Conceptual models of immunity

Jonathan Dushoff

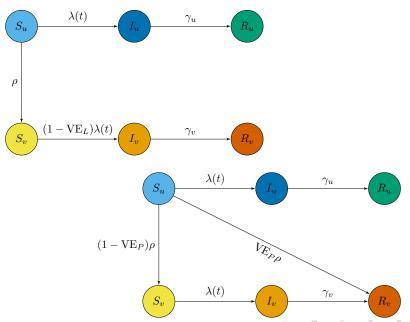
Fields Institute Colloquium on Mathematics for Public Health, Nov 2023

History of this work

- Innovative influenza cross-immunity models by Julia Gog
 https://pubmed.ncbi.nlm.nih.qov/11942531/
- My attempts to understand conceptual under-pinnings
- Michael (WZ) Li (PHAC) asking practical questions that made me share my ideas
- Daniel (Sang Woo) Park took the lead in making this a real project
 - With help from Jess Metcalf and Bryan Grenfell
- ► https: //www.medrxiv.org/content/10.1101/2023.07.14.23292670

What do modelers assume about vaccines?

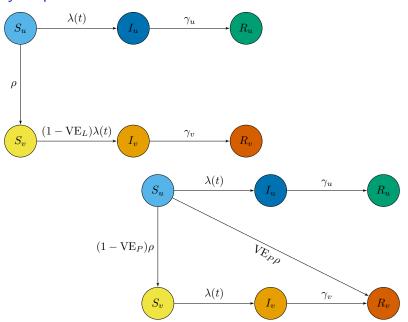
- ► Leaky model: 80% efficacy means that each individual is 80% protected (20% chance of infection relative to naive individual)
- ▶ Polarized model: 80% efficacy means that 80% of individuals are completely protected (20% are unprotected)

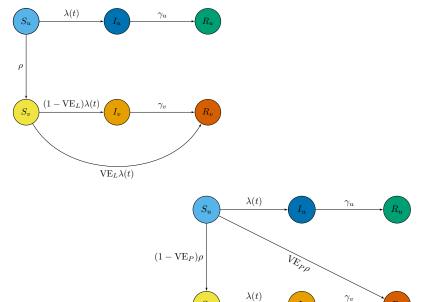

What does it mean to be protected?

- Against death?
- Severe outcomes?
- ► Transmission?
- Measurable infection?
- ► Immune response?

How do we model immunity?

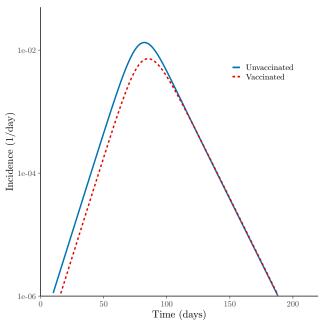
- History-based
 - What exposures has an individual had?
 - Maps naturally to leaky immunity (vaxxed individuals are all the same)
- Status-based
 - What is an individual immune to?
 - Maps naturally to polarized immunity

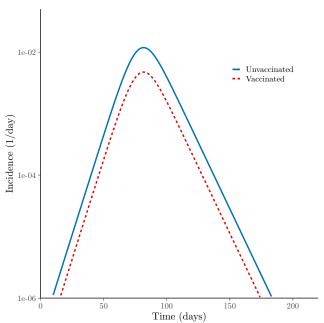

Modeling immunity


Limitations

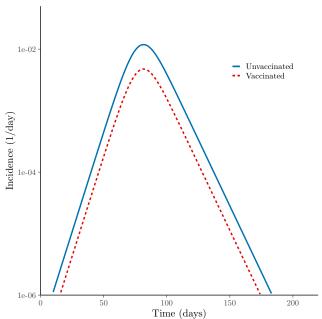
- Polarized approach assumes that a substantial proportion of the population is completely unprotected
 - Unrealistic
 - But how intrinsic is this assumption?
- Leaky approach ignores failed challenges
 - These are challenges that would counter-factually infect with protection
 - ▶ But I could resist one today and succumb next week

