226/02: Discrete Walks

Contents:
a) Invariant subspaces for $\langle P, \varphi\rangle$
b) Eigenvalues
c) Incidence matrices
d) Perfect state transfer

Gnvarianb subspaces

Let $P \& Q$ be two projections on \mathbb{C}^{m}.
We want spectral information for $U=(2 P-5)(2 Q-I)$. We work in the algebra $A=\langle P, Q\rangle=\langle R, C\rangle$.

Lemma if $\rho_{\&} \oint$ ara projections on \mathbb{C}^{m}, then \mathbb{C}^{m} is the direct sum of 1-8 2-dimensional Ct-invariant subspaces.

Proof. A 1-dimtensienal b-invariant selospate is spanned by a common eigenvector for $P \& Q$. Let W be the Orthogonal complement to the span of the common eigenvectors, we decompose it into 2-dimensuonal subspres. Since $P \& Q$ are Hermitian, W ir A-invariant. (why?) Note that QPP is Hermitian and so W is spanned by eigenvectors for $Q P Q$.

There are two cases according as QPP is zens on W or not. Assume first that $Q P P$ is not gere on W. Then there is is a nen-zho vector z such that PAP $_{z}=\mu z \& \mu \neq 0$ So

$$
\left.\mu Q_{z}=Q \cdot Q^{A} Q_{\xi}=Q P Q_{z}=\mu\right\}
$$

and hence $Q_{z}=z$ and

$$
Q P_{z}=Q P q_{z}=m z
$$

Therefore the subspace spanned $\left.{ }_{58}, P_{3}\right\}$ is of-inuariant.

We treat the case where $Q P Q$ is zens on W. If Q is zen on W. then $\langle P, Q\rangle=\langle P\rangle$ on W and therefore W has a basis of eigenvector for $\langle P, Q\rangle$. So Q ir not zoo on W and hence there is 8 in W such that $Q_{z}=g$. - (tue eljenvalnes of $\begin{gathered}Q \text { are } O R i .)\end{gathered}$ As $P P_{z}=Q P Q_{j}=0$, we see that the span of $\left\{z_{z}, P_{z}\right\}$ is ($P(Q\rangle$-invariant.
bigenualues

Our next step is to work out the eigenvalues of u.
Because $U l$ is unitary, its eigenvalues are complex with norm one, so the real eigenvalues of 4 can only be 1 or -1 . There are matrices L\& M with orblcuormal columns sit. $P=L L^{*}, Q=M N^{*}$. Let y be an ergenuecter for $M^{*} P_{M}$ and set $z=L_{y}$.
$P^{P Q}=\underbrace{M\left(M^{K} \rho m\right)} n^{*}$

$$
\begin{aligned}
P= & L l^{*} \quad Q=M M^{*} \\
& y \text {-eigenvector for } \quad M^{*} P M \\
& z=M y
\end{aligned}
$$

The following matrices are positive semidefinite, and have the same nonzero eigenvalues with the same multiplicities.

$$
\varphi P \sim P Q=\left\{\begin{array}{l}
P^{2} \phi \sim P Q P \\
P Q^{2} \sim \varphi P Q \\
L^{*} Q \sim L^{*} \varphi L \\
P M M^{*} \sim M^{*} P M>
\end{array}\right.
$$

If M is a square mabrix. $\|M\|_{2}:=\sup _{\| x i l l=1}\left\{x^{*} M_{x}\right\}$. We have $\|M N\|_{i} \leqslant\|M\|_{i}\|N\|_{i}$. If M is Hermitian, then $\|M\|_{2}$ equals the spectral radius of M

Claim if $P_{\&} Q$ are mpercertions then $O(P Q)$ si
Claim if $P \& Q$ are projections, then $\rho(P Q) \leqslant 1$.

Proof Let $\rho(M)$ be the spectral radius of the matrix M.
Define $\|M\|_{2}$ to be $\sup \left\{\left\|M_{x}\right\|_{2}:\|x\|_{2}=1\right\}$. Then $\left\|M N_{2} \leq\right\| M\left\|_{2}\right\| N \|_{2}$
$16 P$ is a projection on a Hilbert space, then

$$
\left\langle P_{x},(I-P) x\right\rangle=0
$$

and so $\langle x, x\rangle=\left\langle P_{x}+(I-P) x, P_{x}+(I-P) x\right\rangle=\left\langle P_{x}, P_{x}\right\rangle+\left\langle(I-P)_{\left.n,(I-P)_{x}\right\rangle}\right.$

This implies that $\left\|P_{n}\right\|_{2} \leqslant 1$ and so $\|P\|_{2} \leqslant 1$.
if \& is a projection as well, then

$$
\|P Q\|_{2} \leqslant\|P\|_{2}\|Q\|_{2} \leqslant 1 .
$$

Assume y is an eigenvector of $M^{*} P M$ and $z:=M y$.

Claim! If $M^{*} P M y=y$, then $g \in \operatorname{im}(P) \cap \operatorname{im}(\varphi)$.
Poof If $M^{*} P M_{y}=y$, then

$$
\begin{aligned}
& \qquad y^{*} M^{*}(I-P) M_{y}=y^{*} M^{x} M y-y^{*} M^{*} M_{y}=0 \\
& \text { and, as } I-P \xi 0 \text {, it follows that }(I-P) M_{y}=0 \\
& \text { and } M y \in \operatorname{in}(P) \text {. Since } Q M_{y}-M M^{*} M_{y}=M_{y}
\end{aligned}
$$

we have $M_{y} \in \operatorname{im}(Q)$.

