Contents
(8) algebraic integers
(b) eigenvalue support \& quadratic integers
(c) periodic stakes are rare

We work over the complex numbers. An algebraic number is a zeno of pdynemial with in leger coefficients. A_{n} algebraic integer is a gers of a moxie polynomial with integer coefficients. Thus an algebraic integer is an algebraic number.
examples: $\sqrt{2}, \frac{1+\sqrt{5}}{2}$

We relate eigenvalue of polynomials to eigenvalues of matrices. If $\rho(t)$ is a monte polynomial, say

$$
p(t)=b^{d}+p_{1} t^{d-1}+\cdots+p_{d}
$$

then its companion matrix is

$$
C_{p}:=\left[\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
\hline 1 \cdots & -p_{p} \\
1 \cdots & 0 & 0 \\
0 & \ddots & \vdots \\
0 & & \ddots & 1 \\
0 & p_{1}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { dep } \\
& {\left[\begin{array}{c|c|c}
\alpha & e_{1} \\
\hline I_{d-1} & p_{1} \\
\hline & -p_{1}
\end{array}\right]} \\
& { }^{1} \text { tace }
\end{aligned}
$$

Lemma If p is a polynomial, then $\phi\left(C_{p}, b\right)=p(t)$.
All eigenvalues of C_{p} have geometric multiplicity me. (Sos $s(t)$ is the minimal polynomial of C_{p}.)

Corollary A complex number is an algebraic integer if e only of it is a zeno of an integer matrix. It is an algebraic number if it is a zens of a rational matrix.

Corollary If β is an algebraic number, there is an integer m such that $m \beta$ is an algebraic integer.

Since the eigenvalues of $A \& I$ - IEB are the differences $\exists-\mu$, where $z i s$ an eigenvalue of A and M an eigenvalue of B, and since the eigenvalues of $A \otimes B$ are producti..., we have:

Theorem The algebraic integers form a ving; the algebraic numbers form a field.
Prot, For the second claim, the inverse of an invertible rational matrix is rational.

Remark The algebraic number are the field of fractions of the ring of algebraic integers.

If the entries of the square matrix A are algebraic integers, its eigenvalues are algebraic integers.
normal closure

Suppose α is an algebraic integer (satisfying a monir integer polynomial of degree d, sag). If $f \& g$ are monte polynomials with $f(\alpha)=g(\alpha)=0$ and $h=\operatorname{gad}(l, g)$, then h is manic \& $h(a)=0$. So there is a unique manic polynomial h of least degree such that $h(a)=a$. We call it the minimal polynomial of α. If is irreducible our Q.

Lemma If an algebraic integer is rational, it is an integer.

$$
\begin{aligned}
& \tau^{3}+a \tau^{2}+l \tau+c=0 \\
& \varepsilon=x / y ; x, y+l,(x, y)=1 \\
& x^{3}+a x^{2} y+b x y^{2}+c y^{3}=0
\end{aligned}
$$

Lemma Suppose α is an algebraic integer with minimal polynomial $\psi(t)$. If α is an eigenvalue of an integer matrix A, then $\psi(t) \mid \varphi(A, t)$.

So $2^{1 / 3}$ is not an eigenvalue of a graph,

Twa algebraic integers are conjugate if they have the same minimal polynomial, and this happens if \& only if there is a field automorphism that sender one to the other.

Periodicity and integrality

A subset state is a density that is diagonal and has exactly c entries equal to $1 / c$, all other entries zeno. So if D is a subset state, there is a subset S of $U(X)$ such that $(D)_{a n}=\frac{1}{151}$ if $a \in S$ and all other vertices are zero. We will denote such a state by D_{ρ}, and may abuse notation and ne to refer to the matrix $\sum_{\text {af S }} e_{a} e_{a}^{T}$ (which ir pod, with brace 191).

Vertex strides are the simplest examples of subset states. Subrtate are real and hence if we have perfect state transfer between subset states at time τ, both state are periodic ab time 2T. Further both states have the same eigenvalue support.

A quadratic integer is a zeno of a manic polynomial of degree two over \mathbb{Z}. (So iffy an algebraic integer.)
(7) We assume now blab ow Hamiltonian has entries integers.

Theorem Let D_{ρ} be a periodic sunset state and let 2 be its eigenvalue support. Then the eigenvalues involved in \mathcal{L} are either:
(a) all integers ar

$$
\left(\theta_{r}, \Delta_{s}\right)
$$

$$
E_{n}^{\alpha} D \epsilon_{s}^{\alpha} \neq 0
$$

(b) there is a positive sguare-free integer Δ, an integer a, and integers $b_{0}, \cdots b_{d}$, such that each eigenvalue in the eigenvalue support has the form $\frac{a+b_{2} \sqrt{\Delta}}{2}$.

