$$
L 08 / 03
$$

Theorem $K_{m} \rightarrow \Omega^{b}(m) \rightarrow q X_{1}(m) \rightarrow \Omega(m)$

Theorem for any graph x

$$
x(x) \geqslant \xi^{b}(x) \geqslant x_{g}^{(n}(x) \geqslant \xi(x) .
$$

Let $\Phi(a)$ be the graph with the ± 1-vectors of length n as vertices, adjacent if they are orthogonal.

Then
(an) if n is odd, Φ (n) is empty
(b) If $n \equiv 2(\bmod 4)$, then $\mathbb{C}(n)$ is bipartite.
(o) if $4 / n$, then $w(x) \leqslant n$ - the maximal cliques are the Hadamard matrices (of ord on $n \times n$).
(tn d) $H^{\top} H=n I$
(d) $x_{q}^{(1)}(\Phi(n)) \leqslant \xi^{b}(\Phi(n)) \leqslant n$.
trust me
(e) $\alpha(\underline{\Phi}(n)) \leqslant \frac{2^{n}}{n} \quad($ rabia bound $)$

We ain $t \rightarrow$ prove the following:
Theorem if $4 / n$ and $n>8$, then $x(\underline{\square}(n))>n$.
From (e) above $x(\Phi(n)) \geqslant n$ and, if equality holds, $\alpha(\underline{\beta}(n))=\frac{2^{n}}{n}$ and n is a power of two.

If $n=2^{k}$ then

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)^{\otimes / h} \text { Sylvester matrix }
$$

is a Hadamard matrix; its columns form an n-clique in $\Phi(n)$.

Te prove the theorem we need some results on Cagley graphs. (Note that $\Phi(n)$ is a Cayley graph for $\mathbb{R}_{2}^{n} .1$
digne-escligne bounds
Leman If x is Cayley graph on 1 vertices, $\alpha(x) w(x) \leqslant n$.
Proof Suppose ρ is a cocligne in X and a, b are adjacent vertices. If $S^{-1} a \cap \rho^{-1} b \neq \varnothing$, then $g^{-1} a=h^{-1} b$ for some ρ, h in S.

Then $h g^{-1}=b a^{-1}$. As go $\in S$, we have h^{-1} ir not in the conneetrón set, as bu a we howe ba is in the connection set.

Therebere if S is a cocligne in x, the sebe S^{-1} c for c in C are palverise disjoint, and our lemme follows.

A Cagley graph is normal if its connection set is closed under conjugation, e.g., any Cayley graph for an abelian gronp.

Cerdlary If X is a normal Cayley graph and $\alpha(X) w(X)=n$, then $x(x)=w(x)$.

Proof Assume ρ is a cocligue \& C is C clique in X. The sets $S^{-1} \mathrm{c}$ for c in C are pairwise disjoint. We claim S^{-1} is a coclique. Let D be the esmection set. If $g, h \in \rho^{-1}$ and $g \sim h$ then $h g^{-1} \in D$. Now $g^{-1}\left(h j^{-1}\right) g=g^{-1} h$ is a conjugate of hs^{-1} and so gite and $\mathrm{h}_{\sim}^{-1} \mathrm{ag}^{-1}$.

But $5^{\prime}, \pi^{\prime} \in S$. Consequently if $\alpha(x) \omega(x)=n$, the sets $S^{-1} \mathrm{c}$ give a proper colouring of X with $I C 1=\omega(X)$ colours.

We have shown that $X(\underline{\Phi}(n))>n$ if n is net a power of two, and of $X(O)(n))=n$ then $\alpha(Q(n))=\frac{2^{n}}{n}$.

We finish our argument by appealing to a deep result of Frankel \& Rödl.

Theorem There is a positive real number ε such that $\alpha(\Phi(\mathrm{am})) \leq(2-\varepsilon)^{n}$.

Thus x (థ1 (Am) grows exponentially with m.

0 uaternions

The quabernions/t are the ψ-dimensional algebra oven \mathbb{R}, with basis $1,1, j, k$ sabisfying

$$
i^{2}=j^{2}=k^{2}=-1 ; \quad i j=k, j h=i, k i=j .
$$

These relations imply the $\dot{i}=-k, k j=-i, \quad i k=-j$.
The quaternions are a skew bield.
If $x=\left(x_{1}, x_{1}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ then we define

$$
q(x):=x_{b}+x_{1} i+x_{2} j+x_{3} k
$$

We define

$$
\left(x_{0}+x_{1} i+x_{2} j+x_{3} k\right)^{*}=x_{0}-x_{1} i-x_{2} j-x_{3} k
$$

This is an anti-automorphism of H. We refer to $2 x_{0}$ as the trace of a quaternion; a quaternion is pure if this is zero. We have

$$
g(x)^{*} q(x)=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}
$$

We call α^{*} the norm of the quaternion α.

