L22/01

Contents
(1) Formal power series
(2) Generabing funetions
(3) Walk generabing functions

Formal power series
term is redundant
We could define a formal power series over a ring R to be a function for N to R. More traditionally, it is given as a sum arid be a bield, or the ring of matrices over a field

Where $a_{t} \in R$; the terms in the sum are elements of the polynomial ring $R[6]$.

Any polynomial in $\mathbb{R}[6]$ is a power series, and the addition and multiplication rules are the rales we use for polynomials. By

$$
\left[6^{k}, A(t)\right]
$$

we dende the coefficient of t^{k} in the series $A(t)$.

16

$$
A(b)=\sum a_{k} b^{k}, \quad B(b)=\sum b_{k} t^{k},
$$

then $\quad\left[t^{k}, A(t)+B(t)\right]=\left[b^{h}, A(t)\right]+\left[t^{k}, B(t)\right]=a_{k}+b_{k}$
and

$$
\begin{aligned}
{\left[b^{h}, A(0) B(t)\right] } & =\sum_{i=0}^{h}\left[t^{i}, A(t)\right]\left[t^{h-i}, B(t)\right] \\
& =\sum_{i=0}^{k} a_{i} b_{l-i}
\end{aligned}
$$

We define the order cad (f) of a power series to be the least integer i such that $\left[t^{i}, f\right) \neq 0$.
The norm $\|f\|$ of f is $2^{\text {ard }(f)} \quad$ large powers
This is a norm in the usual sense. We have
(a) $\|f\| \geqslant 0$, \& if $\|f\|=0$ then $f=0$.
(b) if $\alpha \in R, 0$, then $\|\alpha\|=$ and $\|a f\|=\|f\|$
(c) $\|f+\rho\| \leq \min \{\|A\|,\|g\|\} \leq\|f+g\|_{\text {non-Archimedian }}$

As $\operatorname{ard}\left(f_{g}\right)=\operatorname{ard}(f)+\operatorname{ard}(g)$, we have

$$
\left\|f_{s}\right\| \leq\|f\|\|s\|
$$

note: R might have divisors of zero

$$
\text { so } \leq \text {, not }=
$$

Let V be a metric space. A sequence $\left(v_{c}\right)_{\geq 00}$ is Cauchy if, for each real $\varepsilon>0$, there is an integer N such that $\left|v_{m}-v_{n}\right|<\varepsilon$ if $m, n \geq N$. Two Cauchy sequences are equivalent if their difference converges to θ. The equivalence classes of Cauchy sequences form the completion of V with respect to the metric.

Theorem The ring of formal power serves $R P[(t)]$ is the completion of the ring of polynomials $R[t]$.

Completions
Let R be a ring. Then
(a) R^{N} is a ring
(b) Gwen a metric on P^{N}, the Cauchy sequences form a subring of R^{N}; calling $l(R)$
(c) The Cauchy sequences that anverge to zero form an idealtin $P(R)$. The quotient $B(R) / E$ is the ampletion.

Theorem Let $\left(f_{r}\right)_{r \geq 0}$ be a sequence of power series. If $\left\|f_{r}\right\| \rightarrow 0$ as $r \rightarrow \infty$, then $\sum_{r \geq 0} f_{r}$ is defined. o Lemma Let f be a power series with constant term 0 . Then series $1+f+f^{2}+\cdots$ is defined and is the multiplicative inverse of $1-f$, ar so a power series is invertible it es ems if its constant torn is invertible.

Generationg furctions

Let Ω be a set (eng. of strings formed from ad b) and let wt: $\Omega \rightarrow \mathbb{N}$ be a function from Ω to N s.t. for all non-negative integers i,

$$
|\{\alpha \in \Omega: \operatorname{\omega t}(\alpha)=i\}|<\infty .
$$

We call wt a weight function. Then the sum

$$
\sum_{\alpha \in \Omega} t^{\omega t(\alpha)}
$$

is the generations function for $(\Omega, \omega t)$,

Rules
(a) sum
(b) prodrit
(c) sequences

Sum: Suppose $\Omega, \cap \Omega_{2}=\varnothing$, and the weight functions are ωt_{1}, wt respectively. Define wt on $\Omega_{1} \cup \Omega_{2} b_{y}$

$$
w t(\alpha)=\left\{\begin{array}{l}
w t_{1}(\alpha), \alpha \in \Omega_{1} ; \\
w t_{1}(\alpha), \alpha \in \Omega_{2}
\end{array}\right.
$$

If the Generating functions fur $\Omega_{1} \& \Omega_{2}$ are respectively $A_{1}, R A_{2}$, the generating function $\operatorname{for}(\Omega, w)$ is $A_{1}+A_{2}$.

