$$
.2015 / 93
$$

\#ef vas
Theorem Let X \& Y be graphs. A subsed S of $V(X) \times V(Y)$ is the graph of a homomorphism from an induced subgraph of X of size $1 S 1$ to Y it and only if it is a coeligne in $X A Y$.

Te motivate the proet, we ofber a corollary.
Cerollary $x \rightarrow y \Leftrightarrow \alpha(X \times y)=|U(x)|$.

$$
(n, v) \sim(x, y) \text {, } f u=x
$$

Reminder: $A(x \times y)=A\left(x \square k_{y}\right)+A(x+\bar{y})$ or $u \sim x$ a $u x y$

Proof First, suppose f is a homomorphism from an induced subgraph x_{0} of x to y. If u d v arp adjacent vertices in x_{n}, then $f(u)_{y} f(v)$ and se $(u, f(u))$ and $(u, f(r))$ are not adjacent in X ak or in $X \times M$

For the converse, assume $\rho \subseteq v(x+y)$ that is a cocligue in $X a K_{y}$ and in $X+\bar{Y}$. Define the domain $D(S)$ of S to be the set of vertices x in $V(x)$ such that $(x, y) \in \int$ for some y in $V(Y)$,

If $u \neq D(s)$ and $y, z \in V(y)$, then $(u, y) \&(u, z)$ are adjacent vertices in $X \square / K_{y}$. Hence if $u \in D(s)$, there is exactly one vertex y such that $(u, y) \in S$. So S is the graph of a function, g say, from $D(S)$ to $V(y)$.

We show that g is a homomorphism. If $(u, y) \&(v, z)$ lie in S and $u_{x} v$, then since ρ is a cocligue in $x \square k_{y}, y \neq z$. Since $(u, y) \&(v, z)$ are not adjacent in $x \times \bar{y}$, we have $y_{y} \bar{z}$.

Therefore g is a homomorphism frow X bo Y.

Lemma we have $X \xrightarrow{q} Y$ if and only if $\alpha_{q}(X \propto Y)=|V(X)|$ ©
(The proof, in Roberson's thesis, is complieabed]

$$
\text { If } x \leadsto y \text { and } x \nrightarrow y \text {, then }
$$

exeroste

$$
\alpha(x \times y)<\alpha_{p}(x \propto y)=|V(x)|
$$

We have seen an inertia bound on $\alpha(x)$.
Following wojian \& Elphick, we show this is also an copper bound on $\alpha_{q}(X)$.

Theorem If W is a Hermitian weighted adjacency matrix for X then

$$
\alpha_{q}(x) \leqslant \min \left\{n-n^{+}(A), n-n^{-}(A)\right\}
$$

Some preparation is needed.

A d-dimensional projective packing of a graph X is a homomorphism Pron X to the orthogonality graph on dad projections. If v is such a homomorphism, its value is $\frac{1}{d} \sum_{v \in V(x)} r k(Y(v))$.

The projective packing number is the supremum of the values of the projectile sackings of X. It is dended $\alpha_{\rho}(X)$.

Reminder: a guantum codigue in X is a $|V(X)| x s$ mabrix $P=(P, i)$ such that
(a) For eark vertex n in $X, \sum_{n \in \cup(X)} P_{n, i}=I_{d}$.
(3) $P_{u i} P_{v j}=0$ if uev are equal or adjacent.

Lemma For any graph X, we have $\alpha_{p}(X) \leq \alpha_{q}(x)$. had 9 g swapped Proof Let $P_{u, i}, n \in V(x)$, isis be a set of projections defining a quantum coclique size α. Set $P_{n}=\sum_{i=1}^{s} P_{u, i}$ for n in $V(X)$ These sums are orthogonal projections. Now

$$
\left.\left\langle P_{u}, P_{r}\right\rangle=\sum_{i j}\left\langle P_{u, i} P_{r j}\right\rangle=\sum_{i \neq j} T_{u ;}, P_{v j}\right)+\sum_{i}\left(P_{u, i}, P_{v, i}\right\rangle=0
$$

and

$$
\sum_{u \in V} r k\left(P_{u}\right)=\sum_{i} \sum_{u} r k\left(P_{u ;}\right)=d s
$$

Consequently $\alpha_{p}(x) \leqslant s=\alpha_{g}(x)$.

We need another proof of the inertia bound (as motivation). Assume W is a Hermitian weighted adjacency matrix for X. The lines spanned by vectors x such that $x^{*} W x=0$ are the points of a projective gnedric. A subspace U of \mathbb{C}^{n} is isotropic if $u^{*} W_{v}=0 \quad \forall n_{0} r \operatorname{in} U$ - If S is a colligne in X, then $\operatorname{span}\{e ; y \in S\}$ is isotropic

hyperbalic quadric

It is known that the maximum dimension of an isotropic subspace is $\min \left\{n-n^{+}(W), n-n^{-}(W)\right\}$.

