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1. Problem and Goal

We consider the problem

max{vTx : x ∈ C},

C ⊂ IRn: nonempty, compact (wlog convex),
v ∈ IRn.

• Traditional viewpoint: C uncertain, model so that result
computationally tractable.

• Our viewpoint: v uncertain, how much is lost?



2. A Model Case

Suppose first that C is the unit ball, v has unit norm.
The solution to our problem with the nominal objective vector v

is x = v, with objective value 1.

If the true objective vector is w := w(α), a unit vector making
an angle α, 0 ≤ α ≤ π, with v, then v attains a true objective
value of cos α, with a loss of 1− cos α. Since the range of wTx

over C is 2 (from -1 to +1),

scaled loss =
loss

range
=

1− cos α

2
.

We show that this scaled loss formula holds “on average” for
arbitrary C.

Note that we seem to have things backward: the true objective
w should be given first, while the perturbed objective v actually
optimized should be a function of w. We will address this later.



Model Case, II

The loss is the length of the red line segment; the range is the
combined lengths of the red and green line segments.



3. Definitions

max(v) := max{vTx : x ∈ C};

min(v) := min{vTx : x ∈ C};

range(v) := max(v)−min(v);

loss(v, w) := max(w)−min{wTx : x ∈ C, vTx = max(v)}.
(The loss in the true objective wTx possible when implementing
a best solution for the nominal objective vTx.)

scaled loss(v, w) := loss(v,w)
range(w) .



4. A Very Bad Case

On the other hand, the scaled loss is terrible in the case that C

is the line segment joining [−1; 0] and [+1; 0], v is [0; 1], and
w := w(α) is [sin α; cos α].
Then [−1; 0] is optimal for v but attains the worst objective
value for w, so that scaled loss(v, w) is 1.



5. Three Probabilistic Models

(i) Suppose v and u are independently drawn from the
standard Gaussian distribution N(0, I), and let
w := w(α) := cos α v + sin α u.

The angle between v and w is with high probability very
close to α as n approaches infinity. Also, (w, v) has the
same distribution as (v, w). We denote expectations with
respect to this distribution by E1.

(ii) Suppose v̄ and ū are independently drawn from N(0, I).
Let û := (I − v̄v̄T/v̄T v̄)ū, v := v̄/‖v̄‖, u := û/‖û‖, and
w := w(α) := cos α v + sin α u.

It is not hard to see that the angle between v and w is now
exactly α, and again, (w, v) has the same distribution as
(v, w). We denote expectations with respect to this
distribution by E2.



6. Three Probabilistic Models, continued

(iii) Our third distribution is quite general, but has a different
form of perturbation. Let fj be a symmetric probability
density function on IR, j = 1, . . . , n. For each j, let vj and
uj be independently drawn from fj, and let wj := wj(α) be
vj with probability cos α and uj with probability 1− cos α.

Once again, (w, v) has the same distribution as (v, w), and,
under mild conditions on the fj, the angle between v and w

is concentrated around α.

Note that, in this model, a small fraction of the components
is changed a possibly large amount, while in the previous
model, each component is changed a small amount. We
denote expectations with respect to this distribution by E3.



7. Results

Note: −min(v) = max{−vTx : x ∈ C}. So

Proposition:

E1[max(w)] = E1[max(v)],

E1[range(w)] = E1[range(v)] = 2E1[max(v)].

Let xv ∈ C maximize vTx over C. Then

w(α)Txv = cos α vTxv + sin α uTxv.

Proposition:

E1[loss(v, w(α))] = (1− cos α)E1[max(v)].



Results, II

Theorem:

E1[loss(v, w(α))]

E1[range(w(α))]
=

1− cos α

2
.

Similar arguments show that the same result holds with E1

replaced by E2 or E3.

Note that all results refer to the ratio of expectations,
rather than the expectation of the ratio, the scaled loss.



8. Comparison of Ratio of Expectations to
Expectation of Ratio





9. Graphs of Percentiles





10. Conclusion

Under three probabilistic models, the loss in objective value
from even a fairly large misspecification of a linear objective
function is likely to be quite modest, for any nonempty
compact feasible region.
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