$$
\angle 29 / 01
$$

Quantum Walks

Continuous walks
initial state: pure, spanned by z, density $3 z^{*}$
stake at time $t: \quad U(t) z z^{*} U(U-t)$
Since $\left.\operatorname{tr}(U(t))^{*} z^{*} U(t)\right)=1$, we see that $U(t) z_{z}$ is a unit vector.

If we measure with respect to the standard basis, the outcome is a with probability

Porn

$$
\begin{aligned}
& \left\langle U(t) g_{s}^{s} U(-t), e_{a} e_{a}^{\top}\right\rangle \\
& =\operatorname{tr}\left(U(t) g z^{*} U(-t) e_{a} e_{a}^{\top}\right) \\
& =e_{a}^{\top} U(t) g \cdot z^{*} U(-t) e_{a} \\
& =\left|e_{a}^{\top} U(t) z\right|^{2}
\end{aligned}
$$

If our initial states are vertex states, and we start at ep, the probability we observe a ir

$$
\begin{aligned}
& \quad\left|e_{a}^{p} U(t) e_{b}\right|^{2}=|U(t), b|^{2}=U(t) \cdot \overline{U(t)} \\
& \text { and } \bar{U}(t)=U(-t) . \\
& u(t)=\exp (i) t)
\end{aligned}
$$

The mixing matrix of a walk is

$$
M(t)=U(t) \cdot \overline{U(t)}=U(t) \cdot U(t)
$$

It is row a column stochastic. Its ab-entry it the probability that a walk starting at 6 is "on" a at tine t.
e.g. $\quad X_{2} \quad H=A(x)=A$
initial stote $e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}$

$$
\begin{aligned}
U(t)=\exp (i A A) & =\sum_{m} \frac{(i t)^{m}}{m!}\binom{0}{10}^{m} \\
& =\cos (t)\binom{10}{1}+i \sin (t)\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \\
& =\left(\begin{array}{cc}
c & i \\
i s & c
\end{array}\right)
\end{aligned}
$$

lere $M(t)=\left(\begin{array}{ll}c^{2} & s^{2} \\ s^{2} & c^{2}\end{array}\right)$.

$$
\begin{aligned}
& D \longrightarrow D \otimes D \\
& \alpha D \longrightarrow a^{2}(\sigma \otimes D) \text { not linear }
\end{aligned}
$$

Interesting cases:
(a) $M(t) e_{b}=e_{a}, a \neq b$ perbect state transfer
(b) $M(t) e_{b}=e_{b}$, vertex b is periodic
(c) $M(t) e_{6}=\frac{1}{n} 1$, local uniform mixing

For the erntinnous walle on K_{2}, we have
(a) local uniborm mixing from each vertex at time $\frac{\pi}{4}$.

$$
M(t)=\frac{1}{2} J, \quad U(t)=\frac{1}{\sqrt{2}} J
$$

(b) perfect state tranpler at bome $\frac{\pi}{2}$

$$
M(t)=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right] . \quad U(a)=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)
$$

(c) peroodicity at bimie π

$$
M(t)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad U(t)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

In terns of density matrices, if the initial state is $\binom{10}{0}$, then ab time t it is

$$
\begin{aligned}
&\left(\begin{array}{ll}
c & i s \\
i s & c
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
c & -i s \\
-1 s & c
\end{array}\right)=\left(\begin{array}{ll}
c & i s \\
i s & c
\end{array}\right)\left(\begin{array}{cc}
c & -i s \\
a & 0
\end{array}\right) \\
&=\left(\begin{array}{cc}
c^{2} & -i s c \\
i s c & s^{2}
\end{array}\right) \\
& t \quad \frac{\pi}{4} \quad \frac{\pi}{2} \quad \pi \\
& ?\left(\begin{array}{ll}
0 & g \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & e \\
0 & 1
\end{array}\right)
\end{aligned}
$$

$P_{3} \quad \phi\left(P_{3}, t\right)=t^{3}-2 t$
eigenvaluar $-N_{2} \quad 0 \quad \sqrt{2} \quad \zeta_{2}, \|_{2}, 1=1$
eigenuectovs $\left\{\begin{array}{ccc}1 & 1 & 1 \\ N_{2} & 0 & -1 / 2 \\ 1 & -1 & 1\end{array}\right.$

$$
\epsilon_{r}=3 r_{i}^{x}
$$

idempetents

$$
\begin{gathered}
\frac{1}{4}\left[\begin{array}{ccc}
1 & k_{2} & 1 \\
1 & 2 & v_{2} \\
1 & v_{2} & 1
\end{array}\right] \\
E_{1}
\end{gathered}
$$

$$
\begin{aligned}
& U(t)=e^{i t v_{2}} E_{1}+E_{2}+e^{i 6 v_{2}} \epsilon_{3} \\
& U\left(\frac{\pi}{\sqrt{2}}\right)=-\epsilon_{1}+E_{2}-E_{3}=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & -1 & 0 \\
-1 & 0 & 0
\end{array}\right] \text { - gwes an } \begin{array}{c}
\text { antomorphism } \\
\text { of } P
\end{array}
\end{aligned}
$$

We have perbecb state transfer frem $u x 1$ to u a at time $\pi / \sqrt{2}$. Furcher $U\left(\pi / N_{2}\right)=C_{1}+F_{2}+F_{3}=I$

Theorem If X admits perfect state trawler from a to b at time τ, it admits perfect state transfer from b to a ab time τ.
Proob 1: If $U(\tau) e_{a} a_{a}^{\tau} U(-\tau)=e_{b} p_{b}^{\tau}$ then, taking complex conjugates. we get

$$
e_{b} e_{b}^{r}=\overline{U(\tau)} e_{a} e_{a}^{\top} \overline{U(-\tau)}=U(-\tau) e_{a} e_{a}^{r} U(T)
$$

and se $U(\tau) e_{b} e_{b}^{\tau} U(-\tau)=e_{a} e_{a}^{\top}$.

