$$
204103
$$

Lemma for any graph y, we have $y \cong m(y, 1)$.
Proof Any measurement on Y is a standard basis vector. Two standard basis vectors $e_{n} \& e_{v}$ are adjacent if $\&$ only if uv.

If $\beta=\left(p_{1}, \ldots, p_{m}\right)$ and $q=\left(q_{1}, \ldots, q_{n}\right)$ are measurements on X e Y respectively, we define PQQ to be $\left\{P_{n} \otimes Q_{v} 3\right.$. We claim that peg is a measurement on $X \times Y$. A anseguenre of this is

Lemma $M(X, d) \times M(Y, e)$ is isomorphic to a subgraph of $M(X \times Y, d e)^{*}$.

We note that if $z^{\underline{q}} X$ and $Z \xrightarrow{9} y$, then $Z \rightarrow M(X, d)$ and $Z \rightarrow M(r, e)$ and hence

$$
z \rightarrow M(x, d) \times M(y, \rho) \rightarrow \mu(x \times y, d \rho) .
$$

Therefore $Z \xrightarrow{g} X \times Y$. Accordingly the category of graphs \& q-howr has products, and these correspond to products in the category of graphs e homomorphisms,

Lemma $f \in \backslash \xrightarrow{q} Z$ and $Y \xrightarrow{q} Z$, then $x \cup y \rightarrow z$.

In the category of graphs, Buy is the sum of xey; this result shows that Xu ir also the sum in the quantum category.

$$
x^{q} \rightarrow y \text { and } y^{q} x \text {. }
$$

Lemma X end $M(d, X)$ we g-homemerphism equivalent Proof Since $M_{d}(x) \rightarrow M_{d}(x)$, we have $M_{d}(x) \xrightarrow{9} x$, Next, $x \xrightarrow{q} x$ and therefore $x \rightarrow \mu_{d}(x)$ and (as homomorphisms are quantum hamomorphisans) we have $x \xrightarrow{9} N_{d}(x)$.

Operations on homamorphisms

If O is a quantum homorphism, we define the algebra alg (0) to be the matrix algelora genented by the elements of P_{1} if this algelera is commutative, we say D is classical.

If $O_{\&} Q$ are quantum homomorphisms from X to y, we define their direct sum $0_{0} Q$ to be the $|V(x)| x|V(y)|$ matrix with

$$
\left(P_{\oplus Q}\right)_{i j}=P_{i j} \oplus Q_{i j}
$$

Lemma $P_{\oplus} \rightarrow$ is a quantum homomorphism. Further $P \in Q$ is classical if $\&$ only if $P \& Q$ ave.

If $P: x \xrightarrow{q} y \& Q: Y q, 2$, we define
$O_{*} 0$ by setting

$$
(O+Q)_{i j}=\sum_{r} P_{i r} \otimes Q_{r j}
$$

We call it the coproduct of $P_{\&} Q$. If $P_{R} Q$ have index one, the coproduct is the usual matrix product.

Lemme if $P: x \xrightarrow{q} y \& Q: Y \underline{q} 2$, then $\theta \nrightarrow 2: x \xrightarrow{2} 2$

Lemma The coproduct is associative. Further $O_{\hbar} Q$ is classical if \& only it $\mathbb{Q}+2$ are.

$$
(A B B) O C=A \otimes(B A C)
$$

We present a useful application of the divert sum operation.

Theorem Assume β is a quantum homomorphism from x to y with index d if a subgroup \& of $A_{u}(y)$ acts transitively on $V(y)$, there is a quantum homomorphism $X I S Y$ such that each entry has rank d|yl and index d $|G|$.

Proof Assume $P: X \rightarrow Y$ and let G be a transibile subgroup of fut (y). If $\sigma \in G$, then σ gives a permutation of $V(Y)$, and hence a permutation of the columns of P, Denote this matrix by O^{σ}.
Then the direct sum $\underset{\sigma G}{\oplus} P^{\sigma}$ is a quantum homomorphism from X to Y, and each entry is the direct sum et the same projections,

It 9 has index d, the direct sum of $|G|$ copies of P has index $d|G|$. The rank of an entry is $d\left(G: h_{1}\right)=d|y|$.

Fractional Isamorphisms

Let X \& Y be graphs with respective adjacency matrices $A \& B$. A matrix ρ determines a fractional isomorphism from x to y if
(a) it is doubly stachasbre.
(b) $A S=S B$

A doubly stochastic matrix is necessarily square (as we with see).

