LOIOO

Gquitable partitions

A partition π of $U(x)$ is equitable if:
Cal each cell of π induces a regular graph,
(b) the edges joining one cell to another form a biregular bipartite graph.
(We will come to refer to this as "equitable relative to A".)
One class of examples is provided by the orbit partitions al a group of automorphisms of X.

For ancther:

$$
\pi=\{\{1,2,4,5,7,8\} \quad\{3,6\}\}
$$

And one more, If $a \in U(x)$, we can partition the vertices of x by their distance from a. We call this the distance parbitrin relative to a Lemma. If X is a verbex in a strongly regular graph, the distance partition relative to a is equitable.

Proof. Exercise.

$$
\pi=\{\{1\},\{2,5,6\},\{3478910\}\}
$$

$$
M=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
c & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Theorem Let X be a graph on 1 vertices and let π be a partition of $V(X)$ with characteristic matrix M. The following are equivalent:
(a) π is equitable.
(b) There is a matrix B such that $A M=M B$.
cos col (M) is A-invariant.
(d) A commutes with the projection $M\left(M^{\top} M\right)^{\top} M^{\top}$.

Proof Assume $\pi=\left\{C_{0}, \mathcal{L}_{11}, C_{d}\right\}$ and let M be the characteristic matrix of π. Then $\left(A\left(M e_{j}\right)\right)_{i}$ is the number of neighbours of vertex i in C_{j}. We see that π is equitable if os only if $\left(A\left(M_{e}\right)\right)$ is determined by j and the cell that contains i.

So (a) a (b) are equivalent. The equivalence of (b) and (a) is an exercise in linear algebra.
$\alpha) \Rightarrow$ Finally $M^{\prime}\left(m^{\top} M\right)^{-1}\left(n^{\top}\right.$ is symmetric,

$$
M\left(M^{\top} M\right)^{-1} M^{\top} M\left(M^{\top} M\right)^{-1} M^{\top}=M\left(M^{\top} M\right)^{-1} M^{\top}
$$

and thus $M\left(M^{\top} M\right)^{-1} M$ is a projection into col (M).
As $M\left(M^{\top} M\right)^{-1} M^{\top}$ \& $\left(M^{\top} M\right)^{-1} M^{\top} M=I_{|\pi|}$ have the same non-pero eigenvalues with the same multiplicities $r k\left(M\left(M^{\top} M\right)^{-1} M^{\top}\right)=1 \pi 1$ and therefore $M\left(M^{\top} M\right)^{-1} M$ represents arblogenal projection onto col (M)

Now if P is a projection and $A P=P A$, then $\operatorname{col}(P)$ is Boinvariant. So $(d) \Rightarrow(c)$.

$$
\text { Sot } \Delta=M^{\top} M \text {, then } A M \Delta^{-\frac{1}{2}}=M B \Delta^{-1 / 2}=M \Delta^{-4}\left(\Delta^{4} B \Delta^{-\frac{1}{4}}\right) \text {, }
$$

therefore $A^{12} B \Delta^{-k}$ is symmetric. Also

$$
A M \Delta^{-1} M^{\top}=A M \Delta^{-\zeta}\left(M \Delta^{-1}\right)^{\top}=M B \Delta^{-1} M^{\top}=M \Delta^{-\zeta} \cdot \Delta^{\zeta} B \Delta^{-\zeta} \Delta^{-\frac{1}{2}} M^{\top}
$$

is symmetric \& therefore $A \& M \Delta^{-1} M^{\top}$ commute.

If A is a matrix algebra, we say π ir equitable relative to A if col (M) is A-invariant.

Homomophisns

Same useful homomasohisms:

1) $\Phi: X \rightarrow K_{m}: m$-colouring
2) $\varphi: x \rightarrow k_{m, k}$: min value of m / k is the fractional chromatic number, x_{f} Ynesergraph
3) Ω : unit sphere $x \sim y \Leftrightarrow x_{y}^{\top}=0$
4) Ω unit sphere $x \sim y \Leftrightarrow\langle x, y\rangle \leq \alpha \quad(-1<0 \leq 0) \quad x_{\text {ven }}$ or $\quad x-y \Leftrightarrow\langle x, y\rangle=a$

$$
x_{s r}
$$

s) $V(y)=S_{y m}(d), \alpha \sim \beta \Leftrightarrow \beta \alpha^{-1}$ has no fixed points Hams info y ?

