$$
\angle 26101
$$

One-sum formula
$Z:$

$$
\begin{aligned}
& C_{a}^{(1)}(z, t)=C_{a}^{(n)}(x, t)+C_{a}^{(1)}(y, t) \\
& 1-\frac{1}{C_{a}(z)}=1-\frac{1}{C_{a}(x)}+1-\frac{1}{C_{a}(y)} \\
& \int_{a}(\xi, 5)=\frac{(\phi(z a)}{\left.\phi()^{2}\right)} \\
& 1-\frac{e(z)}{(\phi(z)(a)}=1-\frac{\phi(x)}{1 \phi\left(x_{a}\right)}+1-\frac{\phi(y)}{f(\bar{\phi}(x a)} \quad \text { Schwenk } \\
& \phi(z)=\varnothing(x) \phi(y, a)+\phi(x, a) \phi(y)-t \phi(x, a) \phi(y, a)
\end{aligned}
$$

Cospectral vertiees

Vertices $a \& b$ in X are cospectral if X-a and $X, 6$ are cospectral. $E . g$.
(a) if there ir g in $\operatorname{Aub}(x)$ sib $a g=b$ then $x-a \cong x, b$. We say a \& 6 are similar.
(b) $X, a \approx X-b$, but a a b are not similar.
we say they are psendosimilar.
(c)

xo
In Xio, vertices 2\& 4 are pseudosimilar.
(d)

Schwenk's tree

Si7 $t\left(P_{4} P_{3}-P_{3} P_{2}\right)=t\left(8^{2}-26\right)\left(t^{4} 46^{2}+2\right)$
$514\left(t^{3}-2 t\right)\left(t^{5}-4 t^{3}+2 t\right)$
(e) lny two vertices in a strongly regular greph.

Thearem Assume $a, b \in V(x)$. The following are equivalent:
(a) $a+1 b$ are aspectral
(b) X,a \& Xיb are cospectral
(c) $\left(A^{k}\right)_{a . a}=\left(A^{k}\right)_{b b} \quad \forall k \geq 0$
(d) $\left(E_{r}\right)_{a a}=\left(E_{r}\right)_{b b}$ for each idempotent ϵ_{r}
(e) $\left(e_{a}-e_{b}\right)^{\top} A^{k}\left(e_{a}+\varphi_{b}\right)=0 \quad \forall h \geqslant 0$
(f There is a symmetric matrix Q s.t. $Q^{2}=I \quad Q A=A Q \& Q e_{a}=e_{b}$, \quad.

Supper a, b are cospectral vertices in X.
Then so are these two graphs.

We san X is walk-regular if A^{k} has constant diagonal for all $k \geqslant 0$.

Remarler
(a) Walk-regular graphs are regnlar.
(b) If X is walle-regriar, so is \bar{X}.
(c) Verdex-transitive graphs are well-regilau
(d) If X a Y are walk-regular, se aie $X \times y \& x \circ y$.
X is walk-regnlar if $I \circ E_{r}=c_{1} I$ for all r.
X is 1 -walk-regular if it is walle-regnlar a $A \circ E_{r}=d_{r} A \forall r$.
Theorem Assume X is I-walk regular with valency k and least eigenvalue τ. Then the maximum size $w(X)$ a clique in X satisfies $w(X) \leqslant 1-\frac{k}{\tau}$.

Proof First, $\operatorname{tr}\left(\epsilon_{r}\right)=m_{r}$ and so $\left(\epsilon_{r}\right)_{a, a}=\frac{m_{r}}{n}$
Second $A E_{r}=g_{r} E_{r}$ and so

$$
v_{r} m_{\tau}=t_{0}\left(A \epsilon_{r}\right)=\operatorname{sum}\left(A_{0} E_{r}\right)=n k\left(\epsilon_{r}\right)_{a b} \quad(a \sim b)
$$

and $\left(E_{r}\right)_{a b}=\frac{m_{1} \theta_{r}}{n k}$. Hence the diagonal entries of $\frac{n}{m_{r}} \epsilon_{r}$ are 1 and the entries $\left(E_{r}\right)_{a, b}(a \sim b)$ are $\frac{\theta_{r}}{t}$, Now $E_{r} \xi 0$ and therefore any principal submatrix of E_{r} ir positive semidebinite.

