Cospectral graphs

Assume P is a quantum permutation of index d.
Then

$$
\operatorname{Comm}(P)=\left\{M: M Q I_{d} \& O_{\text {commute }}\right\}
$$

is a coherent algebra. It contains J, in fact it contains the coherent algebra generated by A.

If we have a set of $n \times a$ quantum permutations, the commutant of the set is the intersection of the commutants of it, loments.

Note that any coherent algebra of $n \times n$ marries has dimension at most n^{2}. If ℓ, D_{1}, D_{1} are coheverb algebras and $\theta=D_{1}, D_{2}$ then $\operatorname{dim}(l) \leqslant \operatorname{dim}(\infty)), \operatorname{dim}\left(Q_{2}\right)$
(true for subspaces)

Se if X is a graph and Q is its quantum antomarphirm group, the commuting of Q is a coherent algebra. This algebra is a subalgebra of the coherent algebra generated by $A(x)$. CRemark: the 'smakest' coherent algebra is $\operatorname{span}\{I, J\}$.)

If $X \& y$ are quantum iromerphic via the quantum permutation P of index d, then

$$
P\left(A(X) \otimes I_{d}\right)=\left(A(Y) \otimes I_{d}\right) P
$$

Since P is unitary, this implies that the mabrices $A(x) \otimes I_{d} \& A(y) \otimes I_{d}$ are similar. So $x \& y$ are cospectral, but more is true.

For any two $n \times n$ matrices M\&N,

$$
\begin{aligned}
M N \otimes I_{d} & =\left(M \otimes I_{d}\right)\left(N \otimes I_{d}\right) \\
(M O N) \otimes I_{d} & =\left(M \otimes I_{d}\right) \circ\left(N \otimes I_{d}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
P\left(A(x)^{2} \otimes I_{d}\right) & =P\left(A(x) \otimes I_{d}\right)\left(A(x) \otimes I_{d}\right) \\
& =\left(A(y) \otimes I_{d}\right) P\left(A(x) \otimes I_{d}\right) \\
& =\left(A(y)^{2} \otimes I_{d}\right) P
\end{aligned}
$$

If follows that, it $b(x)$ denater the coherent al zebra generated bo $A(x)$ and x \& Y are quantum is omorphic via P, then

$$
P(\rho(x)) P^{-1}=\rho(y) \quad \begin{aligned}
& \text { (this is not a } \\
& \text { type if isanorphiim } \\
& \text { Anted before?') }
\end{aligned}
$$ Hence $f(x) \cong f(y)$. This implies X \& Y are cospectral and $\bar{X} \& \bar{y}$ are cospectral.

Let $\rho_{q}(x)$ denote the crmunutant of the quantum automexphosn group of X. This is a coherent algebra that contains $\mathfrak{b}(x)$.

Sroup ríngs

Let G be a finite group. The group ring over the ring R may be defined as the set of formal sums

$$
\sum_{g \in G} a_{g} g \quad a_{g} \in \mathbb{R}
$$

Only finitely many berms in this sum are not zens. We have a product:

$$
\sum_{g \in G}^{1} a_{g} g \sum_{h \in G} b_{b} h=\sum_{c \in G}\left(\sum_{g h=c} a_{g} b_{h}\right) c \quad \text { convolution }
$$

To be rigourons, the elements of the group ring are functions from G_{0} to R with finite support. Addition and scalar multiplication are defoived in the usual way. The product of functions $f \& g$ is denoted $f t g$. and

$$
(f \not f g) c=\sum_{x y=c} f(x) g(y)
$$

And now for what well actually do. Assume $|G|=n$. Then we can represent the elements of G by permutation mobries, where the map from G to $\operatorname{Mat}_{n \times m}(\mathbb{R})$ is an isomorphism. Now the group sing is a subalgebra of $\mathrm{Mat}_{n \times n}(\mathbb{R})$. This subaigebra is a coherent algebra with the permutation matrices ar canonical basis.

The centre $Z(R)$ of the ring R is

$$
\{x \in R: x y=y x \quad \forall y \text { in } R\} \text {, }
$$

We are mberested in the centre of the group ring.
Led us view subsets of G as sums of permutation matrices
Suppose $S \subseteq G \& x \in G$ If $x S=\rho_{x}$ and af S, there is bes such that $x a=b x$, and so $b=x a x^{-3}$ Thus if 965 , then x aries \& thus $x S_{x^{-1}}=S$,

This implies that S is central if s only is it is a union of conjugacy chores, and hence the conjugacy classes torn a basis for the centre of the group ring.

Therefore the centre of the group ring is a coherent algebra, and the conjugacy classes are. tip canonical basis. This coherent algebra is
homogeneous a commutative - it is an association scheme.

Example Sym (w)

conj classes eigenspars	C_{0}	C_{1}	C_{2}	C_{3}	C_{4}
1	(1)	$(12)(34)$	(12)	(1234)	(123)
1	1	3	6	6	8
2	1	3	-6	-6	8
3	1	-1	2	-2	0
3	1	-9	-2	2	0

form of the character table of Syn (4)

involutions	derangements	
1	$C_{1}+C_{2}$	$C_{1}+C_{3}$
1	-3	9
2	3	-3
3	1	3
3	-3	-3
	1	

Some quantum is emaphice grophs

Examples
a) The two Cayley graphs on 24 uss series
b) Graphs related to the Eg root graph on 120 vertices.
c) Hadamoid graphs

First we inbuodnce the Hadamard graphs

A Hadamard graph is an $n \times n$ 21-matrix It such that

$$
H H^{r}=n I
$$

e's

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right),\left[\begin{array}{ccc}
1 & 1 & 1 \\
\vdots & 1 & 1 \\
1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right], \ldots
$$

$$
\text { 14.. } 1
$$

nisent

Lemmes If an $n \times n$ Hadamand matrix exists, either $n=2$ or $4 / n$.

