L28/02: Discretp walles

Contents
(a) perfect state transfer
(b) mixing
(c) uniform average mixing

Penfect State Transfor

Let z be a unit vector in \mathbb{C}^{d}. Define a density

$$
D_{n, 3}:=e_{n} p_{n}^{\top} Q_{S 3}{ }^{*} \quad\left(e_{h} Q_{g}\right)\left(\rho_{n} \otimes_{3}\right)^{\top}
$$

Lemma if $U^{k} D_{u, 1} U^{-k}=D_{v, 3}$ and $v_{3} \mid l=1$
then $z=\frac{1}{v d} 7$.
Proof Assume A has spectral decomposition $A=\sum_{r} \lambda_{r} F$ Then $U=\sum_{r} e^{i t_{r}} f_{r}$ and

$$
U^{k} D_{u, 1} U^{-k}=D_{v, 1}
$$

Since $U_{a} D_{u, 1}$ are real, $D_{\text {viz }}$ is veal and so 3 is real.
As $U(1 \otimes 1)=781$, we have:

$$
\begin{aligned}
& (1 \otimes 1)^{\top} D_{v i 3}\left(\frac{1}{v} \otimes \frac{1}{\sim}\right)=\left(\frac{1}{\sim} \otimes 1\right)^{\top}\left(e_{n} e_{n}^{\top} \otimes 3^{k}\right)\left(1 \otimes \frac{1}{\sim}\right)=1_{\sim}^{r} z 3^{*} \frac{1}{\sim}
\end{aligned}
$$

and therefore $\left\langle\frac{1}{2}, 3\right\rangle=\sqrt{d}$. By Canchy-Schwarz.

$$
\langle 1,8\rangle^{2} \leqslant(1,1)\langle 3,3\rangle=d
$$

Equality holds if \& only if $z=c 1$, when $z=1$.

If $U^{k} D_{u, 1} U^{-k}=D_{\nu, 1}$, we say we have perfect state transfer from u to v.

Exercise $u^{k} D_{u, y} u^{*}=D_{u, z}, \quad\|y\|=\|z\|=1$, y real $\Rightarrow z=y$

Recall that, fer continuous walls, if.

$$
D_{2}=U(A) D_{1} U(-t)
$$

and $\mathrm{D}_{1}, \mathrm{D}_{2}$ are real, then taking complex conjugates yields

$$
D_{2}=\bar{D}_{2}=U(-b) \bar{D}_{1} U(t)=U(-t) D_{1} U(t)
$$

and therefore $D_{1}=u(t) D_{2} u(-t)$
What about discrete walks?

Assume

$$
D_{2}=U^{k} 0, U^{-k}
$$

with O_{1}, O_{2} real, Then

$$
D_{2}=\bar{D}_{2}=\bar{U}^{k} D_{1} \tilde{U}^{-k}
$$

and then $U_{1}=\bar{U}^{-k} D_{2} \bar{U}^{k}$.
Since $\bar{u}^{-1} \neq U$ (in general), this gives us nothing. Bub still:
(H.Zhan) Let U be the transition matrix for the arc-reversal walk on X and assume $u, v \in V(x)$.

If $U^{k} D_{u, 1} U^{-k}=D_{v, 1}$, then $U^{k} D_{v, \pm} n^{-k}=D_{u!1}$.
This result is a consequence of the following chavacterijation of perfect state transfer.
($H . Z_{h} a_{n}$)
Theorem The arc-reversal wall on X has perfect state transfer from u to v at time k if s ont if all of the following hold:
(a) for each λ, we have $E_{\lambda} e_{n}= \pm E_{\lambda} e_{r}$.
(b) If $E_{\lambda} e_{n}=G_{\lambda} e_{\nu} \neq c$, there is an even integer j sit $b=\operatorname{dav}(j \pi / k)$
(1) If $E_{\lambda} e_{n}=-E_{\lambda} e_{v}+0$, there is an odd integer j sit $\lambda=d \cos (j \pi / k)$. [

Since these conditions are symmetric in $u d v$,
the theorem follows.
Question Does this theorem hold for 2-reflection walls based on biregular bipartite graphs?

Mixing
U unitary $\Rightarrow U=\exp (i t H) \quad H$ Hevmitian
Hamiltanian

$$
u^{k}=\exp (k \cdot H)
$$

Mush of the theory of continuous quantum walls carries oven to discrete walks. We consider one cave of this: mixing.