Claim 2. If $M^{*} P M_{y}=0$, then $M_{y} \in \operatorname{ker}(P) \cap \operatorname{in}(\varphi)$.
Proof $0=y^{*} M^{*} P M_{y}$ and $P M_{y}=0$.
So $M y \in \operatorname{ker}(P)$. As before, $4 M y=M_{y} \in \operatorname{im}(Q)$.
Note that in case (1), $U_{3}=3$ and, in case (2), $U_{3}=-z$.

Claim 3. Assume $M^{*} M_{y}=\mu y$ with $0 \leq \mu<1$ and $\cos (\theta)=2 \mu-1$. Then

$$
(\cos (\theta)+1) \xi-\left(e^{i \theta}+1\right) p_{8}
$$

is an eigenvector for $l l$ with eigenvalue $e^{i \theta}$ and

$$
(\cos (\theta)+1)_{z}-\left(e^{-i \theta}+1\right) \rho_{z}
$$

is an eigenvector for A with elpenvalue $e^{-i \theta}$.

Proof Suppose $M^{*} p M y=\mu y \quad(0<\mu(1)$.
Then

$$
\begin{gathered}
Q_{z}=M M^{*} \cdot M_{y}=M_{y}=z \\
Q P_{g}=M M^{*} P M_{y}=\mu M y=\mu z
\end{gathered}
$$

and therefore span $\left\{z, P_{z}\right\}$ is $\langle P, Q\rangle$-invariant.
From this, one deduces that

$$
U\left[\begin{array}{ll}
3 & P_{z}
\end{array}\right]=\left[\begin{array}{ll}
3 & P_{3}
\end{array}\right]\left(\begin{array}{cc}
-1 & -2 \mu \\
2 & 4 \mu-1
\end{array}\right) \quad r^{2}-(4 \mu-2) k+1
$$

With $2 \mu-1=\operatorname{cro}(\theta)$, we find that the eigenvalues of $\left(\right.$ are $e^{\text {tit }}$. With move work, ane sees that the eigenvectors of U on span $\left\{g, \partial_{\rho}\right\}$ are as given.

Corollary The eigenvalues of $U 1$ are determined by the eigenvalues of $M^{*} P M$ (where $M M^{*}=Q$).

It is also possible to compute the eigenvalue multiplicities, see H. Than's thesis for details.

(Ico many) Yncidence matricer

Let X be a k-regular graph on n vertices. Then we have various incidence matrices describing relations between verbrees, edges \& arcs.

Ot $v \times s \times$ axes starting on a $n \times n k$
$D_{h} \quad$ uss x arcs ending on $u \quad n \times n k$
$B \quad v \times s \times$ edges $n \times n k / 2$
M arcs x edges $n k \times n k / 2$

We see that D_{t}^{\top} is the charactevistic mabrix of the parbition of arcs by inibial vertex....

Lemmes
(a) $R=M M^{\tau}-I$

$$
\begin{aligned}
& D_{t}^{\top} O_{t}=I_{n} \otimes J \\
& D_{t} R=D_{h}
\end{aligned}
$$

(b) $C=I \& G=\frac{2}{d} D_{t}^{\top} D_{t}-I \otimes I$

Define

$$
\begin{aligned}
& K:=\frac{1}{12} M, \quad L:=\frac{1}{6 a} D_{t}^{\top}, \quad S=L^{\prime} / \Gamma . \\
& \text { aras } \times \text { edges } . \\
& \text { arca } \times \text { uas }
\end{aligned}
$$

Lemwa $S S^{T}=\frac{1}{2 d} B B^{T}=\frac{1}{2 d}(A+d I)$.

Theorem Assume X is d-regular and U gives the ave-reversod walls on X. Then the multiplicities of the non-real eigenvalues of U sum to $2 n-4$ is X is bipartite and to $2 n-2$ otherwise, If λ is an eigenvalue of x, not $\pm d$ and $\cos (\theta)=\frac{\lambda}{d}$, and y is an esgenveltor for λ, then

$$
\left(D_{t}^{\tau}-e^{ \pm i \theta} D_{h}^{\tau}\right) y
$$

is an eigenvector for U wild eigenvalue $e^{ \pm 10}$.

Line digraphs

If X is a directed graph, the line digraph $L D(X)$ is the directed graph with the arcs of x as vertices and with an are from (a, b) to (c, d) if $\&$ only if $b=c$. (We could allow loops, but nothing much changes, So we dons.)

Note that we have ares $(a, b) \rightarrow(b, a)$. If we disallow there, we have a strict line digraph.

As for undirected graphs we have incidence matrices D_{t} and D_{h} with the same definition.
Lemma We have $D_{h}^{\top} D_{t}=A(L D(x))$ and $D_{t} D_{h}^{\top}=A(x)$.
Hence $x \& \operatorname{Lb}(x)$ have the same non-zers eigenvalues with the same multiplicities.

The transition matrix for an arc-reversal is a weighted adjacency mabris for LO (X).

Non-backtracking walks A walk in a graph is non-bact tracking if it has ne subsequences of the for $a b a$. We can view a non-backtracking walk as a sequence of arcs such that if $(a b) \&(c d)$ are consecutive then $b=c$ and $d \neq a$. Hence it may be viewed as a walt on the strict line digraph of X, which has adjacency matrix $A(L O(X))-R$

