$$
213 / 03
$$

Sleason's theorem

We work with the Hilbert space \mathbb{R}^{3}. A state is given by a prgection $x x^{*}$ ($\|x\|=1$) and a measurement is given by the standard basis e_{1}, e_{2}, e_{3}. The outcome of a measwement is i (in $\{1,2,3\}$) with probability $\left\langle x_{n}^{*}, p_{i} p_{i}^{*}\right\rangle$ So each state determines a function f on the Unit sphere s. 6 that:
(a) $f=0$
(b) If x, y, z is an orthonormal basis, then $f(x)+f(y)+f / z)=1$.
(certainly the function $y \rightarrow\left\langle x^{*}, y_{n}^{*}\right)$ has these properties, Are thar alternatives?

We call f as ascus a frame function. Do all frame functions aries from inner products?

Theorem. (with notation as above.) Yes. Gleason's argument proceeds in two steps.

I: If $d \geqslant 3$ and frame function exists, it is continuous.
II: If $d \geqslant 3$ and f is a conbinnous frame function, there is a matrix $M \geq e$ such that $f(x)=x^{*} M_{x} \quad \forall x$. Only the first claim matter to us. $\left\langle\left\langle H^{2}, M\right\rangle\right.$

The chromatic number of $\Omega_{\mathbb{R}^{(3)}}(3)$ is greater than three,

Proof Assume we are given a 3-colouning of $\Omega_{\mathbb{R}}(3)$ and let ρ be one of the three colour classes. If $\left\{e_{1}, e_{2}, e_{3}\right\}$ is an orthonormal basis then $\mid S \cap\left\{e_{1} e_{2}, \xi_{3} \mid=1\right.$. The characteristic function of S is a frame function, but is not contihuons.

A Kochen-Specker set is a union of orthonormal bases from $\Omega(d)$. If the subgraph of $\Omega(d)$ induced by a Kochen-Specker set is d-colourable, it contains a cocligne that meets each basis in exactly one vertex. If x is such a subgraph and no such cocligue exists, then

$$
\xi(X)<x_{9}^{(n)}(X)
$$

It fallow i from Gleason's theorem, by compactines, that there are finite Kochen.Specker graphs with no d-colouring.
$\operatorname{In} \mathbb{R}^{3}$, this means we have graphs X witt $f(x)=3$ and $x(X) \geqslant 4$. $16 x_{g}^{(1)}(X)=3$, then $x(x)=3$ and hence $f(x)<x_{9}^{(1)}(x)$.

There is a ratio bound on $\xi(X)$ (following Elphick \& Waejan):
Theorem For any graph x, we have $\xi(x) \geqslant 1-\frac{\theta_{1}}{\theta_{\min }}$. I

Vector colourings

Led $\Omega(d, a)$ be the graph with unit vectors in \mathbb{R}^{d} as its vertices, with vectors $x \& y$ adj, $a c e n b$ if $\langle x, y\rangle \leqslant \alpha$.
(In practice, $-1 \leq \phi \leqslant 0)$. The vector chromatic number x_{v} of x is

$$
\inf \left\{1-\frac{1}{9}: X \rightarrow \Omega(\alpha, \alpha), \alpha<0\right\} .
$$

If $\alpha=-1$, then x is bipartite.

$$
\stackrel{(a+b) j}{i} \rightarrow\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

There is a related parameter. $\operatorname{Let} \Omega^{=}(\alpha, \alpha)$ be the graph with unit vectors in \mathbb{R}^{d} as vertices, vectors adjacent if $\langle x, y\rangle=\alpha$. The strict vector chromatic $x_{s b}(x)$ is $\inf \left\{1-\frac{1}{\alpha}: X \rightarrow \Omega=(d, \alpha), q<\theta\right\}$.

Clearly $x_{s v}(x) \geq x_{v}(x)$. We also note that $x_{s v}(x)$ is the Levis θ-number of \bar{x}.
(We note that $x_{r}(X)$ is Louis θ of the complement of X.)

Marrinska \& Robersen
Theorem if $x \xrightarrow{q} y$ then $x_{s u}(x) \leqslant x_{s u}(y)$.
Proof Suppose $x \xrightarrow{q} y$ and $y \rightarrow \Omega^{=}(d, \alpha)$ for some d. We want to show $X \rightarrow \Omega^{=}(e, \alpha)$ for some e.

Since $y \rightarrow \Omega E(d, a)$, there exist unit vectors $\psi(y)$ for y a $V(y)$ such that $\psi(y)^{+} v(z)=\alpha$ when $y \approx z$. We claim that entries of do quantum homomorphism $X \underset{y}{q}$ can be assumed to be real. Assume $\left.\theta=\left(p_{x, g}\right) \quad e_{x} \in \vee(x), y \in \cup(y)\right)$.

