$$
L 10 / 01
$$

Contents

1. Density matrices
2. Bounds on corligues

Quantum system:

Density Matrices

A complex square matrix M is positive semidefinite if
(a) $M=M^{*}$
(b) $u^{*} M_{n} \geqslant c, \forall u$.

If. in addition.
(c) $u^{*} M u=0 \Rightarrow u=c$, then M is positive definite. We write My to denote that M-N is pod.

If M is positive definile, we write M>O.
(a) I
(b) $8 z^{*}$
(c) $16, M, N \geqslant e$, then $M+N \geqslant 0$.
(d) any projection (why?)

If $A=\left[a_{1}, \ldots, a_{m}\right] \& B=\left[b_{1}, \ldots, b_{m}\right]$, both $n \times m$,
then

$$
A B^{*}=a, b_{1}^{*} t \cdots+a_{m} b_{m}^{*}
$$

matrix multiplication using outer products
16 follows that
(e) $A A^{*} \geqslant 0$

A density matrix is a positive semidefinite matrix with trace one.

The simplest examples are the rauk-one matrices 33^{*}, where $\left\|_{3}\right\| \approx 2$. Nate that $3 z^{*}$ represents projection onto the 1-din. subspace spanned by z. If $a \in V(x)$, we call $e_{a} e_{a}^{\top}$ a vertex state. If $\operatorname{liz} \|=1$, then z^{*} is a pure state.

If M is positive definite, it is invertible.
If $M_{z}=0$, then $z^{*} M_{z}=0$ and so $z=0$.
Lace $\operatorname{ker}(h)=\langle\rho\rangle$.

Show that if $M \geqslant 0$ and $N>0$, then M+NとO.

Lemma A convex combination of density matrices is a density matrix.

Lemur. Any pod matrix is a sum of positue semidefinjte matrices of rank one. Any density matrix is a convex combination of pare states.

Theovem For a Hermitian matrix M, the Eollowing are equivalent:
(a) $M \& 0$, ie $u^{*} M_{n} \geqslant 0$ for erll u.
(b) $M=N N^{*}$ for seme n
(c) all eigervalues of M are non-negativo.
(d) There are vectors $z_{1} \ldots z_{m}$ and

$$
M=3,3_{1}^{*}+\cdots+g_{n}^{*} z_{n} \quad \operatorname{tr}\left(M^{*}()\right)
$$

(e) (f $N \neq 0$, then $\langle M, N\rangle \geqslant 0$.

We see that if $M \geqslant 0$, then $\operatorname{deb}(M) \geqslant a$ Also Any principal subuertrix of a positive semidefinite is positive semidefinite.
2×2 density matrices
prove this is positive semidelinite.

$$
D=\left(\begin{array}{cc}
\frac{1}{2}+a & b+i c \\
b-i c & \frac{1}{2}-a
\end{array}\right) \quad \operatorname{det}(0)=\frac{1}{4}-a^{2}-b^{2}-c^{2}
$$

If $M \not 0$, then its diagonal entries are nen-negative; if the diagonal of M is zero, then $M=0$.

If $M \neq 0$, there is a unique
pad matrix N st. $M=N^{2}$.

A quanbrim state is a density matrix.
Physiersts with say that the state space of a quantum system is a separable Hilbert space (our state spaces will be finite) and a state is a unit vector. In fact the state is a 1 -dim subspace of \mathbb{I}^{n}. The projection onto this subspace is a rank-one density matrix, that is, a pure state.

Operations on quantum states are given by unitary aperaters. If D is a state of a system \& U is unitary, then applying U brings the system te a skate UDU.

If $D=8 s^{*}$ (with $\left.\left\|_{z}\right\|=1\right)$, then

$$
U D U^{-1}=u_{z} z^{*} U^{*}=u_{z}\left(u_{z}\right)^{*} \quad z \mapsto u_{z}
$$

Bounds on cocliques

Let A be the adjacency matrix of a graph. The A is real \& symmetric, hence has a spectral decamp.

$$
A=\theta_{0} E_{0}+\cdots+\theta_{d} E_{d}
$$

Our debanlb assumption is that $p_{0} \geqslant \cdots \geqslant \theta_{d}$

Since $\operatorname{tr}(A)=0$, we have $\sum_{i} \theta_{i}=0$. Po either $\theta_{0}>0$ and $\theta_{d}<0$, or $\theta_{0}=\cdots=\theta_{d}=0$ and $A=0, \square$ If k is the maximum valency of a vertex of X, then θ_{0} rb.

Assume $z \neq 0$ and $A z=0 z$. Then

$$
\theta_{0} z_{r}=\sum_{i \sim r} z_{i}
$$

and, raking absolute values, we have

$$
\theta_{a}\left|z_{r}\right| \leqslant \sum\left|z_{i}\right|
$$

There are at most k terms in this sum. If r is chosen so lar| is maxima|; $\theta_{0} \leq \sum_{i} \frac{|8 i|}{\mid 3.1} \leqslant k$.

Lemma A graph X is regular if and only if $\underset{\sim}{1}$ is an eigenvector for A.

J
Lemme If X is k-regular. then k is an eigenvalue of A with multiplicity equal to the number of components,

Let X be a graph on 1 vertices. The fallowing are equivalent:
(a) X is connected and regular
(b) τ is a polynomial in A.
(c) $E_{0}=\frac{1}{n} J$

A cocligue in a graph X is a set δ of vertices such that no two vertices in S are adjacent. The matilunm size of (a.k.a. independents, stable) a cocligne in x is denoted by $\alpha(x)$.

Hoffman, Debate
Theorem if X is k-regular with least eigenvalue τ, then

$$
\alpha(X) \leqslant \frac{v}{1-\frac{k}{\tau}}
$$

If x is the characteristic vector of a coclique of size $v /\left(1-\frac{k}{t}\right)$, then $x_{S}-\frac{|S|}{v} 1$ is an eigenvector for x with eigenvalue τ.

Assume $\rho \subseteq V(X)$ with characteristic vector x. Then $x^{\top} A x$ is the number of pairs (u, v) in $S \times S$ with uv. Hence S is a cocligne if \& only it $x^{\top} A x=0$.

Next, set

$$
B=A-\frac{k-\tau}{v}-\tau I
$$

Then $B \geqslant 0$ and so $x^{\top} B x \geqslant B$. Now

$$
\begin{aligned}
O r x^{\top} B x & =x^{\top} A_{x}-\frac{h-\tau}{v} x^{\top} \int x-\tau x^{\top} x \\
& =0-\frac{(h-\tau)|S|^{2}}{v}-\tau|S|
\end{aligned}
$$

and therefore $|\rho| \leqslant \frac{v}{1-\sqrt{2}}$.
The rest is left as an exercise.

