L/2/01

Conbents

1. Measurements
2. Funrtions a vectors

Measurements

A measurement on a dud density matrix D is given by a sequence $P_{1, \ldots,} P_{h}$ of $d \times d$ matrices such that:
(a) $P_{i} \leqslant 0$,
(b) $\sum^{\top} p_{i}=I$

They are referred to by the acronym PQUM. you dons want to know

The cat come of this measurement is a random variable. We observe i in $\{1, \ldots, m\}$ with probability

$$
\left\langle P_{i}, D\right\rangle .
$$

Note that

$$
\sum_{i}\left\langle P_{i}, D\right\rangle=\left\langle\sum P_{i}, D\right\rangle=\langle 1, D\rangle=\operatorname{tr}(D)=1,
$$

In most cases, our quantum system has dimension d and $\quad P_{i}=e_{i} e_{i}^{\top} \quad(i=1,-2 d)$. measure wert. Then basis

$$
\left\langle P_{i}, D\right\rangle=\operatorname{tr}\left(e_{i} e_{i}^{\top} D\right)=\operatorname{tr}\left(e_{i}^{\top} D e_{i}\right)=e_{i}^{\top} D e_{i}=D_{i j} .
$$

Since D is a density, $D_{1 i j} \geq 0$ and $\sum_{i} D_{i, 1}=1$.

$$
\begin{aligned}
& \text { I } B G \in V(x) \& D_{a}=e_{a} e_{a}^{T} \text { then } \\
& \left(u D_{a} u_{i}^{*}\right)_{i, i}=\left(u e_{a}\left(u e_{a}\right)^{*}\right)_{i, 1}=\left|\left(u e_{a}\right)_{i}\right|^{2} \\
& =\left|u_{i, a}\right|^{2} .
\end{aligned}
$$

Functions a Vecters
graph x
verbices V
edges $E \in$ unardered paivr of verlices

$$
\begin{aligned}
& \mathbb{R}^{n} \text { - functions from }\{1 \ldots, n\} \text { to } \mathbb{R} \\
& f \in \mathbb{R}^{V}, \quad V=V(X) \\
& (A f)(i)=\sum_{j \sim i} f(y) \quad \text { adjacency operator }
\end{aligned}
$$

k_{n}
refnlar, valençn-1

$$
\begin{aligned}
& \text { all-ones } \rightarrow n-1^{(1)} \\
& \text { fn snus to } \rightarrow-1^{(n-1)} \\
& \text { zere } \\
& A\left(K_{n}\right)=J-I
\end{aligned}
$$

$$
A f=-f
$$

$\frac{v}{1-\left(\frac{1}{T}\right)}$
For $k_{n} \quad \theta=n-1, \tau=-1 \quad \alpha \leq \frac{n}{1-\frac{n-1}{n-1}}=1$
valib banad for k_{b}
regular bipartibe graphs
colon chaser
regular: constant las are
e/vectors with $\varphi /$ valve to
1 on one colons class

ratio
-1 : the other
e/value - k
mk
ink

functions summing $k C$

$$
m=n
$$

on each colour class

$$
\rightarrow \text { eigenvalue } 0
$$

cycles
C_{7}

$\theta: \theta^{2}=1 \rightarrow \theta+\theta^{2}$

$$
\begin{aligned}
& \theta^{-1}+\theta=\theta^{-1}+\theta \longleftarrow \text { eigonvalue } \\
& 1+\theta^{2}=\left(\theta^{-1}+\theta\right) \theta \\
& \theta+\theta^{3}=\left(\theta^{-1}+\theta\right) \theta^{2}
\end{aligned}
$$