If the initial state of a discrete walle is D_{0}, the state at time h is

$$
\Delta_{k}:=U^{k} D_{0} U^{-k}
$$

We define the average state to be

$$
\lim _{k \rightarrow 0} \frac{1}{K} \sum_{m=0}^{k-1} U^{m} D_{0} U^{-m}
$$

and denote it by \hat{D}_{0}. If $U=\sum_{r} e^{i \theta_{r}} f_{r}$ is the spectral decomposition of U, we have

$$
\begin{aligned}
U^{m} D_{0} U^{-m} & =\sum_{r s} e^{i m\left(\theta_{r}-\theta_{s}\right)} F_{r} D_{0} F_{r} \\
& =\sum_{r} F_{r} D_{0} F_{r}+\sum_{r \neq j} e^{i n\left(\theta_{r}-\theta_{j}\right)} F_{r} D_{0} F_{s}
\end{aligned}
$$

We see that

$$
\frac{1}{K} \sum_{m=0}^{K-1} e^{i m\left(\theta_{r}-\theta_{s}\right)}=\frac{1}{K} \frac{1-e^{i k\left(\theta_{r}-\theta_{s}\right)}}{1-e^{i\left(\theta_{r}-\theta_{s}\right)}}
$$

and accordingly

$$
\frac{1}{K} \sum_{m=0}^{K-1} U^{k} D_{0} U^{k}=\sum_{r} F_{r} D_{0} F_{r}+\frac{1}{K}\left(\sum_{r \neq s} \frac{1-e^{i K\left(\theta_{r}-a_{s}\right)}}{\left.1-e^{i\left(\theta_{0}-\theta_{s}\right)}\right)} F_{r} D_{0} F_{s}\right.
$$

If $r \neq s$, then for any k

$$
\left|\frac{1-e^{i\left(k\left(\theta_{-}-\theta_{s}\right)\right.}}{1-e^{i\left(\theta_{s}-\theta_{s}\right)}}\right| \leq \frac{2}{\left|1-e^{i\left(\theta_{1}-\theta_{s}\right)}\right|}
$$

So we have.
Theorem If U is unitary with spectral decomposition $u=\sum_{r}^{T} e^{i \theta r} F_{r}$, the average state of the discrete walk based on U \& starting ab D_{c} is $\sum_{r} F_{r} D_{0} F_{r}$.

Since $U\left(F_{r} D_{0} F_{r}\right) U^{-1}=\theta F_{r} D_{0} F_{r} \theta^{-1}=F_{r} D_{a} F_{r}$, if Edlows that the average state \hat{D}_{0} ormmutes with U.

Assume $\alpha \in \operatorname{arcs}(X)$. The probability that, after k steps starting from D_{d}, the walker is on α is

$$
\left\langle D_{k}, \varphi_{\alpha} e_{\alpha}^{\top}\right\rangle=e_{\alpha}^{\top} D_{k} e_{\alpha}=\left(D_{k}\right)_{\alpha, \alpha}
$$

If β is an and $D_{0}=e_{\beta} p_{\beta}^{r}$ then

$$
\begin{aligned}
\left\langle D_{k}, \rho_{a} \varphi_{\alpha}^{\top}\right\rangle & =\left\{U^{k} e_{k} e_{\beta}^{\top} U^{k}, e_{a} \rho_{\alpha}^{\top}\right\} \\
& =\operatorname{tr}\left(e_{\alpha} e_{\alpha}^{\top} U^{k} e_{\beta} e_{\beta}^{\top} U^{-k}\right) \\
& =\left(U_{\alpha, \beta}^{k}\right)\left(U^{-k}\right)_{\beta, \alpha}
\end{aligned}
$$

Applying the spectral deemtposibion, we rewrite this as

$$
\begin{aligned}
& \sum_{r} e^{i b \theta_{r}}\left(F_{r}\right)_{\alpha, \rho} \sum_{s} e^{-i k \theta_{s}}\left(F_{s}\right)_{\beta, \alpha} \\
& =\sum_{r, 1} e^{i k\left(\theta_{r}-\theta_{s}\right)}\left(F_{r}\right)_{\alpha, \beta}\left(F_{s}\right)_{\beta, \alpha}
\end{aligned}
$$

So:

$$
F_{s}^{r}=\bar{f}_{s}
$$

Lemma for a discrete walk starting on the are α,
the average probability that the walker is on the arc β

$$
\text { is } \sum_{r}\left(F_{r} \circ \bar{F}_{r}\right)_{\pi \beta}
$$

We define the average mixing matrix of a discrete walk to be

$$
\hat{M}=\sum_{r} F_{r} \circ \bar{F}_{r}
$$

You may shew that

$$
\hat{M}=\lim _{k \rightarrow \infty} \frac{1}{K} \sum_{m=0}^{K-1} u^{m} \cdot \bar{u}^{m} .
$$

Lemma The outrage mixing matrix \hat{M} is positive sernidehinite. All eigenvalues of \hat{M} lie in $[0,1]$. Proof. If F is Idermitian, so is \bar{F}, and $F \& \bar{F}$ have the same eigenvalue. So it $U=\sum e^{i_{r}} F_{r}$, then $F_{r} \geqslant 0$ and $F_{r} \neq 0, B_{y}$ Schni's theorem thor implies that $F_{r} \circ \bar{F}_{r} \geqslant 0$ and so $\hat{M}=\sum_{v} F_{1} O E_{E} \& 0$.