Examples
(a) permutation matrices -so isomophisms are fractional isomorphisms
(b) If X \& Y are k-regular graphs on n vertices then $A J=J A$, and $\frac{1}{n} J$ is a fractional isomorphism,
(c) $S: X \rightarrow Y$ and $T: Y \rightarrow Z$ are fractional isomorphisms then $T S: x \rightarrow Z$ is a fractional isomaphosm.

We can view a doubly stochastic matrix as a weighted adjacency matrix for a directed graph. Recall that a diverted graph is weakly connected if its underlying graph is connected; it is strongly connected if for each pair of vertices u\&v, there is a directed path from a to u.
we translate these terms into matrix theory. An $n \times n$ matrix is reducible if it contains a submatrix of order $m \times(n-m)$ with all entries θ. If is decomposable if it is permutation equivalent to a matrix of the form $\left[\begin{array}{ll}M & 0 \\ 0 & N\end{array}\right]$ where Md N are square. reducible \Rightarrow not strongly connected

If a matrix is indecamposable, its digraph is weakly emnected; if it is irreducible it is strongly connected.

Lemma If ρ is doubly stochastic, it is square.
Further, each weakly connected component is strongly cmnected

$$
\begin{aligned}
& m\left(\begin{array}{ll}
A & 0 \\
B & C
\end{array}\right) \int n \\
& A 1=1 \\
& \text { entries of } 1^{1} A \text { sum *o } n
\end{aligned}
$$

Proof Assume $S=\left(\begin{array}{ll}A & 0 \\ B & C\end{array}\right)$ with 8 mxm . Then $I^{\top} A \leq 1$ and se ! $I^{r} A_{2} \leq m$. On the other hand $A 1=1$ and so $1^{5} A 1=m$. Hence each column of A sums bo 1 , and therefore A is doubly stochastic. The lemme follows.

From this proof we see that a doubly stochastic matrix must be square.

16 R\& ρ are dumbly stochastic, se is $R S$. Hence the fractional isomorphisms of a graph form a monoid (fat contains $\operatorname{Aub}(x)$).

IB $A R=R B$ and $A S=S B$ and $\theta \leqslant \sigma \leqslant 1$, then

$$
A(a R+(1-a) S)=\alpha R B+a-\alpha) \rho B
$$

from which it bellows that the fractional iromaiphism fran X to Y form a closed convex polybope.

The permutiabien matrices ave vertseer of the convex polytope formed by the fractional autemarphisms of X; if these are the only vertices we say X is compact. (This is a strong audition.)

Tinhofer

Fractional ircmarphosin and equitable partitions

Let $f(x, y)$ denote the set of fractional isomorphisms from x to y, and abbreviate $f(x, x)$ to $f(x)$ Lemma if $R \in f(x, y)$, then $\lambda^{\top} \in f(y, x)$ and $R R^{\top} \in \mathcal{F}(x)$ (and $R^{\top} R \in \mathcal{F}(y)$).
(Note that $R R^{\top}$ a $R^{\top} R$ are doubly stochastic.)

Proof If R is doubly stochastic and $A R=R B$, then
$R^{T} A=R^{T} A^{T}=B^{T} R^{T}=B R^{T}$. Hence if $R \in \mathcal{F}(x, y)$, then $R^{\top} \sigma \mathcal{F}(y, x)$. Further $R B R^{\top}=A R R^{\top}$ and since $R B R^{\top}$ A and $R R^{\top}$ are symmetric, we see that $A R R^{\top}=R R^{\top} A$.

Theorem Assume $R \in f(x)$. Then the vertex sets of the strong components of the directed graph determined by R are the cells of an equitably partition of X.

Proof We will need to apply the Perron-frobenins theorem, as follows:

Claim If A is a nonnegative veal matrix and its underlying directed graph X is strongly connected, then the spectral radius of X is a simple eigenvalue.

Proof (of theorem) We have $A R=R A$. Since R is doubly stochastic, its weak amponentr are strong.

Hence the spectral radius of each component ho's a simple eigenvalue.

Further, each row of R sumo to 1 , and so the f-eigenspace of R is spanned by the characteristic vector of the components. The projection ante this subspace is a polynomial in A, and it has form

$$
\left[\begin{array}{ccc}
\frac{1}{m_{1}} J_{1} & \\
& \ddots & \\
& \ddots & \\
& \frac{1}{m_{t}} J_{\mathrm{l}}
\end{array}\right]
$$

where m; is the number of vertices in the i-amponent.

This matrix is the normalized charaiteristie matrix of the "component" partition of X, and since it commutes with A, this partition is equitable. is