We turn ko the proof of the theorem. Proof (of inertia bound). Recall that $P_{4}=\sum_{i=1}^{s} P_{u i}$, and is a projection. Let $\psi_{u}, \cdots, \psi_{u}, r\left(P_{n}\right)$ be an orthonormal basis fer col $\left(P_{n}\right)$ and define vectors $\Psi_{u, i}:=e_{n} \otimes \psi_{u, i}$.

We have

$$
\begin{aligned}
& \left\langle\Psi_{n, i}, \bar{\Psi}_{r, j}\right\rangle=\delta_{n, r} \delta_{i j} \\
& \Psi_{n, i}^{*}\left(W \otimes I_{d}\right) \Psi_{r, j}=0
\end{aligned}
$$

So the vectors $\Psi_{n i}\left(u \in V(x), i=1, o r k\left(P_{n}\right)\right)$ span an isotropic subspace on the quadric given by $W \& I_{d}$ and therefore

$$
r: \min \left\{d\left(n-n^{+}(w), d\left(n-n^{-}(w)\right)\right\}\right.
$$

Accordingly

$$
q_{p}(X) \leqslant \frac{r}{d} \leqslant \min \left\{n-n^{+}(W), n-n^{-}(W)\right\} .
$$

For a long time, we had no examples of graph where the weighted inertia bound was not equal to $\alpha(X)$. The first such examples were found by Sinkovic. But now any graph with $\alpha(x)<\alpha_{p}(x)$ works,

- Piovesar

Example Let f be the set of elements of order two in $\operatorname{Sym}(4),\left(S_{e}(6)=9\right)$ and let X be the Cayley graph $x(\operatorname{Sym}(4), b)$. Then $\alpha(x)=5$ and $\alpha_{q}(x)=6$.

The permutations $\{(12)(34),(13)(24),(14)(21),(1)\}$ are a subgroup of order fou, inducing a 4-cligne. The six covets of this subgroup partition V(X) into 4 -cliques.

Suppose © is a quantum redouring of K_{n}. Then O is an $n \times n$ matrix over Matdxd (C), such that each row \& column sums to I_{d}. Then $P P^{*}=I_{n d}$, and se P is an ndxend unitary matrix.
C assically, n-colonrings of K_{n} curvespend to projections: We define a quantum permutation to be an $n \times n$ mabix of d ad projections, such that all row e column sums equal I_{d}

Coherent algebras
"Recall" A coherent algebra b is an algebra of $n \times n$ matrices such that
(a) \& is closed under transp ese \& complex Conjugation
(b) P contains \mathcal{J} and is closed under the Pehur product Simplest example: $b=\operatorname{span}\{I, T\}$: $\operatorname{dim}(b)=2$.

Second simplest: A is the adjacency matrix of a strongly regular graph, $P=\operatorname{span}\{I, A, J-I-A\}$.

Tie for $2^{\text {nd }}$ simplest: Mat $_{n \times n}$ (C) Unlike the previous two examples, this is not commutative; its dimension is n^{2}, the maximum possible.

For more interesting examples:
Theorem. The commuting of a set of $n \times n$ permutation matrices is a coherent algebra.

Proof. If \mathscr{C}_{1} \& ξ are coherent subalgeloas of Mataxa (\mathbb{I}, their intersection is a coherent algebra. So we only need to prove the theorem for a single permutation, P say. The conamntant of P is a matrix algebra and contains Γ.

Assume M, N e Coma (P). Then

$$
P(M \circ N)=P M \circ P N=M P \cdot N P=(M \circ N) P
$$

and we're dore.

The commutant of a set of permutations is equal to the commutant of the group they generate.

Because the intersection of coherent algebras is a coherent algebra, any set of matrices generates a coherent algebra \rightarrow the intersection of the coherent algebra that contain the set. Our favourite example is generated by $A \& J$.

We derive ase of the most impottant faets about coherent algehras,
Theorem A cohereut algetra has a unigue basis of painwise Schur orthogonal ol-matrices.

Proof Define the k-th Schur pewer $M^{o k}$ to be the mabris L hemu
Mo"oM and if $a(t)=a_{0} t^{m}+\cdots+\theta_{m}$, definie $a_{0} M$ to be $\sum_{r=0}^{n} a_{r} M^{(m-r)}$. It is a Schur poljnomial in M.

Let b be a coherent algebra and assume $M \in b$.
Let μ_{1}, \ldots, μ_{d} be the distinct entries of M. Then $M=\sum_{i=1}^{\alpha} \mu_{i} N_{i}$, where N_{i} is a CI-matoix Let p_{j} be the unique polynomial of degree d such that $p_{j}\left(\mu_{j}\right)=\delta_{i,}$.

Then $N_{i}=p_{i}(M)$ lies in B, for $i=1, \ldots, s$.
If $K \& L$ are two el-mabrices in f, then $K \circ L \in b$,

