Golourings a derangements

Let P be a quantum homomorphism from X to Y. of index d. If M is $d x d$, define $\langle P, M\rangle$ to be the $|V(x)| x|V(y)|$ matrix with

$$
\langle P, M\rangle_{i j}=\left\langle P_{i j}, M\right\rangle
$$

Usually M will be a density matrix and then we are using the rows of θ as a measurement on M,

Lemma if $\theta: x^{\text {I }}$ Y and P has indexd \& D is a $d x d$ deansity matrix, then $\langle Q, D\rangle$ is row-stachastic.

Lemna Arsnme $Q P Q$ are quanture homomaiphiom from X ory of indox a is e respecbovely, and assnme that ($\& D$ are tensity matrices of ordar dad sexp Respectively. Then $\langle P \oplus Q, C \oplus D\rangle=\langle P \cdot C\rangle+\langle Q, D\rangle$.

Lemma Suppose $P: X \rightarrow Y$ and $\mathscr{Q}: Y \rightarrow Z$ are quantum homomorptioms of index d and e respectively, and that $D_{1} \& A_{2}$ are density matrices of orders $d \times d$ and exp respectively.

$$
\text { Then }\langle P \not Q 2, C Q D\rangle=\langle\theta, C\rangle\langle Q, D\rangle \text {. }
$$

2uantum Colourings

A quantum m-colouring of a graph X is a quantum homomorphism from X to K_{m}. The minimum possible value of m is the quantum chromatic number of X, denoted x_{g}. As K_{n} is vertex transitive, we may assume all entasis of the quantum n-colousing have the same rank. 16 this rank is r, we say wo have a quantum ranker colonising.

Fixing r. the minimum value of m such that
x has a guantum m-colouring of rank r is $x_{p}^{(r)}(x)$. We have

$$
x(x) \geq x_{p}^{(1)}(x) \geqslant x_{p}^{(2)}(x) \geqslant \cdots \geqslant x_{p}(x) .
$$

Lemma $K_{m} \xrightarrow{q} K_{n}$ if $\&$ only if $m \leq n$.
Proof If $m \leqslant n$, then $K_{m} \rightarrow K_{n}$ and thus $K_{m} \xrightarrow{q} K_{n}$ So suppose that $\theta: K_{m} \rightarrow K_{n}$, and that each projection in θ has rank r. For y in $v\left(k_{n}\right)$, the projections in the y-column of P are pairwise orthogonal. If the index of P is d, then $\sum_{j} P_{y, j}=I_{d}$ \& so $\sum_{i, j} P_{i, j}=m I_{d}$.

The projections in a column of P must also be pairwise orbhogonal and therefore $\sum_{y} P_{y, i} \leqslant I_{d}$.
Hence $\sum_{j, i} P_{y, i} \leqslant n I_{d}$, which implies $m \leqslant n$.
Lemma if $X \xrightarrow{q} K_{2}$, then X is bipartite.

Qunitary derangements

A permutation in Sym $/ n$) is an derangement if it lias no fixed points, The set of derangements does nod contain the identity, but it does suntan the inverse of each elements. We use $D(n)$ to denote the Casley graph for Sym (n) with the derangements as the connection set.

We note the following:
(a) the covets of a poont-stabilizer form n pairurise-disjoint cocligues of size (n-1)!
(b) the rows of an $n \times n$ Latin square form a clique
of size n : any such clique is maximal.
fo $n=w(D(n)) \leqslant x\left(D_{(n)}\right) \leqslant n$, and hence $x\left(D\left(D_{1}\right)=n\right.$.

Now for the unitary version.
sesame $N: x^{-n=N(x) 1} \rightarrow K_{m}$ is a quantum m-colousing of X with ranker. If N is an entry of \mathcal{N}, there there is a cinder matrix M with pairwise orthonormal columns (lien $M_{M}=I_{r}$) such that $N=M M^{*}$. Led $U_{i, j}$ be the nor matrix assigned to $W_{i j}$.

Consider the matrix

$$
\left[\begin{array}{ccc}
u_{1,1} & \cdots & u_{1, m} \\
\vdots & & \vdots \\
n_{B, 1} & \cdots & u_{n, m}
\end{array}\right], \begin{array}{ccc}
u_{1} & u_{1}^{\star} u_{2} & 0 \\
\vdots & & 0 \\
u_{m} & & 0
\end{array}
$$

which has order $n d \times m r=n d x d$. The vectors in a row of this matrix form a $d x d$ unitary matrix; let U_{i} denote the unitary matrix coming free the isth row. Thus $U_{i}=\left[M_{i, 1} \cdots M_{i m}\right]$.

