of countable collections), B is a basis for a Polish topology.

1.6 Theorem. Any two uncountable Polish spaces X and Y are Borel-isomorphic, i.e.
there exists a bijection f : X — Y such that f, f~! are Borel measurable.

Definition. ( Projective or Luzin Classes )

> =32% = open sets
xp =3"1I) = 3%G;
E:H-l =3 _‘zrll

I =-%;

Al =3 N0}

Note that we have the following picture of the Projective hierarchy:
Xi X3
Borel A} A} A}
I} IT;
where each class belongs to the class rigth of it.

1.7 Theorem. X! and II} have universal sets.

Proposition. The classes X1 are closed under 3%, Vv, 3% ( X Polish), projections,
Borel image or preimage, but not closed under VX,

Remark. I} = —3Borel = =3-Borel = VBorel;

Example. The pointset of all well-founded trees in T is IT}. Really T is well-founded
if and only if Vo € w¥3njz|n ¢ T.

Example. The set {f : f differentiable } is IT} in C|[0, 1].

Proposition. X1 =projection of a Borel set =continuous image of a Borel set
Remark. X} sets are called analytic sets. Equivalently analytic sets can be defined as
a projection of a Borel set, or a continuous image of a Polish space.

Proposition. All analytic sets in w* have a representation of the form

Alr) < Fyew“(<x,y >€[T))

where T is a tree on w?.
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Proposition. If A C X is ¥}, then A has the form A(z) <= 3JyB(z,y), where B
is TIY ( closed) subset of X x w” (or B is II9 ( Gs ) subset of X x(any uncountable
Polish space)).

1.8 Theorem. Let A be a pointset in a Polish space X. TFAE:

(i) The set A is X1 ( analytic).

(ii) There exists a finer topology T on X, in which A is open, such that T is second
countable and strong Choquet.

Remark. For almost every countable collection of 31 sets, B is a basis for a Strong
Choquet topology.

1.9 Theorem. The class I} has the prewellordering propery - a TI} set can be written
as a union of ¥y Borel sets, in a simply definable way.

Let P C X be II]. Then there is a function ¢ : P — w; such that there are X7 relations
<3, <» and H} relations <y, < such that for any z € P

{fyryePandp(y) < @)} ={y:y<sz}={y:y<nz}

Similarly for <.

1.10 Theorem. Any two disjoint X1 sets can be separated by a Borel set, i.e. if A;
and Ay are ¥1 and A; N A, = (), there exists a Borel set B with Ay C B, BN Ay = 0.

1.11 Corollary. A}l = Borel

Remark. Note that IT} is not closed under 3%

1.12 Theorem. If B C X xY is Borel and A C X is defiend by 3lyB(z,y), then A is
i

Example. The set {f : f'(z) exists except at exactly 1 point } is II] in C[0, 1].

1.13 Theorem. Let A C w*. If A is $1, then A is a projection of a tree on w X wy.



