$$
\text { - } 222103
$$

Mype-II mabrices

A clique in $\Omega^{b}(d)$ is a $f(a b d x d$ mabrix. We used them to construct homomorphisms. There is an interesting generalization.

If W is an man mabvix over [1 with no zero entries, we define the $d x d$ $W^{(G)}$ by

$$
\left(W^{(-)}\right)_{i, j}:=W_{i, j}^{-1}
$$

We call it the Schur inverse of W.

An $n \times n$ mafrix W over \mathbb{C} is a Eype-II mabrix if $W W^{c \rightarrow T}=n I$. Sa if W is a type-II mabrix, il is invertible and

$$
W^{(-) \Gamma}=n W^{-1}
$$

(a) $\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
(b)

$$
\begin{array}{rl}
\text { If } w^{3}=1 & a w \neq 1 \\
\left(\begin{array}{lll}
1 & 1 & w \\
w & 1 & 1 \\
1 & w & 1
\end{array}\right)
\end{array}
$$

(2) For any non-zero comptex number 6

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & t & -t \\
1 & -1 & -t & t
\end{array}\right]
$$

Any flat unibary matrix is a (scaled) types If matrix. in lect there is a stronger claim.

Theorem for any complex non matrix W, the following are equivalent:
(a) W is type-II
(b) $n^{-1 / 2} W$ is mitary
(c) $\left|W_{i, j}\right|=1 \quad \forall i, j$.

Note. any Hadamard matrix is type-II We can also get flat unitary matrices from continuous quantum walks. Recall that, starling from a state D, we have leal uniform mixing at time b if $U(t) D U(-t)$ has constant diagonal. We are interested in the case where the initial state is a vertex state $D_{a}=e_{a} e_{a}^{\top}$. Then

$$
U(t) e_{a} e_{a}^{r} U(-b)=U(t) e_{a}\left(U(t) e_{a}\right)^{x}
$$

and the diagonal is constant if a only if Ulien is blat, ie., the a-column of $U(G)$ is flat. We have uniberm mixing ab time t if $U(t)$ itself is flat. There is uniform mixing on the d-cube ab time $\pi / 4$.

Operations a Eqnivilence

16 W is type-II, ∞, is W^{T}. The Kronecker product of type-II matrices is type-II.

Assume $D, \& D_{2}$ are invertible diagonal mabuces of order $n \times n$ and les P_{1}, p_{2} be nee permatafiem matrices If W_{1} is $n \times n$ and $W_{2}=D_{1} P_{1} W_{1} D_{2} P_{2}$ then $W_{1} \& W_{2}$ are equivalent type-II matrices. Not: in general, W and W^{\top} are not equivalent.

The Krenecker producb $W_{1} \otimes W_{2}$ of twe type- II matrices is type-II,

Iwo delgebras

Le 6 W be a bype-II mabrix of arder $n \times n$.
Define

$$
W_{i / j}:=W_{e_{i}} 0\left(W_{e j}\right)^{(-)} \quad 1 \leqslant i j ; n
$$

and deforine the Nomura algebra N_{W} of W bo be the set ef $n \times n$ mabries for whith each vecter W_{i} / j is an eigenveetor. Noke that $W_{W^{(N)}}=N_{W}$.

If $M \in N_{w}$ then $\Theta(M)$ is the $n \times n$ matrix such that

$$
M W_{i j}=\mathbb{B}(M)_{i j} W_{01 j}
$$

Assume W is invertible and Sehnr-invertible.
Then W is a bype-II matrix if and only if $J \in N_{w}$.
Thus if W is type-II, then N_{W} contains $\operatorname{span}\{L J\}$.

Let θ be a primitive neth rect of unity and let U_{n} be the $n \times n$ Vanderalonde matrix

$$
\begin{aligned}
\left(V_{n}\right)_{i, j} & =\theta^{(i-1)}\left(\begin{array}{l}
(-1) \\
\\
\end{array}\right. \\
& =\left[\begin{array}{lll}
1 & 1 & \\
\vdots & \theta & \\
1 & \cdots \\
1 & \theta^{(n-1}
\end{array}\right]
\end{aligned}
$$

Then $V_{n}^{(-)}=\bar{v}_{n}$ \& $V_{n}^{(\rightarrow T)}=v_{n}^{*}$,

Further $V_{n} V_{n}^{*}=n I$ and se $\frac{1}{\sqrt{n}} V_{n}$ is a flab unitary matrix. We have

$$
V_{n} e_{i} o\left(V_{n} e_{j}\right)^{(-)}=\left.\int d^{(i-j) k}\right|_{h a 1} ^{n}
$$

It follows that the Nomura algebra of V_{n} is the algebra of $n \times n$ circulants.

Let η be a primitive (2n)-th real el unity and define the matrix W by

$$
W_{i j}=\eta^{(i-\mu)^{2}} \quad \eta^{(i-j)^{2}}=\eta^{i^{2}} \eta^{-2 i j} \eta^{\prime}
$$

Show that $W \& U_{n}$ are equivalent and have the same Nomura algebra. Show that W lies in its Nomura algebra.

Lemma If W is type-II, then N_{W} is commutative. Proof. Since W is invertible, its columas $W_{e j}(j=1, \ldots, n)$ are linearly in dependent. If D_{1} is the diagonal matrix with $\left(D_{1}\right)_{i, r}=\left(W e_{1}\right)_{i}$, then D_{1} is invertible and the vectors $D_{1}^{-1} W_{j}=W_{j / 1}$ are linearly independent. So, relative be the basis $\omega_{j l i}(j=1, \ldots, n)$ all matrices in N_{w} are diagonal.

It follows that if $M, N \in W_{W}$, then

$$
\mathbb{Q}(M N)=\mathbb{C}(M) \circ \leftrightarrow(N) .
$$

So $\circledast\left(\mathcal{N}_{W}\right)$ is a Sohar-clased algebra, We note that $\Theta(I)=J$ \& $\Theta(J)=n I$. We will ser that $(5)\left(N_{W}\right)$ is closed under matrix multiplication.

We define some idempotents. Assume W is $n \times n$ type-II and define, for each is $;$:

$$
Y_{i j}=\frac{1}{n} W_{i / j}\left(W_{j / i}\right)^{T}
$$

This is a rank-1 matrix, You may verify that

$$
Y_{a, i} V_{a j}=\delta_{i j} Y_{a, i}
$$

and

$$
\sum_{i} Y_{a, i}=I
$$

Coma If $M \in \mathcal{N}_{W}$ then

$$
M=\sum_{i} \otimes(M)_{a, i} Y_{a, i}
$$

Proof

$$
\begin{aligned}
M y_{a, j}=\frac{1}{n} M W_{a l j} W_{j / a}^{T} & =\frac{1}{n} \Theta(M)_{a, j} W_{a j j} w_{j / a}^{5} \\
& =\Theta(M)_{a, j} V_{a, j}
\end{aligned}
$$

and summing this over j yields the claim.

The next result is critical.
If $M \in \mathcal{N}_{W}$ then

$$
\Theta_{W}(M)\left(W^{\top}\right)_{a / b}=n M_{a, b}\left(W^{\top}\right)_{a / b} .
$$

Hence $⿴ 囗 \|_{W}(M) \in \mathcal{N}_{W^{\top}}$ and $\mathbb{C}_{W^{\top}}\left(\Theta_{W}(M)\right)={ }_{n} M^{\top} \in N_{W}$.

Corollary (0) ${ }_{W}$ and $\epsilon_{W^{T}}$ are invertible.