Proof Assume the ratio condition holds.
(a) If eigenvalues $\theta_{k} \& \theta_{l}$ are integers, then

$$
\frac{\theta_{r}-\theta_{s}}{\theta_{k}-\theta_{1}} \in Q
$$

$$
\epsilon_{r} D \neq c \rightarrow \theta_{r} \text { is elma }
$$

Jape
implies $\theta_{r}-\theta_{s} \in Q$ for all r a s. So all eigenvalues are integers why?
(b) Assume at most one eigenvalue is an integer.

We shaw that $\left(\theta_{0}-\theta_{1}\right)^{2}$ is an integer.

For each pair of eigenvalues $\theta_{r}+\theta_{s}$, there is a nom-jero rational number oars such that

$$
\theta_{r}-\theta_{s}=\operatorname{ar}_{r s}\left(\theta_{1}-\theta_{0}\right)
$$

and so

$$
\prod_{r \neq s}\left(\theta_{1}-\theta_{s}\right)=\left(\theta_{1}-\theta_{0}\right)^{\alpha^{\prime}-d} \pi a_{r r}
$$

The product on the left is fixed by any field automorphism, and is therefore an integer. Therefore $\left(\theta_{1}-\theta_{c}\right)^{d^{2}-d} \in \mathbb{Q}_{1}$.

Since $\left(\theta,-\theta_{0}\right)^{d^{2}-d}$ is an algebraic integer, it follows that $\left(0,-\theta_{0}\right)^{d^{p}-d}$ is an integer,

Assume on is the least positive integer such that $\left(\theta_{1}-\theta_{e}\right)^{m} \in \mathbb{R}$. Then there are m distinct conjugates of $\delta_{0}-\theta$, of the form $\beta e^{2 \pi i k / n}(k=0, \ldots, n-1)$, where β is the real mouth root of ar integer. Since the elements of \mathcal{L} are real and closed under conjugates, $m \leqslant 2$.
(c) Since

$$
\left(\theta_{r}-\theta_{s}\right)^{2}=a_{v, s}^{2}\left(\theta_{1}-\theta_{0}\right)^{r}
$$

we ree that $\left(\theta_{r}-\theta_{s}\right)^{2}$ is rational, and is therefore an integer.
It has the same square-free part as $\left(\theta_{1}-\theta_{0}\right)^{2}$, and consequently there is a square-free integer Δ surd be 1 for each r,

$$
\theta_{r}-\theta_{0}=m_{r} \sqrt{\Delta} \quad\left(m_{r} \in \mathbb{Z}\right)
$$

Then

$$
\theta_{r}=\theta_{0}+m_{r}+\Delta
$$

Assume there are exactly m eigenvalues in t.
Summing this equation over or yields

$$
\left\{\theta_{r}: E_{r} D \neq 0\right\}
$$

$$
\sum_{r} \theta_{r}=m \theta_{0}+\sqrt{\Delta} \sum m_{r} .
$$

As $\sum \theta_{r} \in \mathbb{Z}$, we see that $\theta_{0} \in \mathbb{Q}(\sqrt{\Delta})$, \& hence $\theta, \in \mathbb{F}(\sqrt{4})$ for all r.

Finiteness

Corollary Fix integers $k \& s$. There are only finitely many connected graphs with maximum valency \& witt a periodic subset state of sizes.

Proof Let S be a periodic subset state of size sand let r be the covering radius of S. Let D be diagonal al with $D_{a R}=1$ if e only if $a+S$.
(a) The matrices $0, \ldots, A^{n} D$ are linearly independent and lie in the span ob $\left\{E_{r} D: E_{D} D \neq 0\right\} \quad \quad_{r} D E_{s}=E_{D} D \cdot D E_{s}\left(E_{s} D\right)^{r}$ If $E_{r} D E_{s} \neq 0$, then $E_{r} D \neq C \quad\left(D^{2}=0\right)$ and therefore each eigenvalue in the eigenvalue support of b lies in $\left\{\theta_{r}: \epsilon_{r} D \neq 0\right\}$. If $\nu:=\left\{\theta_{r}: \in, O \neq 0\right\}$, we have $r+1 \leqslant \nu$.

$$
\begin{aligned}
& \Delta=D^{1 / 2} D^{\frac{1}{2}} \\
& \epsilon_{1} D^{1 / 2} \neq 0
\end{aligned}
$$

(b). All eigenvames of X lie in the interval $[-k, k]$. Since the difference between distinct eigenvalues of the eigenvalue support is at least one, the size of the eigenvalue support is at most $2 k+1$.
(c) $V(X)$ is covered by the s balls of radius r about the vertices in S and consequently

$$
|V(x)| \leqslant s\left(1+k+k(k-1)+\cdots+k(k-1)^{k-1}\right\}
$$

