$$
\mathrm{LO} 2 / 02
$$

Contents

1) Cubelike graphs
2) Vertex-tronsitive graphs
3) Perron-Fraberins
4) size of eigenvalue support (ot a pure state)

Bubelike graphs

A cubelike graph is a Cayley graph for \mathbb{Z}_{2}^{d}.
If $b=\left\{e_{1} \ldots, e_{d}\right\}$, then $X\left(\mathbb{R}_{2}^{d}, b\right)$ is the d - cube. We view \mathbb{Z}_{2}^{d} as a vector space. If $w \in \mathbb{Z}_{2}^{d}$, let $A_{w}: \mathbb{Z}_{2}^{d} \rightarrow Q_{2}^{d}$ be the linear map that maps u to $u+w$. We note that $A_{\omega}^{2}=I$, in fact A_{ω} is a permutation with all orbits of length two. Matrices A_{v} \& A_{w} commute $-A_{u} A_{v}=A_{u+v}$.

We can also regard A_{w} as the adjacency matrix of a graph formed from 2^{d-1} varkex-digoint copies of K_{2}.

Lemma $A\left(x\left(\eta_{2}^{d}, b\right)\right)=\sum_{w \in b} A_{w}$.

Lemma If X is cubclike, its eigenvalues are integers.

Proof
(a) the eigenvalues of A_{w} are ± 1, with equal multiplicity.
(b) The matrices $\left\{A_{w}: w\{b\}\right.$ are normal \& commute, so \mathbb{Q}_{2}^{d} has a basis of eigenvectors. If z is one of these eigenvectors eigenvalue of A_{N}, integer

$$
A(x)_{z}=\sum_{w \in b} A_{w z}=\sum_{w} \lambda_{w I}
$$

If the eigenvalues of a graph are integers, there is an integer m such that $U(m n)=I$. (if $U(t)=\sum e^{i+\theta_{r}} E_{r}$, choose m so $m \theta_{r}$ is even for all r.) we say that X is periodic if there is a time such that $U(t)=\gamma$ for some γ.

Notes: (a) $|\gamma|=1$, because γI is unibary. (b) $r^{n}=\operatorname{deb}(\partial I)$

$$
=\operatorname{det}(\exp (i t A))=\exp (\operatorname{tr}(i b A))=\exp (0)=1 \rightarrow x \text { is an }
$$

n-th root of unjity. (c) P_{3} is periodie, but its eigenvalnes are not integers.

Theorem Let $X=X\left(\mathbb{Z}_{2}^{d}, b\right)$. If $\sum_{u \in b} u=c \neq 0$,
X admits perfect state transfer from v to $v+c$
for all v in \mathbb{Z}_{l}^{d}.
at lime $\pi / 2$
Proof. We have $A=\sum_{w \in f} A_{w}$.
(a) If $B^{2}=I$ then $\exp (i t B)=\cos (t) I+i \sin (t) B$

Just use the series expansion.
(c) $U\left(\frac{\pi}{2}\right)=i^{181} A_{c}$

$$
\begin{aligned}
U(t)=\exp \left(i t \sum_{\omega \in b}^{T} A_{\omega}\right) & =\prod_{\omega \in b} \exp \left(i t A_{\omega}\right) \\
& =\prod_{\omega \in \ell}\left(\cos (t) I+i \sin (t) A_{\omega}\right)
\end{aligned}
$$

and hence:

$$
U\left(\frac{\pi}{2}\right)=i^{|g|} \prod_{\omega \in b} A_{\omega}=i^{|8|} A_{c}
$$

Verbex-transitive graphs

Assume X is verbex-transitive on a vertices and admits pst from vertex 1 to vertex 2
phase at time τ. Then $U(\tau) e_{1} \tau^{\tau} U(-\tau)=\rho_{2} e_{2}^{\tau}$, implying that factor $U(r) e_{1}=\gamma e_{2}$, where is complex, norm one.

So $\overline{U(\tau)} e_{1}=\bar{r} e \& U(\tau) e_{2}=r e_{1}$. If $P \in \operatorname{Aut}(X)$, then $P A=A P$ and so $P U(t)=U(t) P \quad \forall t$. Hence $\gamma P e_{2}=U\left(\tau / P_{e_{1}}\right.$.

It follows (we may assume) that $U(\tau)=\gamma\left[\begin{array}{cc}a 1 & \\ 20 & \\ & \\ & 0 \\ & 10\end{array}\right]$
Further $\gamma^{-1} U(\tau) \in \operatorname{Aub}(x)$. in last it lies in the centre of $\operatorname{Ant}(x)$. Why?

Thus ne pst on Petersen (Mut $\left.\left(P_{e} t_{e}\right) \cong S_{y m} / s\right)$).

Penon-Frobenius

The Perran-frobeniws theorem(s) provide important information about the largest eigenvalue of a non-negatove, square, real matrix. Since our main concerns lie with symmetric matrices, we work ont parker of the theorem in this case.

