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A Semidefinite Program (SDP)

sup, clx

(SDP)

Here
e A,, B are symmetric matrices, c,x € R™.

e A < B means that B — A is symmetric positive semidefinite
(psd).

e An n X n matrix Y is positive semidefinite, if all principal
subdeterminants are nonnegative.

e Equivalently, if v!Yv > 0Vv € R™.



SDP in a different shape

infy BeY
st. Y =0
A;eY =¢c;(z=1,...,m).

Here
e A;, B are symmetric matrices, c € R™.
e Ae B = Zi,j a,-jbij



Conic duality and SDP duality

e Common framework for LP and SDP: both R and psd matrices
are closed convex cones.

e Aset Cisa cone,ifr e C.A>0= Az € C.

e Linear objective, affine, and conic constraint both in LP
and SDP, and many other interesting problems.



Conic duality and SDP duality

Early duality theory for conic and semi-infinite problems:
e Duffin ’56
¢ Bellman-Fan 63
e Ben-Israel ’69-’70
e Ben-Israel-Charnes-Kortanek ’69-’70
e Berman ’70-’73
e Duffin-Jeroslow-Karlovitz 83

Later duality theory:
e Shapiro ’85, 97
e Borwein-Wolkowicz ’81-’86
e Bot-Wanka ’06
e Jeyakumar, Dinh, Lee ’04



Surveys, textbooks

Surveys and textbooks (on SDP in general, and on duality
theory):
e Shapiro ’00

e Wolkowicz-Vandenberghe-Saigal, ’00;
e Bonnans-Shapiro ’00

e Renegar ’01;

e Vandenberghe-Boyd ’96, ’04;
e Todd ’01;

e Luo-Sturm-Zhang ’97;

e Borwein-Lewis ’00;

e Ben-Tal-Nemirovskii ’01;

e Burer (talk) ’07

e Giler 10



An important, related question: when is the linear
image of a closed convex cone closed?

e Classic: Theorem 9.1 in Rockafellar;
¢ Waksman-Epelman, 1976;

e Auslender, 1996;

e Bauschke-Borwein, 1999;

e Pataki, 2007;

e Borwein-Moors, 2009-11;
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SDP duality

The primal-dual pair of SDPs:

sup, clz infy BeY
A;oY =¢c; (e =1,...,m).

Easy: If z and Y are feasible, then ¢’z < BeY.
Ideal situation: 3z,3Y : cfz = BeY.

But: in SDP, unlike in LP pathological phenomena occur:
nonattainment, positive gaps.



What are the pathologies?



Pathology # 1: nonattainment in dual

Primal:
sup 2x < sup 2xy
01 10 1 —x
s.t. 1 < s.t. ~ 0

10 00 —x; 0
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Pathology # 1: nonattainment in dual

Primal:
sup 2x < sup 2xy
01 10 1 —a
s.t. x; < s.t. ~ 0
10 00 —x; O

Only feasible x; is ;1 = 0.
Dual: Dual variable is Y >~ 0.
inf yq;
Y11 1

s.t. ~ 0
1 yo2o

Here inf = 0, but not attained: Any vy, > 0, yso = 1/yqq is
feasible, but y;; = 0 is not.
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Primal:

Sup Io

(100\ (001\ (100\

st. 1 |000| +22]010 010

\0 00 \100/ \ooo

PN




Pathology # 2: positive duality gap

Primal:

Sup Io

(100\ (001\ (100\

st. 1 |000| +22]010 010

\0 00 \100/ \oo0o

Only feasible x5 is x5 = 0.

PN




Pathology # 2: positive duality gap

Primal:

Sup Io

(1 0 0\ (0 01) (1 0 0)

st. 1 |000| +22]010 010

\0 00 \100/ \oo0o

Only feasible x5 is x5 = 0.

PN

Dual value is 1, and it is attained.



What to do with the pathologies? Our goal

Let us find a characterization of bad SDPs, which is

e exact
e efficiently verifiable
e aesthetic



Terminology

Definition:

e Thesystem P = {z| > " x;A; < B }is well-behaved, if for
all ¢ such that

sup{ cl'z |z € P} is finite,

the dual program has the same value, and it attains.

e Badly behaved, otherwise.

e We would like to understand badly behaved semidefinite
systems.