Convese? Who knowr.
$16 \quad H_{1}$ \& H_{2} are Hadamard matrices, so ir $H_{1} \& H_{2}$.
Lemma Let H be an urn Hadamard mabrix. If Ir is $\quad H \underset{\sim}{1}=\alpha \underset{\sim}{1}$ (for some α) then $n=\alpha^{2}$.

Proof if $H_{1}^{1}=\alpha \underline{1}$, then $\underline{1}^{\top} H_{1}=n \alpha$. But $H_{1}=\alpha 1$
then $\alpha H^{r} \underline{1}=H^{r} H 1=n \underset{\sim}{1}$ and $\alpha 1_{1}^{\top} H_{\sim}^{r} 1=n^{2}$. So

$$
\alpha^{-1} n^{2}={\underset{\sim}{1}}^{\top} H_{\sim}^{\Gamma} \underset{\sim}{1}=\frac{1}{N} H \underset{\sim}{r}=n \alpha .
$$

Hadamard graphs. Suppose W is an $n \times n$ Hadamard matrix. Then we can write $H=H(H)-H(-)$ where $H(t) \& H(G)$ ore 01 -matrices and $H(t)+H(t)=J$. Define

$$
N=H(+) \otimes\binom{10}{0}+H(-) \otimes\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

and set

$$
A:=\left(\begin{array}{cc}
O & N \\
N^{J} & 0
\end{array}\right)
$$

This is the adjacency matrix of a bipartite graph.

Ser $L=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$. Then $L^{\top} L=I_{2}$ and $L^{\top}\left(\begin{array}{l}10 \\ 0\end{array} 1\right) L=\left(\begin{array}{ll}10 \\ 0 & 1\end{array}\right)$, $L^{r}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) L=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and consequently

$$
\left(I_{n} \otimes L^{\top}\right) N\left(I_{n} \otimes L\right)=H(t) \otimes\binom{10}{0}+H(-)\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right) .
$$

Therebere the matrices, J

$$
N,\left[\begin{array}{cc}
H(t)+H(-) & 0 \\
0 & H(t)-H(-)
\end{array}\right]=\left[\begin{array}{ll}
\sigma & 0 \\
0 & H
\end{array}\right]
$$

permutation $P^{2}=工, P=P^{+}$,
are similar, in faced $N=\left(I_{n} \otimes L^{\top}\right) P\left(\begin{array}{cc}J & 0 \\ 0 & H\end{array}\right) P\left(I_{n} P L\right)$

We have (finally)

$$
\begin{aligned}
& A^{2}=\binom{0 N}{N^{\top} 0}^{2}=\left(\begin{array}{cc}
N N^{\top} & 0 \\
0 & N N^{\top}
\end{array}\right) \\
& N^{\top} N=\left(I_{n} \& L^{\top}\right) P\left(\begin{array}{cc}
\sigma^{2} & 0 \\
0 & H^{\top} H
\end{array}\right) P\left(\sigma \theta L^{\top}\right)
\end{aligned}
$$

From this we conclude that the speetinn of A is

$m u l t$	1	n	$n-1$	n	1
θ	$-n$	$-\sqrt{n}$	0	\sqrt{n}	n

Theorem (Mancinskad Roberson) Two graphs X and Y are quantum isomorphic if s an's if, for each planar graph Z, the number of homomorphism $z \rightarrow X$ equals the number of homomorphism $Z \rightarrow Y$. $~ \varpi$

Theorem (Chan \& Marbin; Gromada)
Hadamard graphs of the same order are quantum isomorphic.

We have no actual example of a pair of Hadamard graphs and a quantum isomorphism between them,

Nor do we known the quantum automorphism group of any Hadamard graph.

Lemma If two trees are quantum isomorphic, they are iromerphis.

$$
\begin{aligned}
& P_{i k} P_{j h}=0 \\
& P_{\text {ih }} P_{\text {il }}=6 \\
& \text { want } P_{i k} P_{j 1}=0 \text { if } i \sim j, k \sim l \\
& \sum P_{i r} A_{r j}=\sum_{s} A_{i \xi} P_{j j} \\
& \sum_{r \sim j} P_{i r}=\sum_{\alpha_{i}} P_{s j} \quad \text { op } \sim \sim P_{i r}=\sum_{\rho \sim i} P_{j j} P_{i r} \\
& P_{r i} \sum_{s-i} \rho_{j s} P_{i j}=\rho_{01}+P_{02} \\
& \text { C1334 } \\
& \begin{array}{cl}
\rho^{\top}(A 81) & 1 \\
\sum_{r \sim j} P_{r i}=\sum_{\text {swi }} P_{j s} & \begin{array}{l}
3 \\
i
\end{array}
\end{array} \\
& \begin{array}{l}
\sum_{r \sim j} p_{i r}=\sum_{\operatorname{s\sim i}_{i}} p \\
\therefore \text { r~j insj }
\end{array} \\
& P_{19}+P_{18}
\end{aligned}
$$