If M is real \& square, define

$$
Q_{M}(x):=\frac{x^{5} M_{x}}{x^{\top} x} \quad(x \neq 0) ;
$$

we call it the Rayleigh quotient of M.

$$
\text { If } M_{x}=\theta x \text {, then } \mathbb{R}_{\mu}(x)=\theta \text {. }
$$

Theorem Let M be a symmetric real matrix. Then

$$
\max _{\|x\|=1}\left\{Q_{M}(x)\right\}=\max \left\{Q_{M}(x): x \neq 0\right\}
$$

$$
\theta_{r}: E_{r}{ }^{x} \neq 0
$$

$$
p
$$

is realized by an eigenvector z of M. If M is nonnegative,
then z ir non-negative. If the underling graph of M is connected, all entries of z are pasibue and the eigenvalue belonging to z is simple.

Proof
(existence of maximum) $\mathcal{O}_{M}(x)$ is a continuous
function on the sphere $\varepsilon x:\|x\|=1\}$, hence it attains its maximum.
(maximum \rightarrow eigenvector) Assume the unit vector z maximizes A_{M}. Let h be a'small' vector erthegenal to z. So $\|z+h\|^{2}=\langle 3,3\rangle+2\langle h, \xi\rangle+\langle h, h\rangle \approx\langle 3,3\rangle \quad$ up to linear

Then

$$
\begin{aligned}
R_{M}(z+h) & =(z+h)^{\top} M(z+h)=h^{\top} M_{z} \\
& =z^{T} M_{z}+h^{\top} M_{z}+z^{\top} M h+h^{W} h h
\end{aligned}
$$

and if z maximizes Q_{y}, then $h^{\top} M_{z}=0$. So

$$
h^{\top} z=0 \text { implies } h^{\top} M_{z}=0 \text {, equivalently } h \in \mathcal{Z}^{L}
$$

implies $h \in\left(M_{3}\right)^{-1}$ and thus $z^{-L} G(M g)^{+}$and hence $M_{z} \in\langle 3\rangle$, i.e.. z is an eigenvector.
$(M \geqslant 0 \Rightarrow z \geq 0)$ If N is a matrix, then $|N|$ is the matrix

$$
|N|_{i j}=\left|N_{i, j}\right| \quad \forall i j
$$

Since $M \geqslant 0$,

$$
\left|x^{r} M x\right| \leqslant|x|^{\perp}|M||x|=|x|^{L} M|x|
$$

Note that $\|\|x\|\|=\|s\|$. It follows that if the unit vector z maximizes Q_{M}, we may assume $z \geqslant 0$.
$(14 \geqslant 0$, graph of M connected $\Rightarrow 3>0)$

$$
\begin{aligned}
& f \\
& (\Delta f)(n)=\sum_{v \sim n}^{v} f(r)
\end{aligned}
$$

If $M_{z}=\lambda_{z}$, then

$$
\lambda_{z_{k}}=\sum_{l} M_{k, l} \delta_{l} .
$$

Hence if $z>0$ and $M_{h, l}>\theta$, we see that $z_{k}>0$.
Now induct.
graph connected
(eigenvalue of maximizer is simple)
Assump z maximizes Q_{M} and $M_{z}=t_{z}$. If A is not simple, there is an eigenvector y with eigenvalue λ such that $y^{\top} z=0$. Same entry of y must be negative and so there is a constant c such z toy is nen-negative with e zens entry. As $M(z+(y)=\sqrt{2}(z+(y)$, the proof of the previous claim produces a contradiction,

The spectral radius of a square matrix is the maximum absolute value of an eigenvalue. For a symmetric real matrix, this is just the largest eigenvalue (which we of ten denote by ρ) For a connected graph, ρ is simple and we may assume the associated eigenvector is positive. We call thar the Perron vector. ($\left.A_{3}=\lambda_{3} \Rightarrow A(-z)=\lambda / z\right)$)

Sige of the eigenvalue suppont

We know that size of the eigenvalue support of a pure state $e_{a} e_{a}{ }^{\top}$ is $\left|\left\{\vartheta_{r}: \epsilon_{r} e_{a} \neq 0\right\}\right|$. The eigenvalue support always contains ρ, so the size is at least one. If it were exactly one, then size $e_{A}=\sum_{r} E_{1} e_{a}$, we would have to conclude that e_{a} was the Perron vector $($ and $|N(x)|=1)$.

There is a useful lower bound on the sige of the eigenvalue support. This generalizes one of the first results yon meed in spectral theory, which we present now.

Lemma If X is a graph with diameter, then $d t 1 \leqslant \$$ distinct eigenvalues of X.

Proof The adjacency algebra of X is the ring $\mathbb{R}[A]$ of all polynomials in A. The spectral idempotent s form an orthogonal basis for this algebra, and therefore $\operatorname{dim} \mathbb{R}[A]=\#$ distich eigenvalue s.

On tie other side, if $d=\operatorname{diam}(x)$ then the polynomials $(A+I)^{0}, A+I, \ldots(A+7)^{d}$ are linearly independent.