We Define a weight function on $\Omega_{1} \times \Omega_{2}$ by

$$
\omega t\left(\alpha_{1}, \alpha_{2}\right)=\omega t_{1}\left(\alpha_{1}\right)+\omega t_{2}\left(\alpha_{2}\right)
$$

If $A_{1} \& A_{2}$ are the generating functions for $\Omega_{1} \& \Omega_{2}$, the generation g function for $\left(\Omega_{2} \times \Omega_{2}\right.$, nt $)$ is $A_{1} A_{2}$.

Sequences:
Assume no element of Ω has weight zero. The set

$$
\bigcup_{n \geqslant 0} \Omega^{k}
$$

has generating function $\frac{1}{1-A}$. We may this by W^{*}.

Examples
(a) Assume $\Omega=\{a, b\}$ \& $\operatorname{wt}(a)=w t(b)=1$. The generating function for Ω is $2 t$. The generating function

$$
\operatorname{for} \Omega^{*}=\frac{1}{1-2 t}=\sum_{n} 2^{k} t^{n}
$$

(b) Assume $\Omega=\{a, b\}$ \& $\operatorname{wt}(a)=1$, wt $(b)=2$.

Then the generating function for Ω is $t+t^{2}$ and the generating function for $\Omega^{*}=\frac{1}{1-t-t^{2}}=: A(t)$

Nate that $\left[t^{k}, A(t)\right]$ is the number of ways we Can write h as a sum of a segnence of 1 's \& 2's. $16 A(t)=\sum_{r \geqslant 0} a_{r} t^{r}$ then $1=\left(1-t-t^{2}\right) A(t)$. We have

$$
\left[+^{h},\left(1-t-l^{2}\right) A(k)\right]=a_{k}-a_{n-1}-a_{n-1} \quad(1 \geqslant 2)
$$

Gand

$$
\left[r^{k}, 1\right]=\left\{\begin{array}{lll}
1, & k=0 ; & a_{0}=1 \quad a_{1}=? \\
0, & k>0, & \Rightarrow a_{k}=a_{n-1}+a_{b-2}
\end{array} \quad h_{32}\right.
$$

It follows (at tor some work) that a_{k} ir the $k-t h$
Fibonacci number.
(c) Suppose $a_{k+1}=a_{k}+a_{k-1} \quad(k \geqslant 1)$. Then

$$
\binom{a_{k+1}}{a_{k}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{a_{k}}{a_{k-1}}
$$

and hence

$$
\binom{a_{k+1}}{a_{k}}=A^{k}\binom{a_{1}}{a_{0}} \quad k \geqslant 0
$$

ρo

$$
\sum_{k \geqslant 0} t^{k}\binom{h_{k+1}}{a_{k}}=\sum_{k \geq 0}^{1} r^{k} F^{k}\binom{a_{1}}{a_{0}}=(I-t F)^{-1}\binom{a_{1}}{a_{0}}
$$

and

$$
\begin{aligned}
& \sum_{k \geqslant 0}^{1} t^{k} a_{n}=e_{2}^{\top}\left[(\pm+f f)^{-1}\left(\begin{array}{l}
a_{1} \\
a_{0}
\end{array}\right]\right. \\
& \quad\left(5-t\binom{1}{1}\right)^{-1}=\left(\begin{array}{cc}
1-t & -t
\end{array}\right)^{-1}=\frac{1}{1-t-t^{2}}\left(\begin{array}{ll}
1 & 1 \\
6 & 1-t
\end{array}\right)
\end{aligned}
$$