For the second claim,

$$
I=I 0 I=\left(\sum_{r} f_{r}\right) \sigma\left(\sum_{s} \bar{F}_{s}\right)=\hat{M}+\sum_{r \neq 1} F_{r} c \bar{F}_{s}
$$

Therefore $I-\hat{M} \geqslant 0$.

Uniform average mixing

At quaubum walk has uniform average mixing if \hat{M} is flat. We ain to characterize when this can happen.
Lemma if $U=\sum_{r}^{n} e^{i t_{r}} F_{r}$ and μ_{r} is the multipliaty of θ_{r}, then $\operatorname{br}(\hat{M}) \geq \frac{1}{n} \sum_{r} \mu_{r}^{2}$. Equality holds if \& only if each idempotent has constant diagonal.

Proof We have $\mu_{r}=\operatorname{tr}\left(f_{f}\right)$ and, applying Cauchy-Schwarz

$$
\frac{1}{n} \sum_{r} \mu_{r}^{2}=\frac{1}{n}\left[\sum _ { r } \left(n\left(F_{r}\right)^{2} \leqslant \operatorname{tr}\left(F_{r} \circ \overline{F_{r}}\right)\right.\right.
$$

and se $t_{r}(\hat{M}) \geq \frac{L}{n} \sum m_{r}^{2}$. Equality holds if \& only if F_{r} has constant diagmenl, for each r.

Corollary We have tr $(\hat{M}) \geqslant 1$ and equality holds if 8 only if $\mu_{r}=1$ and F_{r} ir flat, for all.

We have $\sum_{r} \mu_{r}=n$ and

$$
0 \leqslant \sum_{r}^{1}\left(\mu_{r}-\frac{2 \mu_{r}}{n}\right)^{2}=\sum_{r}\left(\mu_{r}-1\right)^{2}=\sum_{r} \mu_{r}^{2}-n
$$

lance $\frac{1}{n} \sum \mu_{r}^{2} \geqslant 1$. If equality holds $\mu_{r}=1 \forall r$. Now F_{r} is a rank-1 matrix with constant diagonal, so it is flat.
skew adj. mabrix $\int, g \pm 1, \quad S^{T}=-. S$ $\exp (t S)$ is orthegonal

Theorem for a discrabe walk, the following gre equivalent:
(a) The walk has uniform average mixing.
(b) $\operatorname{tr}(\hat{M})=1$
6) The eigenvalues of U are simple and i ts spectral projections ave flat.

Proof 16 we have uniform average mix, hs, $\hat{M}=\frac{1}{n} J$ and $\operatorname{tr}(\hat{m})=1, \rho_{0}(a) \Rightarrow$ (b)

From the corollary, (b) \Rightarrow (c). If (c) holds.

$$
\hat{M}=\sum_{r} F_{1} \circ F_{F}
$$

and $F_{r} \circ F_{r}$ is flat.

L28/01, pant II Shunts

Qther walks

We have been focussed on arc-reversal walls. We briefly discuss some of the alternatives.

Our approach to spectral decomposition works well for the 2-reflection walks coming from bipartite graphs, in particular biregular bipartite graphs. If can also handle arc-veversal walker on non-regular graphs (replace to by the normalized Laplacian).

We disunss shunt-decomposition wallks, which are nob 2-reblection walkes. A shunb decomposition of a d-regular digraph is a seb of permubaboon mabrices P_{z}, \ldots, P_{d} suck that $A=P_{1}+\cdots+P_{d}$. Given such a shunb decomposition, we define

$$
S=\left[\begin{array}{lll}
P_{1}^{-1} & & \\
& \ddots & \\
& & p_{d}^{-2}
\end{array}\right]
$$

So S is a permutation matrix of order nd x ad.
Let (be a dod unitary matrix (a coin). The matrix

$$
u=\rho\left(C \theta I_{n}\right)
$$

is unibary, and so it the transition mabriy of a shunt decomposition walt.

In general, neither S nor $C Q I_{n}$ have order two.

We can make some progress, but first:
Lemma if X is a d-regular digraph, it admits a shunt decomposition.

Proof. Let B be the adjacency matrix ob X and set

$$
A=\left[\begin{array}{ll}
0 & B \\
B^{4} & 0
\end{array}\right]
$$

Then A is the adjacency matrix of a d-regnlar bipartite graph, y say, and I admits a I-factorisabion

Equivalently there are permutation matrices $Q_{1, \ldots, \varphi_{0}}$ such that $Q_{r}{ }^{2}=I \& \sum_{r} Q_{r}=b$. We have

$$
Q_{r}=\left(\begin{array}{ll}
0 & P_{r} \\
P_{r} & 0
\end{array}\right)
$$

For a permutation matrix P_{1}, and $P_{1} \ldots P_{d}$ is a shunt decomposition of X.

Remark: if X is the complete digraph on n vertices, with a loop on each vertex $(A(x)=J)$, then shunt decompositions of X correspond to $n \times n$ Labia squares