If $a \in H$, we have a linear mapping

$$
\mu_{a}: x \mapsto a x
$$

Define $\mu_{0}=I_{4}$. Then

$$
\begin{aligned}
& \mu_{i}: \begin{array}{rrrrl}
1 & 0 & i & 0 & 0 \\
& i & -1 & 0 & 0 \\
j & 0 & 0 & 0 & k
\end{array} \quad \rightarrow\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]^{\top} \\
& \left(\begin{array}{cc}
a & 1 \\
-1 & 0
\end{array}\right)\binom{0}{-1}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

similarly

$$
\begin{aligned}
& \begin{array}{ccccc}
M_{j} i l & 0 & 0 & j & 0 \\
i & 0 & 0 & j & -k \\
j & -1 & 0 & 0 & p \\
k & 0 & i & 0 & 0
\end{array} \quad \rightarrow \quad\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]^{\top} \\
& M_{k} \quad \rightarrow \quad\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & c \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right]^{\top}
\end{aligned}
$$

Lemma

$$
\dot{\mu}_{x}=\left(\begin{array}{cccc}
x_{\theta} & x_{1} & x_{2} & x_{3} \\
-x_{1} & x_{0} & x_{3} & -x_{2} \\
-x_{2} & -x_{3} & x_{2} & x_{3} \\
-x_{3} & x_{2} & x_{1} & x_{0}
\end{array}\right)
$$

Looking at the diagonal entries of

$$
\left(\begin{array}{cccc}
x_{0} & x_{1} & x_{2} & x_{3} \\
-x_{1} & x_{0} & x_{3} & -x_{2} \\
-x_{2} & -x_{3} & x_{0} & x_{3} \\
-x_{3} & x_{2} & -x_{1} & x_{0}
\end{array}\right)\left(\begin{array}{cccc}
y_{0} & -y_{1} & -y_{2} & -y_{3} \\
y_{1} & y_{0} & -b_{3} & y_{2} \\
y_{2} & y_{3} & 30 & -y_{1} \\
y_{0} & -y_{1} & y_{1} & y_{0}
\end{array}\right)
$$

we see that $\left.\mu(x) \mu / y^{*}\right)$ has zero diagonal if \& only if \& only if $x^{\top} y=0$. AIs.

$$
\mu(x) \mu\left(x^{x}\right)=\left(x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+y_{3}^{\prime}\right) I_{4}
$$

and therefore if x is a unit vector in \mathbb{R}^{4}, then μ_{x} is a real orthogonal matrix.

If $\|x\|=\|y\|=1$, then $x^{r} y=0$ if \& only $\mu(x) \mu\left(y^{*}\right)$ is pure, equivalently $x \perp y$ if x s y are adjacent in $1(0,(4)$,

Let $\Omega_{\mathbb{R}}(n)$ dencte the unit vectors in \mathbb{R}^{n}.
Theren There is a homomaphism $\Omega_{\mathbb{R}}(4) \rightarrow \operatorname{CO}_{1}(4)$. Hence $x_{g}^{(1)}\left(\Omega_{R}(\psi)\right)=4$.

We use GiB to denote the orthogonality graph of the following 13 vectors:

$$
\left[\begin{array}{ccccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 1 & -1 & 1 & -1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 1 & 1 & -1 & -1 & 0 & 1 & -1 & 1
\end{array}\right]
$$

If we add a bottom row of zens, and a luth vector (acer) ${ }^{\top}$, we get his.

Facts
(a) $x\left(G_{13}\right)=4$ (compuber)
(b) $x\left(G_{14}\right)=5$ (cone)
(c) $x_{q}^{(1)}\left(G_{13}\right), x_{q}^{(1)}\left(G_{14}\right) \leqslant \psi$
in Pard $x_{9}^{(1)}\left(G_{3}\right)=4$
Mancinska \& Roberson
Oddibies of puantum alourings

Where does Gil come from? It is an Erdo's-Rényi graph (but not an Evolis-Reny; random graph).