Proof 2: $M(6)$ is symmetric.

Products
Theorem $U_{x B y}(t)=U_{x}(t) \otimes U_{y}(t)$
$\Rightarrow 16 X$ has pst from u to v ab time τ and Y has pst from w to x at time T, then $X a y$ has pst from (u, w) to (v, x) at time r.

Corollary The d-cube has perfect state fransleer from C to 1 at time $\pi / 2$.

The Cartesian power $P_{3}^{\text {Ld }}$ has diameter ad.
Corollary $P_{3}{ }^{\text {ad }}$ has perfect state transber between pairs of vertices at distance $2 d$.

A walk has uniform mixing ab time τ if there is local uniform mixing ab time τ from each vertex; equivalently if $U(\tau)$ is flat.

$$
\text { flat }=\left\{\begin{array}{l}
\text { all entries have the } \\
\text { same absolute } \\
\text { value }
\end{array}\right.
$$

Theorem $16 x$ e y have uniform mixing at time τ, se eloy $x \square Y$.

Complete graphs
A) $x\left(K_{n}\right)=J-I$ has eigenvalues $(n-1)^{(1)} \&(-1)^{(n-1)}$, $E_{0}=\frac{1}{n} J$ and $\epsilon_{1}=\left(I-\frac{1}{n} J\right)$. Hence we have the spectral decomposition

$$
A=(n-1)_{n}^{L} J+(-1)\left(I-\frac{1}{n} J\right)
$$

and

$$
U(6)=e^{(n-1) i l} \frac{1}{n} J+e^{-i t}\left(I-\frac{1}{n} J\right) \text {. }
$$

Therefore

$$
\begin{aligned}
U(t) & =e^{-i t}\left[\frac{e^{n i t}}{n} J+I-\frac{1}{n} J\right] \\
& =e^{-i t}\left[I+\frac{e^{n i t}-1}{n} J\right]
\end{aligned}
$$

and so $M_{K_{n}}(t)$ arverges to I as $n \rightarrow \infty$.

Bipartite graphs
$16 X$ is bipartite, there is a partition of its vertices into two classes, each of which is a coclique. So we can write $A(x)$ in partitioned form

$$
A=\left[\begin{array}{cc}
0 & B \\
B^{T} & 0
\end{array}\right] \quad\left(\begin{array}{ll}
0 & 1 \\
100 \\
100
\end{array}\right) A\left(P_{3}\right)
$$

Lemma If X is bipartite, A and $-A$ are similar.
Proof

$$
\begin{aligned}
\left(\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
0 & \theta \\
B^{\top} & 0
\end{array}\right)\left(\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right) & =\left(\begin{array}{cc}
-F & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
0 & B \\
-B^{\top} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & -B \\
-B^{\top} & \theta
\end{array}\right) .
\end{aligned}
$$

Corollary if X is bipartite \& θ is an eigenvalue of X, then $-\theta$ is an eigenvalue with the same multiplicity. D

If $\left(\begin{array}{ll}0 & B \\ \theta^{0} & 0\end{array}\right)\binom{y}{y}=\theta\binom{x}{y}$ then

$$
\theta\binom{x}{y}=\binom{B_{y}}{\theta_{x}}
$$

and

$$
\left(\begin{array}{cc}
\sigma & B \\
B_{0}^{\top}
\end{array}\right)\binom{x}{-y}=\binom{-B_{y}}{B_{x}^{T}}=\binom{-\theta x}{\theta y}=-\theta\binom{x}{-y} .
$$

This provides another proof of the lemma, and relater the eigenvectors of $-\theta$ te those of θ.

Further, if

$$
E=\left(\begin{array}{ll}
\epsilon_{00} & \epsilon_{01} \\
\epsilon_{01}^{\top} & \epsilon_{11}
\end{array}\right)
$$

is a spectral idempotent of the bipartitegragh X corresponding to the eigenvalue θ, then

$$
\left(\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right) E\left(\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
-\epsilon_{00} & \epsilon_{01} \\
-G_{01}^{J} & e_{11}
\end{array}\right)=\left(\begin{array}{cc}
E_{01} & -\epsilon_{01} \\
-E_{01}^{\top} & \epsilon_{11}
\end{array}\right)
$$

is the idempotent corresponding be $\rightarrow 0$.
x bipardite, $A=A(x)$

$$
\begin{aligned}
\left(\begin{array}{cc}
I & 0 \\
0 & 1
\end{array}\right) \exp (i t A)\left(\begin{array}{cc}
-I & 0 \\
0 & \frac{I}{2}
\end{array}\right)= & \exp (-i t d) \\
& \left(\begin{array}{ll}
u_{00} & u_{01} \\
u_{10} & u_{n}
\end{array}\right) \quad\left(\begin{array}{cc}
u_{00}-u_{01} \\
-u_{10} & u_{11}
\end{array}\right)=\left(\begin{array}{ll}
u_{10} & u_{01} \\
u_{10} & u_{10}
\end{array}\right)^{-1}=\overline{\left(\begin{array}{ll}
u_{00} & u_{01} \\
u_{10} & u_{10}
\end{array}\right) .}
\end{aligned}
$$

So $U_{\infty \infty}$ is reat \& $\bar{U}_{01}=-U_{01}$ ie $U_{O 1}=i s$, sreal

$$
\exp (i t A)=\left(\begin{array}{ll}
C_{1} & \text { iS } \\
i S^{T} & C_{2}
\end{array}\right), C_{1}, C_{2} \text { \& } S_{\text {veal }} C_{1}, C_{2} \text { symmebic }
$$