Lemma If $i s j$ are adjacent in X, then $M_{i, r}^{*} M_{j, r}=0$
for $r=10,0, m$.
Proof If in jj, then $0=N_{i, r} N_{j r}=M_{i, r} M_{i, r}^{*} M_{i, r} M_{j, r}^{*}$ and se $0=M_{i, r}^{*} \cdot O \cdot M_{j r}=M_{i, r}^{*} M_{i, r} M_{i r}^{*} M_{i, r} M_{j,}^{*} M_{j r}=M_{i, r}^{*} \mu_{j, r}$. \square It follows that $u_{1}^{*} u_{j}$ is a $d \times d$ unitary matrix with $m=\frac{d}{r}$ diagonal ru blocks of zero.

A unitary derangement of index r is a unitary matrix U such that $U \otimes\left(I_{m} \otimes J_{r}\right)=0$. Thus it is mramr with diagonal rear blocks zero. The set of dad
 unitary derangements at index r does not contain I and is closed andes inversion. We use Old $\left(D_{r}(d)\right.$ to denote the Cagkey graph on U(d) with the indexer unitary deraugements as connection set.

Since Sym (n) $\leqslant U(n)$, a derangement in Sym (n) is a unitary derangement of index one.

Theorem X admits a ranker quantum m-colaring if and only if $x \rightarrow \mathscr{W}(\mathrm{mr})$.

We nest derive bounds on $X_{q}{ }^{(1)}(X)$.

Let $\Omega(m)$ denote the graph with the unit vectors in C^{m} as its vertices, with two vector adjacent if they are orthogonal This is the or thogonality graph. The subgraph of $\Omega(m)$ induced by the flat unit vectors is $\Omega^{b}(\mathrm{~m})$.

We need a preliminary lemma.

Lemma Assume W is a flat unitary matrix and $D_{1} \& O_{2}$ are diagonal matrices, all of order mam. Then

$$
\left\langle D_{1}, W^{*} D_{2} W\right\rangle=\operatorname{tr}\left(D_{1}\right) \operatorname{tr}\left(D_{2}\right)
$$

$$
K_{m} \rightarrow \Omega^{b}(m) \rightarrow q D_{1}(m) \rightarrow \Omega(m)
$$

for the first arrow, we note that the columns of any flat unitary matrix form a clique in $\Omega(m)$.

For the second, if $z e \mathbb{C}^{m}$ de bine the dingenal matrix D_{z} by $\left(D_{z}\right)_{i, i}=\delta_{i}$ Let W be a flab unitary matrix. If z is flat, the map $3 \rightarrow D_{8} W$ takes vertices of $\Omega^{b}(m)$ to unitary matrices.

Consider the matrix

$$
Q=\left(D_{y} W\right)^{*} D_{z} W_{.}
$$

Then $Q_{i j ;}=\operatorname{br}\left(e_{i} e_{i}^{\top}, W^{*} D_{y}^{*} O_{z} W\right)$ and applying the lemma
(with $D_{1}=e_{i} e_{i}^{\top} \& D_{2}=D_{y}^{*} D_{z}$) y velds that

$$
\left.\operatorname{tr}\left(p_{1}, e_{i}^{r}, W^{*} D_{y}^{*} D_{p} W\right)=\operatorname{tr}\left(D_{1}, W^{*} D_{y}^{*}\right)_{3} W\right)=1 \cdot \operatorname{tr}\left(D_{y}^{*} D_{z}\right)=\langle y, z\rangle .
$$

$Q_{i j}=0 \Leftrightarrow\langle y, z\rangle$ and there p is a derangement $\Leftrightarrow\langle y, z\rangle=0$.

Finally we have $\left\langle M_{9}, N_{e}\right\rangle=\left(M^{*} N\right)_{1,1}$ and so $\mathscr{Q} \mapsto$ Pres is the required homomorphism, a

The minimal value of m such that $X \rightarrow \Omega(m)$ is the orthogonal rank of X, denoted $\xi(x)$. The minimal value of m such that $X \rightarrow \Omega^{b}(m)$ is dented $\xi^{b}(X)$. The homomorphisms we have derived imply three quarters of the following:

Theovern for any graph x

$$
x(x) \geqslant \xi^{b}(x) \geqslant x_{g}^{(n}(x) \geqslant \xi(x)
$$

Prod The previous theorem yields all but the last inequality. for this, if $x: x \rightarrow k_{m}$, the rows of the characteristic matrix of the partition determined by γ are standard basis vectors. Hance we have a hanomophism from X to the subgraph of $\Omega^{b}(x)$ induced by the ste basis vectors.