Motivation

(20)= 6o
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Motivation

The systems

01 10
10 00

and

(100\ (001\ (100\

1 |000]| +x2|010 010

PN

are both badly behaved.

Curious similarity:
e “Hanging off” diagonals;

e if we delete 2nd row and 2nd column in all matrices in the
second system, and delete the first matrix,

e we get back the first system!



Motivation

e In fact, all badly behaved systems appearing in the literature
look similar.

Question:
e Do all bad SDPs “look the same”?

e Is the first. minimal system “contained” in all of them?

The answer is yes to both.



Technicalities

Definition: A slack matrix in P is a matrix

Fact: There is a slack matrix with maximum rank. E.g. the

maximum rank slack in

01 10\ . 10
T < 1S

10 00 00

Assumption: We can replace all A; by T?" A;T and B by T' BT,
where T' is invertible.



Main Theorem

Assume w.l.o.g. in P the max rank slack is
I. 0
00

7z =

Then P is badly behaved < dV which is a linear combination
of the A; and B of the form

(> )
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where e; is first unit vector, and the dots arbitrary.
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Main Theorem

Assume w.l.o.g. in P the max rank slack is
I. 0
00

7z =

Then P is badly behaved < dV which is a linear combination
of the A, and B of the form

P
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Main Theorem

Assume w.l.o.g. in P the max rank slack is
I. 0
00

7z =

Then P is badly behaved < dV which is a linear combination
of the A, and B of the form

P
V = eir 0o ... ’

where e; is first unit vector, and the dots arbitrary.

The Z and V are “easy to visualize” certificates.

|4 Z
—T—

01 10
<

10 00

In first system: x;



More motivation: excluded minors

Unrelated question: Given undirected graph, is it planar, i.e.
can we draw the edges on the plane, so they only meet at
nodes? E.g. graph below is planar,

=4

since it can be redrawn as



More motivation: excluded minors

Theorem (Kuratowski): A graph is not planar, iff by deleting
and contracting edges it can be reduced to one of the two
graphs below:




Corollary to Main Theorem

Consider the elementary operations performed on P:

e Rotation: A; + TT A, T for all : and B + T? BT, where T is
invertible.

e Contraction: A; < Z;n:l A;A;, for some ¢, where A\; # 0, and
B« B+ " 1iA;.
e Deletion:

— Delete a row and column with same index from all matri-
ces,

— Delete a matrix A;.



Corollary to Main Theorem

Consider the elementary operations performed on P:

e Rotation: A; + TT A, T for all : and B + T? BT, where T is
invertible.

e Contraction: A; < Z;n:l A;A;, for some ¢, where A\; # 0, and
B« B+ " 1iA;.
e Deletion:

— Delete a row and column with same index from all matri-
ces,

— Delete a matrix A;.

P badly behaved =- using these we can get

o 1l 10
10 00

L1

where o 1s some real number.



Complexity implications

We use the real number model of computing: (see e.g. Blum,
Cucker, Shub, Smale ’98), in which one can store, and do op-
erations on real numbers in unit time.

Reason: SDP can have irrational solutions, or solutions with
exponentially many digits.

Corollary: In this model, the question “is a semidefinite system
well-behaved?” is in NP M co-NP.

I.e., we can verify in polynomial time that a system is well-
behaved, or badly behaved.



Conic LPs

e A conic linear system is
P={z|Aze <gb}={x|b— Ax € K},
where K is a closed, convex cone.

e Dual problem of sup{c’z:x € P} involves K*, the dual
cone of K.

e Well-behaved, badly-behaved notions are defined analo-
gously.
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Conic LPs

e A conic linear system is
P={z|Aze <gb}={x|b— Ax € K},
where K is a closed, convex cone.

e Dual problem of sup{c’z:x € P} involves K*, the dual
cone of K.

e Well-behaved, badly-behaved notions are defined analo-
gously.

Known:

K polyhedral = P is well-behaved.

P strictly feasible, i.e. dxz:b— Ax € ri K = P is well-
behaved.