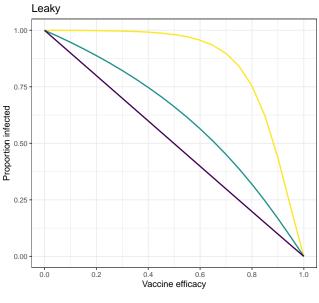
Leaky v. polarized


Leaky with boosting v. polarized

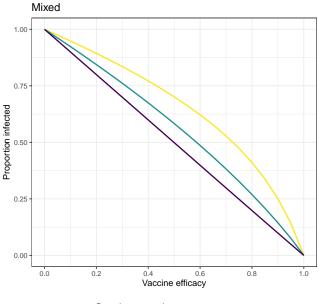

 S_v

 R_v

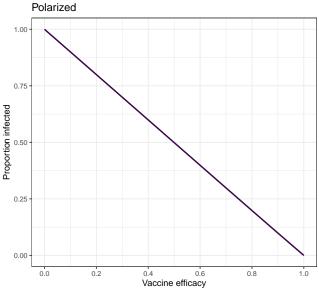

Leaky vaccine



Polarized vaccine

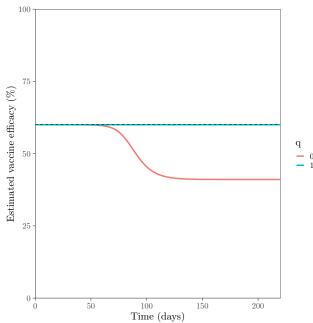


Leaky vaccine with boosting

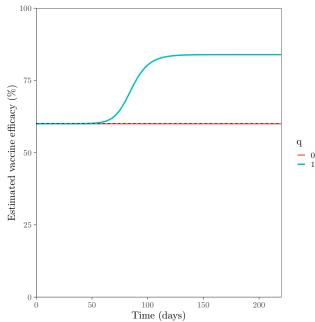


Boosting proportion — 0 — 0.5 — 1

Boosting proportion — 0 — 0.5 — 1

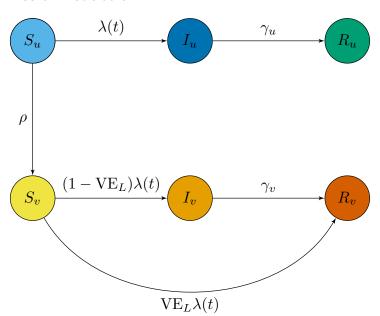


Boosting proportion — 0 — 0.5 — 1


Vaccine effectiveness

- ▶ Efficacy: protection with a controlled exposure
- ► Effectiveness: protection in a population
- Project effectiveness under different assumptions
 - Cumulative incidence
 - Instantaneous hazard

Incidence-based effectiveness


Hazard-based effectiveness

Questions going forward

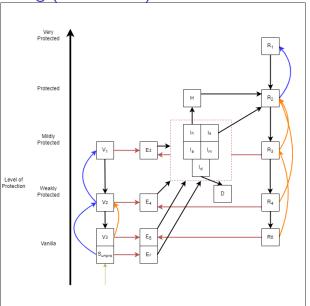
- ► Vaccine vs infection-driven immunity
- ► Protection against what?
- Immune waning
- ► A broader view of leakiness

Transmission reduction

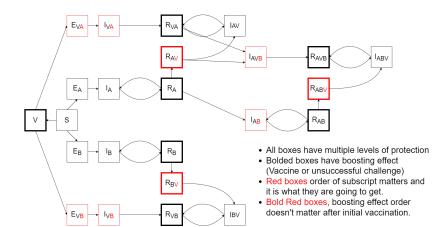
Leakiness

- We can define leakiness as any gap between efficacy and effectiveness
 - We can imagine different standard challenges for efficacy
- ▶ Should we be thinking only about number of challenges?
 - What about dose-dependence?
 - Can these be cleanly disentangled?

Connecticut correctional study


	Delta Predominant Period					Omicron Predominant Period				
Prior Infection, Vaccination,		Facility			Ratio of HR		Facility			Ratio of HR
and Type of Facility Exposure	! Infections	Exposures		HR (95% CI)	(Pvalue)	!Infections	Exposures		HR (95% CI)	(Pvalue)
Prior SARS-CoV-2 Infection*										
No Exposure No Prior Infection	111	10502				129	7135			
Prior Infection Cellblock Exposure	11	6522	-	0.21 (0.11, 0.39)	-	38	6329	-	0.36 (0.25, 0.54)	-
No Prior Infection	199 34	3436 2180		0.32 (0.24, 0.44)	0.216	347 155	3374 2606		0.61 (0.49, 0.75)	0.019
Cell Exposure No Prior Infection Prior Infection	41 12	179 85		0.59 (0.30, 1.16)	0.029	73 36	448 254	-	0.89 (0.58, 1.35)	
Prior Vaccination ^b	1					1				
No Exposure Unvaccination Vaccinated	92 30	7883 9141	•	0.32 (0.21, 0.49)	_	97 70	5771 7693	-	0.57 (0.42, 0.78)	-
Cellblock Exposure Unvaccination Vaccinated Cell Exposure	169 64	2603 3013		0.35 (0.26, 0.47)	0.727	255 247	2579 3401		0.69 (0.58, 0.83)	0.313
Unvaccination Vaccinated	36 17	155 109	-	0.74 (0.37, 1.48)	0.033	48 61	323 379	-	0.96 (0.64, 1.46)	0.041
Hybrid Immunity°										
No Exposure No Hybrid Immunity Hybrid Immunity Cellblock Exposure	85 4	5650 4289		0.05 (0.02, 0.10)	_	81 22	3537 4095	•	0.24 (0.15, 0.39)	-
No Hybrid Immunity Hybrid Immunity Cell Exposure	147 12	1802 1379		0.10 (0.05, 0.19)	0.203	190 90	1702 1729	•	0.41 (0.31, 0.55)	0.053
No Hybrid Immunity Hybrid Immunity	28 4	115 45	-	0.29 (0.07, 1.12)	0.026	36 24	237 168		0.80 (0.46, 1.39)	0.001

Lind et al., Nat Commun, 2023. https://doi.org/10.1038/s41467-023-40750-8


Time scales of challenge

- Challenges a week apart are likely antagonistic
 - ► Immune boosting, polarized-like dynamics
- Challenges an hour apart are likely synergistic
 - Potentially overwhelming, leaky-like dynamics

Immune waning (whiteboard)

Cross immunity (whiteboard)

Michael WZ Li, PHAC

Thanks

- Organizers and audience
- ▶ Daniel, Mike and other collaborators
- ► PHAC, CIHR