Walk generating functions

The ij-entry of A^{k} is the number of walls Prom : to j in X with length k. If we fix $i \& j$, the generating function for the sequence $\left(\left(A^{k}\right)_{i, j}\right)_{k i o}$ is $\left((I-t A)^{-1}\right)_{i j}$. So we define

$$
w(x, t)=(I-t A)^{-1}
$$

and call it the walls generating function of X

The matrix $(t I-A)^{-1}$ is the resolvent of A and plays a key role in spectral theory. If the eigenvalues of A are $v_{1}, \ldots, \theta_{d}$ with corresponding spectral idempotent s $E_{1, \ldots}, E_{d}$, the spectral decomposition of $(I I-A)^{-1} \nu$

$$
(H I-1)^{-1}=\sum_{r=1}^{d} \frac{1}{t-\theta_{r}} E_{r}
$$

Hence

$$
\left((t+-A)^{-1}\right)_{i, j}=\sum_{r} \frac{\left(\epsilon_{r}\right)_{i, j}}{t-\theta_{r}}
$$

A walk is closed it its first \& last vertices are equal. The generating function for closed walks in X starting at u is $W(X, t)_{\text {un u }}$; we denote it by $C_{n}(X, t)$ and use $C(X, t)$ to denote $\sum_{n \in V(x)} C_{n}(x, 1)$, the generating function for all closed walks in X. Finally $C_{n}^{(1)}(X, t)$ is the generating function for closed walks an a that return just once.

Lemma $\quad c_{n}(x, t)=\frac{1}{1-C_{n}^{(1)}(x, t)}$
Proof A closed walk starting at u is a sequence of closed walks that start at 4 and return exactly ane. The lemma follows,

Remarks:
Con If u has valency k then $C_{n}^{(1)}(x, t)=k t^{2}+\cdots$
(b) $C_{u}^{(1)}(x, t)=1-\frac{1}{C_{u}(x, t)}$

We have $C_{n}(x, 6)=(I-6 A)_{n, n}^{-1}$ and so

$$
t^{-1} c_{h}\left(x, t^{-1}\right)=\left((1-5-A)^{-1}\right)_{u_{0}}
$$

By Cramer's rule

$$
\begin{aligned}
& (t I-A)_{n, n}^{-1}=\frac{\operatorname{det}_{\theta}(l L-A(x-\omega)}{d_{t l}(t+5-A(x))}=\frac{\varphi(X-u, t)}{\varphi(x, t)} \\
& t^{-1} C_{u}\left(X, t^{-1}\right)=\frac{\varphi(x-u, t)}{\varphi(x, t)}
\end{aligned}
$$

If A has engemalnes $\theta_{1}, \ldots, \theta_{d}$ with respective multiplicities m_{1}, \ldots, m_{d}, then

$$
\operatorname{tr}\left(A^{k}\right)=\sum_{r=1}^{d} m_{r} \theta_{r}^{k}
$$

and hence

$$
\sum_{n \geqslant 0} t^{k} \operatorname{tr}\left(A^{k}\right)=\sum_{k, r} m_{1} \theta_{r}^{k} t^{k}=\sum_{r} \frac{m_{r}}{1-1 \theta_{r}} .
$$

But LHF is

$$
\operatorname{rr}\left(F_{-G A)^{\prime}}-\sum_{u \in V(x)} C_{u}(x, t)=\sum_{a} \frac{r^{-1} \otimes\left(x, u, t^{-1}\right)}{e\left(x, t^{-1}\right)}\right.
$$

Now if $p(t)$ is a polynomial with zeros $\theta_{1, \ldots}, v_{d}$ and respective multiplicitiss $m_{1, \ldots,} m_{d}$ then

$$
\frac{p^{\prime}(t)}{p(t)}=\sum_{r} \frac{m_{r}}{1-\theta_{r}}
$$

(exercise)
\int_{e}

$$
\sum_{r} \frac{m_{r}}{1-t \theta_{r}}=r^{-1} \sum_{r} \frac{m_{r}}{t^{-1}-\theta_{r}}=\frac{t^{-1} \phi\left(x, t^{-1}\right)}{\phi\left(x, t^{-1}\right)}
$$

and therefore $\sum_{n \in t} \oplus(x-n, t)=\Phi^{\prime}(x, t)$.