These are sufficient, but not necessary, and they have nothing
to do with each other.



Feasible directions

K closed convex cone, z € K. The set of feasible directions at
z in K is

dir(z, K) ={y|Je >0s.t. z+ey € K}

The set dir(z, K) is convex, but may not be closed.

> cldir(z,K) \ dir(z,K)




A geometric result on conic LPs
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A geometric result on conic LPs

Let
e 2 be a maximum slackin P = {z | Ax <k b}, and

e dir(z, K) the set of feasible directions at z in K.

Then P well-behaved =
(¥) R(A,b) N (cl dir(z, K) \ dir(z, K)) = 0.
If K* 4 face(z, K)* is closed, then <.
Corollaries
K polyhedral = P well-behaved.
P strictly feasible, i.e. z € riK = P well-behaved.

I.e. we unify the two unrelated conditions.
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faces of K)



A geometric result, if K is nice
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A geometric result, if K is nice

Corollary Suppose K is nice (i.e. K* + F* is closed for all F
faces of K)

Then P well-behaved < ()

Hence, P badly behaved <
z and some v € R(A,b) N (cl dir(z, K) \ dir(z, K))
are certificates of the bad behavior.

Polyhedral, semidefinite, and second-order cones are nice.

In the “Bad SDP” thqu)rem:

AN
7. 0 ‘/11 €1 ... \
z | , V = el 0 ... |€ cl dir(Z,S87) \ dir(Z, ST).
00

o



Background

e When b = 0, we have that P is well-behaved << A* K™ closed.

e > we get back characterization of closedness of A*K™ in
P 2007.



Second order conic systems

e A second order conic system is P = {x| Ax <x b} with
K = K; X -+ X K;, where

m;

Kz-:{mERmﬂa:lz\/m%—l—...mz

A badly behaved system:

(0) (1)

0| 1 SKl 1

\1/ \0/




Second order conic systems

Theorem Suppose w.l.o.g. the maximum slack in P is of the
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Second order conic systems

Theorem Suppose w.l.o.g. the maximum slack in P is of the

form
)

z: 0,000,0; ’.0., ;el’...’e;

Then P is badly behaved < Jv € R(A,b) s.t.
o v, € K;V1 € O,
®ev;1 = V2 V1E R,
ev; = (a,a,1,...)" 35 € R.

where a« € R, and the dots are arbitrary components.



Second order conic systems

Theorem Suppose w.l.o.g. the maximum slack in P is of the

form
)

Z: 0,0.0,0; ’.0‘, ;el’...’e;

Then P is badly behaved < Jv € R(A,b) s.t.
o v, € K;V1 € O,
®ev;1 = V2 V1E R,
ev; = (a,a,1,...)" 35 € R.

where a« € R, and the dots are arbitrary components.

(0) (1)

In the example: O =T =10, |0 | =1 <k,

0 )

v




Well-behaved semidefinite systems

The system
/O 0 O\ /1 0 O\
1 (0012|000

\0 1 0) \0 O 0)

is well-behaved (though not strictly feasible).

Can we characterize well-behaved systems?



Theorem on good SDPs

S.t. (wlo.g.) in P = {z| )" x;A;, < B} the max rank
slack is



Theorem on good SDPs

S.t. (wlo.g.) in P = {z| )" x;A;, < B} the max rank
slack is

Then P is well behaved < (1) and (2) below hold.

0O O
(1) U = st.BelU = A;eU = 0V:.
0 In—r

Vii Viz ,
(2) VV = € lin{A,,..., A,,, B} we have V;, = 0.

Vi 0

e These are easy to verify.



Conclusion

e Duality in SDP: similar to LP, and similarly important: a
dual solution gives a certificate of optimality.

e However: pathologies occur: nonattainment, duality gaps,
etc.

e Main result: all pathologies have a very simple underlying
structure, i.e. “all bad SDPs look the same”
(Hanging off “1”s structure).

e An “excluded minor” type theorem for SDPs.
e A general, geometric result for conic LPs (cl dir \ dir...)

e Characterization of good SDPs, bad SOCPs, ...



Thank youl!