Assume C is a clique. The submatrix of E_{r} with rows R columns indexed by vertices in C has the form

$$
\underbrace{\left[\begin{array}{ccc}
1 & \theta_{r} \\
\theta_{1 / k} & \ddots & \ddots
\end{array}\right]}_{|c|}\}{ }^{|c|}
$$

Since bis is pad, the new sums are nen-negative.

So $1+(c-1) \frac{\tau}{k} \geqslant 0 \Rightarrow(c-1) \frac{\tau}{h} \geqslant-1$

$$
\begin{aligned}
& \Rightarrow \quad\left(-1 \leqslant(-1) \frac{k}{\tau}\right. \\
& \Rightarrow c \leqslant 1-\frac{k}{\tau} .
\end{aligned}
$$

Remark (Moffman) $x(X) \geqslant 1-\frac{k}{\tau}$.

Quantum walks

No-plon theorem
$D \longmapsto D B D \quad$ cloning
$\alpha D \longmapsto \alpha^{2}$ P日D not linen!, oops

Ingredients:
(a) stabe space \mathbb{P}^{n}
(b) stakes: $D \geq 0, \operatorname{tr}(D)=1 \quad P_{r}=P_{r} P_{r}^{\top}$
(c) measwement - DoI
antione is a vertex a
prech. of a is $D_{a, 9}$
(d) transitions - unitary operabors

$$
\left\lvert\, \begin{array}{ll}
P_{1, \ldots}, P_{m} & \left\lceil P_{1}, a \mathfrak{l}, P_{i} \geqslant 0\right. \\
\left\langle P_{1}, D\right\rangle & \text { PoV河 }
\end{array}\right.
$$

States
a) pore states: 1-dimensional subspaces, spanned by unit vectors 8
b) in all cases: densify matrices; pure states are rank-1 density matrices $3 s^{*}$.
(ea e_{6}^{\top} is a vertex state
|a) (al bracket notation

Transition operators
(a) discrete walk: unitary $U, \Delta \rightarrow U^{k} D u^{-k}$ $k=0$, ハ..
(b) continuous walk: $U=\exp (i t-1)$, H hermitian

Special cases: $H=$

$$
\bar{n}=n^{-1}
$$

(i) $A=A(x)$
(ii) $A \pm A$
(iii) is, s real skew symmetric Laplacian $u(t)=\exp (-t S)$ signless Laplacian

Example: (continuous walk)
initial state: pure, spanned by z, density 88^{*}
stake at time $t: \quad U(t) z z^{*} U(U-t)$
So the new state is spanned log the vector $U(b)_{z}$; since $U(t)$ is unitary this veeter is a unit vector.

If we measure with respect to the standard basis, the outcome is a with probability

$$
\begin{aligned}
& \left\langle U(t) j z^{*} U(-t), e_{a} e_{a}^{\top}\right\rangle \\
& =\operatorname{tr}\left(U(t) z z^{x} U(-t) e_{a} e_{a}^{T}\right) \\
& =e_{a}^{T} U(t) g \cdot z^{*} U(-t) e_{a} \\
& =\left|e_{a}^{\top} U(t) z\right|^{l}
\end{aligned}
$$

If our initial states are vertex states, and we start at ep, the probability we observe a ir

$$
\left|e_{a}^{T} u(t) e_{b}\right|^{2}=\left|u(t)_{a b}\right|^{2}=U(t) \cdot \overline{u(t)}
$$

and $\bar{U}(A)=U(H)$.

The mixing matrix of a walk is

$$
M(t)=U(t) \cdot \overline{U(t)}=U(t) \cdot U(t)
$$

It is row a column stochastic. Its ab-entry it the probability that a walk starting at 6 is "on" a at tine t.
e.g. $\quad X_{2} \quad H=A(x)=A$
initial stote $e_{1}=\binom{1}{a}, e_{1}=\binom{0}{1}$

$$
\begin{aligned}
U(t)=\exp (i t A) & =\sum_{m} \frac{(i+t)^{m}}{m_{1}}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{m} \\
& =\cos (t)\binom{1}{0}+i \sin (t)\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \\
& =\left(\begin{array}{cc}
c & i \\
i s & c
\end{array}\right)
\end{aligned}
$$