Quantum homomarphisms

First, we want represent homomorphisms $X \rightarrow Y$ by matrices. A homomapphivm $f: X \rightarrow Y$ is a function from $V(X)$ into $V(Y)$ The sets $\{v \in V(x): \varphi(v)=y\}$ is the fibre of f at y in V(Y). (It may be empty.) The non-empty fibres form a partition of $V(X)$, we denote it lay π_{f}. Since f is a graph homomorphism induces a cocligue in X.

The charaeteristir matrix of π_{p} deternines f. Il is a Ol-mabrix with each row summing to 1, but not every such matrix comes from a homomorphism.

Lemma Assume $f: x \rightarrow Y$ is a map from $v(X)$ to $v(Y)$. Let M be the characteristic matrix of π_{f}. Then f is a homomorphism if \& only if the following hold:
(a) $M_{\sim}^{1}=1$.
(b) The support of a column of M is a cocligue in X.
(c) If i \tilde{x}; and $k_{y} \tilde{l} l$, then $M_{i k} M_{j l}=0 .[]$ so $M_{i k} M_{j k}=0$ too

Lemma if $f: Y \rightarrow X$ and $g: Z \rightarrow Y$ are homomeiphisins and M_{f}, M_{g} are the characteristic matrices of $\pi_{p} \& \pi_{g}$ respeeturely, then $M_{g} M_{f}$ is the characteristic matrix of the homomorphism fog: $Z \rightarrow X$.

A quantum hamornorphism from X to Y is a matrix P with rows indexed by $V(X)$, columns indexed by $V(Y)$, and entries $d \times d$ projections $P_{i j}$ such that
(a) $\sum_{j} P_{i j}=I_{d}$.
(b) If i \tilde{x}; and $k \tilde{y} l$, then $P_{i k} P_{j l}=0$.

Nate entries in the same row are orthogonal projections We call d the index of the quantum homomorphism.

A quantum homomorphism of index one is
a classical homomorphism.

Measurements on a graph

There is an alternative definition of quantum homomorphism which is of ten useful.

First, a projerbive measurement is a sequence of projections $P_{1, \ldots, P_{d}}$ such that $\sum_{i} P_{i}=I$. If the stake of the system is given by a density D, the result of the above measurement is an index i in $\{1, \ldots, d\}$ with probability $\left\langle D, p_{i}\right\rangle$.

We nate an important property of projective moasnvements.
Lemma if $P_{1}, \ldots P_{m}$ are projections and $\Sigma^{\top} P_{i}= \pm$
then $P_{i} P_{j}=0$ when $i \neq j$.
Proof We have

$$
I=I^{2}=\sum_{i} p_{i} \sum_{v} p_{j}=\sum_{i}^{\top} p_{i}+\sum_{i \neq j} p_{i} p_{j}=I+\sum_{i \neq j} p_{i} p_{j}
$$

Hence $\sum_{i \neq 1} P_{i} P_{i}=0$ and vo $\sum_{i \neq j} t_{i}\left(P_{i} P_{j}\right)=0$. As $P_{i}, \rho_{j} \frac{1}{1} 0$

$$
\operatorname{Gr}\left(p_{i} p_{j}\right)=c \Rightarrow P_{i} p_{j}=0 .
$$

Remark: If $P, Q \xi 0$, then $P=C C^{*}, Q=D D^{*}$

$$
\operatorname{tr}(P Q)=\operatorname{tr}\left(C C^{*} D D^{x}\right)=\operatorname{tr}\left(D^{*}\left(C^{ \pm} D\right)=\left(C^{*} D, C^{*} D\right)\right.
$$

and so if $\operatorname{br}(P Q)=0$, then $C^{*} D=0$ and

$$
P Q=C e^{*} D D^{*}=0 .
$$

A measurement on a graph Y is a projectue measurement ρ_{1}, \ldots, P_{m} where $V(y)=\{1, \ldots, m\}$. So it is indexed by $V(Y)$. Each row of a quantum hamonarphion from x to Y is a measurement indexed by $V(y)$. We say two measurements $\left(\rho_{i}\right),\left(\varphi_{i}\right)$ indexed by y are compatible if the matrix $\left[\begin{array}{lll}P_{1} & P_{m} \\ Q_{1} & \cdots & \theta_{m}\end{array}\right]$ is a quantum homomorphism from K_{2} be y

Equisatently, two measurements are compatible if $P_{i} Q_{j}=0$ when ing.

We define the measurement graph of Y to be the graph with the measurements on Y as vertices, with two vertices adjacent if the corresponding measurements are empatible. If the projections are $d x d$, we denote this graph by $M(Y, d)$.

Theorem x Is y if \& only if $x \rightarrow M(y, d)$ for some d, τ