If $x \in V(x)$, define vectors $\varphi(x)$ by

$$
\varphi(x)=\frac{1}{\sqrt{d}} \sum_{y \in V(y)} \psi(y) \otimes P_{x y} \quad(A \otimes B,(P 0)
$$

Assume $\langle U \otimes P, v \otimes Q\rangle=U^{\top} v\langle P, Q\rangle$. Then

$$
\begin{aligned}
\langle\varphi(w), \phi(x)\rangle & \left.=\frac{1}{d}\left\langle\left(\sum_{g} \psi(y) \otimes P_{w y}\right)_{1}\right)\left(\sum_{\psi(z)} \otimes P_{x, j}\right)\right\rangle \\
& =\frac{1}{d} \sum_{y, j \in((y)}\langle\psi(g), \psi(z)\rangle\left\langle P_{w g}, P_{j x}\right\rangle
\end{aligned}
$$

Since $\left\langle P_{w y}, P_{w z}\right\rangle=0$ when $y \neq z$, we get

$$
\begin{aligned}
\langle\varphi(n), \varphi(n)\rangle & =\frac{1}{d} \sum_{y, 3+V(y)}\langle\psi(y), \psi(y)\rangle\left(P_{w y}, P_{w y}\right) \\
& =\frac{1}{d} \operatorname{tr}_{y}\left(\Omega P_{w y}\right) \\
& =\frac{1}{d} \operatorname{tr}\left(I_{d}\right) \\
& =1
\end{aligned}
$$

Hence $\|\varphi(u)\|=1$ and we need only check the value of $\varphi(w)^{\top} \varphi(8)$ $w_{x} x$.

Now $\left\langle p_{\text {wy }}, p_{x z}\right\rangle=0$ when $y+z$ and so

$$
\begin{aligned}
\varphi(w)^{\tau} \varphi(x) & =\frac{1}{d} \sum_{y \sim z}\langle\psi(y), \psi(z)\rangle\left\langle P_{w y}, P_{x z}\right\rangle \\
& =\frac{\alpha}{d} \sum_{y w z}\left\langle P_{w y}, P_{x z}\right\rangle \\
& =\frac{\alpha}{d}\left\langle\sum_{y+(w y)} P_{w y}, \sum_{z \in v(x)} P_{x z}\right\rangle \\
& =\alpha .
\end{aligned}
$$

We point out that we can compete $y_{v}(X)$ Csemidebjinite programming l and so we can use this theorem to prove that there is no quantum homomorphism from X to X.

The quantum clique number of a graph x ir maxis: $\left.k_{n}^{n} \rightarrow x\right\}$. Ib is denoted by $\omega_{g}(x)$. The quantum independence/coclique number is $w_{q}(\bar{x})$, and is denoted by $\alpha_{q}(x)$. (We will offer another definition later.)

For practice, we st art with a simple result.
Lemma if x is vertex transitive, $\alpha(x) w_{q}(x) \leqslant|V(x)|$.
dique-cocligne bounds

Proof Assume $m=w_{q}(x)$. Then $k_{n} \xrightarrow{q} x_{\text {; }}$ assume their is given by an $m x / v(x) \mid$ matrix 0 of index d, with all projections of rank r. $\left(S_{0}(V(x) / r=d\right.$.).

Lets be a cocligue in X and consider the submatrix P(S) of \& formed free the columns indexed by vertices in ρ Then the entries in each column of $P(S)$ are pairwrie orthegenal. Fur the since K_{m} is complete and S is a cocligue, projections
in different columns of $P(\rho)$ are orthogonal. Summing up, any two distinct projections in $P(S)$ are orthogonal. Hence their sum is a projection of rank $m \alpha(x) r$, and thus

$$
\begin{gathered}
m \alpha(X) r \leqslant d=r V(x) \\
\text { So } w_{q}(x)_{\alpha}(X) \leqslant|V(x)| .
\end{gathered}
$$

If $K_{n} \rightarrow x$, then $K_{n} \rightarrow x$ and se $w_{q}(x) \geqslant w(x)$. It follows that $\alpha_{p}(x) \geqslant \alpha(x)$.

We offer a second definition of a quantum cocligue.
We sag a quantum codipue of sizes in X is given by a $|V(x)| x s$ matrix $O=\left(p_{i j}\right)$ such that:
(a) for each vertex n in $X, \sum_{n \in U(X)} P_{n i}=I_{d}$.
(3) $P_{u i} P_{v j}=0$ if nev are equal or adjacent.

The homomorphic product

We are going to present a construction due to Neservi/s H ell. First we present a special case.

Lemma $\alpha\left(X a K_{n}\right)$ is the size of the largest subpioph of X
that is the union of m coclignes.
Prod (by picture).
Corollary $x(x)=m \Leftrightarrow \sigma\left(X X K_{m}\right)=\mid U(x)$. o

The homamorphic product $X \times Y$ is the graph with vertex set $V(x) \times V(y)$, with distinct vertices $(u, v) \times(x, y)$ adjacent if either $u=x$, or $u \sim x$ and $v x y$.

We have

$$
\begin{aligned}
& \text { have } \\
& A(x \propto y)=A\left(x \cdot K_{1}(x)\right. \\
& \left.\left(=A(x)+I+I E\left(K_{y}\right)+I J_{y}-I\right)+A(x) \otimes A(y)\right)
\end{aligned}
$$

The graph of a function $f: V(x) \rightarrow V(y)$ is $\{(x, f(x)): x \in V(x)\}$.