To construct, choose a finite field IF of odd coder q.
The vertices of the graph are 1-dimensional subspaces of the 3-dimensional vector spare over F_{1} Two 1-dimensional subspaces spanned bo vectors $x \approx y$ are adjacent if $x^{\top} y=0$.

As just defined this gives ar (q+1)-regular graph on $\frac{q^{3}-1}{q^{-1}}=q^{2}+q+1$ vertices, but there are $g+1$ vertices with loops. We delete the loops. If $p=3$, we get G_{13}.

The tird"'s-Réngi graphs have no 4 -cycles and, given this, have many edges.

Bounds

We derive some beunds on quantum porameters We have the following bounds on clapsical parameters:
(a) If X is k-regular on n verfoices, $\alpha(X) \leqslant \frac{n}{1-\frac{h}{\tau}}$.
(b) If X is 1 -walk regnlar, $\omega(X) \leqslant 1-\frac{k}{l}$.
inerbia
(r) $\alpha(x) \leqslant \min \left\{n-n_{-}(x), n-n_{+}(x)\right\}$.
(d) For any $x, \quad x(x) \geqslant 1-\frac{\theta_{1}}{\theta_{\min }}$. Hof fmen bound

We prove (c), the inertia bound. Let A be a weighted adjacency matrix for $X-s e A_{i j}=0$ if $i j \in E(X)$ and A is Hermitian. Let $V(t)$ be the subspace of $\mathbb{R}^{n^{-N(A)}}$ spanned bo the eigenvectors of A with positive eigenvalues and let $V(-)$ be the span of the eigenvectors with negative eigenvalues Then $V(+) \cap V(-)=\underset{\sim}{0}$.

Suppose S is a coclique in X and define W to be the span of the vector r e_{n} for u in S.

$$
\begin{aligned}
& \text { Claim } \omega \cap V(t)=W \cap V(-)=Q \\
& \text { Corollary }|S| \leqslant \min \{n-\operatorname{dim}(V(t)), n-\operatorname{Aim}(V(-))\}
\end{aligned}
$$

Next, the chromatic number. Let π be a partition of $V(X)$ with c cells and let $P_{1} \ldots P_{c}$ be the diagonal Ol-mabrices such that $P_{i, n}=1$ if a only if the vertex as lies in the i-th cell of π. As $P_{i}^{2}=P_{i}$, we see that P_{i} is a projection. further $\sum_{i=1}^{i} P_{i}=I$
we also have
Lemma Let π be a partition of $V(X)$ with c cells. and with associated projections P_{1}, \ldots, P_{c}. Then the cells of π are cocliques if a only if

$$
\sum_{i=1}^{c} p_{i} A p_{i}=0 .
$$

Now let W be a flat unitary matrix of order $c \times c$ and define matrices $U_{1} \ldots, U_{c}$ by

$$
u_{i}:=\sum_{j=1}^{c} w_{i j} P_{j}
$$

Then $u_{1, \ldots}, u_{c}$ ave unitary (also diagonal, but that plays no role).

$$
\sum_{i=1}^{c} P_{i} \otimes P_{i}=\sum_{i=1}^{c} u_{i} \otimes u_{i}^{-1}
$$

Exercise

This implies the following Corollary $\sum_{i=1}^{c} P_{i} A P_{i}=\sum_{i=1}^{c} U_{i} A u_{i}^{i}$

This will give the Hoffman bound on $x(x)$ Theorem $x(x) \geq 1-\frac{\theta_{1}}{\theta_{\text {min }}}$.
Proof Assume the partition π determines a c-colouring. Then

$$
0=\sum_{i} P_{i} A P_{i}=\sum_{i} U_{i} A U_{i}^{-1}
$$

and therefore

$$
A=-\sum_{i=2}^{c} u_{1}^{-1} u_{i} A u_{i}^{-1} u_{1}
$$

Use m_{j} to denote $-U_{1}^{-1} U_{j} A U_{j}^{-1} U_{1}$. Then

$$
A=M_{2}+\cdots+M_{c}
$$

and accordingly

$$
\theta_{1}(A) \leqslant \theta_{1}\left(M_{2}\right)+\ldots+\theta_{c}\left(M_{c}\right)
$$

As $M_{2} \ldots, M_{c}$ are similar te A, we have $\theta_{1}\left(M_{j}\right)=-\theta_{\min }(A)$ and therefore

$$
\theta_{1}(A) \leqslant-\left((-1) \theta_{\min }(A),\right.
$$

which implies that $\rho \geqslant 1-\frac{\theta_{1}(A)}{\theta_{\min }(A)}$.

