$$
216 / 02
$$

The mixing matrix of a wall is $M(t)=U(t) \cdot l(f t) \&$

$$
U(t) \cdot U(t)=\sum_{v, s} e^{i t\left(\theta_{r}-\theta_{s}\right)} E_{r} \circ t_{s}
$$

and consequently

$$
\hat{M}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} M \psi t d t=\sum_{r} E_{r} 0 E_{r}
$$

\hat{m} is the
average mixing matrix
Corollary \hat{M} is a rational matrix
matrix of inner products
Theorem \hat{M} is the Gram matrix of the average states \hat{J}_{a} (for a in $V(x)$).

Proof.

$$
\begin{aligned}
\left\langle\hat{D}_{a}, \hat{D}_{b}\right\rangle & =\operatorname{br}\left(\sum_{r} \epsilon_{r} D_{a} \epsilon_{r} \sum_{r} E_{s} D_{b} \epsilon_{s}\right) \\
& =\operatorname{tr}\left(\sum_{r} \epsilon_{r} D_{a} \epsilon_{r} D_{b} \epsilon_{r}\right) \\
& =r\left(\sum_{r} \epsilon_{r} e_{a} e_{a}^{\top} \epsilon_{r} e_{b} \rho_{b}^{T} E_{2}\right) \\
& =\sum_{r}\left(E_{r}\right)_{a b}\left(E_{r}\right)_{b a}
\end{aligned}
$$

Since $\epsilon_{r}=\epsilon_{r}^{r}$, the last sum equals $\sum_{r}\left(E_{r}-E_{r}\right)_{a b}=\hat{M}_{a b}$.

Theorem Vertices ad b in X are strongly cospectral if a only if $e_{a}^{\top} \hat{M}=e_{b}^{T} \hat{M}$.

Proof If as b strongly cuspectral, $\hat{0}_{a}=\hat{0}_{b}$ and the claim follows from the previous theorem,

On the other hand, if $\left(e_{a}-e_{b}\right)^{r} \hat{H}=0$, then

$$
0=\left(e_{a}-e_{b}\right)^{\top} \hat{M}\left(e_{a}-e_{b}\right)=\sum_{b}\left(e_{a}-e_{b}\right)^{\top} E_{l}^{a}\left(e_{a}-e_{b}\right)
$$

and, since $E_{r}^{02} \geqslant 0$, this implies that $\left(e_{a}-\varphi_{b}\right)^{T} E_{l}^{C l}\left(e_{a}-\varphi_{b}\right)=0$.
Again, since $\xi_{2}^{0} \geqslant 0$, we have $\left(e_{a}-e_{b}\right)^{T} \epsilon_{r}^{o_{2}}=0$. Therefore,
for all r,

$$
\left(\left(\epsilon_{r}\right)_{a a}\right)^{2}=\left(\left(\epsilon_{r}\right)_{b a}\right)^{2}=\left(\left(\epsilon_{r}\right)_{b b}\right)^{T} \quad\binom{(s, r)(6) y}{(y, y) c_{b, b y}}
$$

Since $\left(E_{r}\right)_{a b}=\left\langle E_{r} e_{a}, \epsilon_{,} e_{b}\right\rangle$, by Cauchy- $\rho_{\text {chwarz }}\left(\epsilon_{r}\right) e_{a}= \pm\left(\epsilon_{r}\right) e_{b}$.
see notes
If can be shewn that if $\operatorname{rt}\left(\hat{B}_{x}\right)=1$, then $X=k_{1}$ or k_{2}.
It is an open question whether there are infinitely many graphs x such that $v k\left(\hat{\boldsymbol{M}}_{x}\right)=2$.

For a discrete quantum walle we howe a state space and an initial state D. Given a unitary matrix U, the sequence of states

$$
D, U D U^{-1}, U^{2} ט U^{-2}, \cdots
$$

forms a discrete walk. As for continuous walks, we measure using a POVM P,.... P ; the probability we observe the i-th outcome at bile k is $\left\langle u^{t} \Delta u^{-k}, P_{i}\right\rangle$.

Difficulty Unitary matrices are expensive to implement. The idea is to express U as a product of simple operations. in general. For us. these simpler operations are reflections.

Reflections on projections

A reflection on a real inner product space U is an endomorphism L that fixes each vector in a subspace U_{0} of U, and acts as multiplication by -1 on the orthegenal complement U_{1} to U. We see that $L^{2}=I$.

Se the simplest examples are bare diagonal matrices with diagonal entries ± 2.

Any reflection is orthogonal.

Although we will not need it, we define a reflection on a complex vector space U bo be an endomorphism that fires a subspace U_{0} and acts as multiplication by an orth root of unity on its orthogonal complement for same m. We present a instruction.

Asinine $a \in U$ and $\|a\|=1$. Define $\tau_{a}: U \rightarrow U$ bs

$$
\tau_{a, \theta}(u)=u-(1-\theta)\langle a, u\rangle a, \quad \theta^{k}=1
$$

Sinea τ_{a} is the sum of two linear maps, it is linear.
Clearly τ_{a} fixes a^{\perp}. Further

$$
\tau_{a}(a)=a-(1-\theta)\langle a, a\rangle a=\theta a .
$$

We say that τ_{a} is reflection in a hyperplane. Over $\mathbb{R}, \quad \Gamma_{1}=u-2(a, u) a, \quad\|a\|=1$.

In the real case, the only useful choice for α is -1 , and then $\left(\tau_{a-1}\right)^{2}=1$, and so it is a real reflection. If P is an orthogonal projection on U, then

$$
(2 P-I)^{2}=4 P-4 P+I=I
$$

and $2 P-I$ is a real reflection which fixes in (P) and acts as $-I$ or $\operatorname{ker}(A)$ (the orthogonal complement to $\ln (P)$).

If $R_{\text {is a reflection, }} \frac{1}{2}(R+I)$ is a projection.

As $\frac{1}{n} J$ is a projection. $\frac{2}{n} J-I$ is a reflection
Ghat fixes $\frac{1}{2}$ and acts as $-I$ on η_{\sim}^{\perp}. We will refer te $\frac{2}{n} J-I$ as the Grover cain.

Mort of our reflections will be constructed from partitions of sets, in the way we describe now. Let V be a (finite set). A partition π of V is a set, each element of which is a subset such that. \cdots

These subsets may be called cells and $1 \pi 1$ is the number of cells in π. The characteristic matrix M of π is the $\mid V I x I \pi I$ matrix with the characteristic vectors
of the cells of π as its columns. So M is a Otmabrix and $M_{2}=1$. Further, $M^{\top} N$ is diagonal with $\left(M_{1}^{\top}\right)_{k, k}$ equal to the size of the both cell of π. Note that the columns of M are pairwise orthogonal. If we scale the columns so they each have norm 1, we have the normalized characteristic matrix if M is the normalized characteristic matrix for π, then $M^{\top} M=I_{1 \pi /}$ it follows that

$$
\left(M M^{T}\right)^{2}=M M^{\top} M M^{\top}=M \cdot I_{\pi 1} M^{+}=M M^{\top}
$$

and $M M^{\top}$ is a projection. If $F(\pi)$ dendes the function on V that are constant on the colts of π, then $M M^{\top}$ is orthogonal projection onto $F(\pi)$.

We offer too examples.
C) Let X be a bipartite graph with bipartition (L, R). We define two partitions of $\epsilon(x)$, for the first π_{L}, the cells are the edger that contain a given vertex from L; fer the second partition π_{n} the cells are the edger that contain a given vertex from R We note that $\pi_{R} \wedge \pi_{L}$ is the discrete partition call cells are singletens).

The celts of $\pi_{V} v \pi_{R}$ are the edges in a converted component of X. In practice X is connected 1 $\pi_{R} v \pi_{L}$ is the partition with just one cell.

The discrete walk determined by this pair of partitionis known as a bipartite walk.
(2) For the second example, we enstruet partitions of the ares of a graph X. (A_{n} are is an crodared pair of adjacent vertices.) The cells of the first partition ave the pairs $\{(a, b),(b, a): a \sim b\}$ - so earth cell is a pair of opposing arcs. The cells of the second partition are the sets $\{(a, u): u \sim a\}$ - the arcs pointing away from a vertex. The meet of these tue partitions is discrete:
if X is connected, the join has just one cell.

The associated discrete walle is the ancreversal walk. It is customary to assume X is connected and regular.

Note that there are many classes of discrete walls that do not arise fem pairs of partitions.

The arc reversal walk

Assume X is k-regular on n vertices, so $|\operatorname{arcs}(x)|=n k$.
The state space for the avc-reversal walk is the space of complex functions on the arcs of X, ie., if is $\mathbb{C}^{n k} \mathbb{C}^{n} \theta r^{k}$

For our first reflection, let R be the permutation matrix on arcs that maps the arc ab to ba. Then $R=R^{r} \& R^{2}= \pm$.

For a second reflection, let G be a kxk unitary matrix such that $G^{2}=I$. In most cases. $G=\frac{2}{k} J-I$, and we as noted earlier call this the Gicover com. Then

$$
C=I_{n} B G
$$

is a reflection and the transition matrix $U=R C$.
Our problem is to determine the eigenvalue r and eigenvectors of U.

