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2 H2    +  2 CO  =  CH4  +  CO2

H:    |2|     |0|   |4|   |0|   |0|
C:  2*|0| + 2*|1| - |1| - |1| = |0|
O:    |0|     |1|   |0|   |2|   |0|

(1) Chemical reactions :

Linear combination
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2 H2    +  2 CO  =  CH4  +  CO2

H:    |2|     |0|   |4|   |0|   |0|
C:  2*|0| + 2*|1| - |1| - |1| = |0|
O:    |0|     |1|   |0|   |2|   |0|

(1) Chemical reactions :

Linear combination

Minimal: none of them can be omitted.
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2 H2    +  2 CO  =  CH4  +  CO2

H:    |2|     |0|   |4|   |0|   |0|
C:  2*|0| + 2*|1| - |1| - |1| = |0|
O:    |0|     |1|   |0|   |2|   |0|

(1) Chemical reactions :

Linear combination

Minimal: none of them can be omitted.

(also for ions, e-,  cathalysts, etc.)
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1: C +    O =  CO X1 =  [1,1,-1,0] 
2: C + 2 O =  CO2 X2 =  [1,2,0,-1]

( 3: O + CO =  CO2 X3 =  [0,1,1,-1] )
4: C + CO2= 2CO X4 =  [1,0,-2,1]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2*X1 - X2  = X4 

2*X1 - X2 - X4 = 0

(2) Mechanisms :

Linear combination
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1: C +    O =  CO X1 =  [1,1,-1,0] 
2: C + 2 O =  CO2 X2 =  [1,2,0,-1]

( 3: O + CO =  CO2 X3 =  [0,1,1,-1] )
4: C + CO2= 2CO X4 =  [1,0,-2,1]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2*X1 - X2  = X4 

2*X1 - X2 - X4 = 0

(2) Mechanisms :

Linear combination

Minimal: none of them can be omitted.

Prescribed:  input- , output- materials
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(3) Physical quantities (measure units/”dimension analysis”):

[ 1, 0, 0, 0, 0, 0 ]

[ 0, 1,-1, 0, 0, 0 ]

[-3, 0, 0, 1, 0, 0 ]

[-1, 0,-1, 1, 0, 0 ]

[ 0, 0,-2, 0, 1,-1 ]

[ 0, 0,-3, 1, 0,-1 ]

[ 1, 0,-3, 1, 0,-1 ]

Minimal connection:          υ·κ = µ ·c    /for some c∈R/
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(0) Homogeneous linear equations:

A·x = 0
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(0) Homogeneous linear equations:

A·x = 0

Find all minimal solutions
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Main Definition:

S = {s1 , s2 ,… , sk } ⊂ Rn is an    algebraic simplex

iff S is minimal dependent. �
iff

S is dependent  and S\{si}  is independent      for all i < k .   �

i.e.

α1·s1 + α2·s2 +… + αk·sk = 0

and none of them can be omitted :  αi ≠ 0 for all i < k .   �

(minimal reactions, mechanisms, etc. )
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Reminder:  S={s1 , s2 ,… , sk}⊂ Rn is an algebraic simplex iff S is dependent 

and   S\{si}  is independent for all i < k  .   �
i.e. α1·s1 + α2·s2 +… + αk·sk = 0 and none of them can be omitted. 

(minimal reactions, mechanisms, etc. )

TASK 1:

Algorithm for generating all simplexes S⊂H  in a given H⊂Rn.

(all reactions, mechanisms, etc.)   

+ Applications
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Reminder:  S={s1 , s2 ,… , sk}⊂ Rn is an algebraic simplex iff S is dependent 

and   S\{si}  is independent for all i < k  .   �
i.e. α1·s1 + α2·s2 +… + αk·sk = 0 and none of them can be omitted. 

(minimal reactions, mechanisms, etc. )

TASK 1:

Algorithm for generating all simplexes S⊂H  in a given H⊂Rn.

(all reactions, mechanisms, etc.)   

+ Applications

Result: polynomial algorithm

√√√√ [1991] Hung.J.Ind.Chem. 289-292.

√√√√ [2000] J.Math.Chem.1-34. 
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E.g.

=>
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Reminder:  S={s1 , s2 ,… , sk}⊂ Rn is an algebraic simplex iff S is dependent 

and   S\{si}  is independent for all i < k  .   �
i.e. α1·s1 + α2·s2 +… + αk·sk = 0 and none of them can be omitted. 

(minimal reactions, mechanisms, etc. )

Task 2:  

Question: For given  H⊂Rn how many simplexes  S⊂H  could be  

in H  if   |H|=m is given and  H  spans  Rn  ?

(how many reactions, mechanisms, etc. )
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Reminder:  S={s1 , s2 ,… , sk}⊂ Rn is an algebraic simplex iff S is dependent 

and   S\{si}  is independent for all i < k  .   �
i.e. α1·s1 + α2·s2 +… + αk·sk = 0 and none of them can be omitted. 

(minimal reactions, mechanisms, etc. )

Task 2:  

Question: For given  H⊂Rn how many simplexes  S⊂H  could be  

in H  if   |H|=m is given and  H  spans  Rn  ?

(how many reactions, mechanisms, etc. )

Notation:

simp(H) :=   the number of simplexes S⊂H     .     �
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Theorem 1 [1995] (Laflamme-Szalkai)

= O(mn+1) 

and simp(H) is maximal iff every n  -element subset

of H  is independent.  �
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Assuming:  |H|=m ,   H  spans  Rn  
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Theorem 1 [1995] (Laflamme-Szalkai)

= O(mn+1) 

and simp(H) is maximal iff every n  -element subset

of H  is independent.  �

Note:   

Sperner’s  theorem  is not enough: what is the structure of H ?
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Assuming:  |H|=m ,   H  spans  Rn  
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|H|=m ,   H  spans  Rn  

Theorem 2 [1995] (Laflamme-Szalkai)

O(m2) =

and simp(H) is minimal iff m/n  elements

of H  are parallel to bi where {b1,…,bn}  is any base of .  �

(parallel = isomers, multiple doses,…)
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|H|=m ,   H  spans  Rn  

Theorem 2 [1995] (Laflamme-Szalkai)

O(m2) =

and simp(H) is minimal iff m/n  elements

of H  are parallel to bi where {b1,…,bn}  is any base of .  �

(parallel = isomers, multiple doses,…)

Open Question:

if   no parallel elements are in H ?
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?  1) If  n is even => H contains n linearly independent vectors

{ui : i = 1,…,n} and the remaining of  H is divided as evenly as 

possible between the planes  [ui , ui+1]   for  i = 1, 3, …, n - 1 .  �

?  2) If  n is odd  => H again contains n linearly independent vectors

{ui : i = 1,…,n},  one extra vector in the plane [un-1 ,un] and finally the 

remaining vectors are divided as evenly as possible between the 

planes  [ui , ui+1]   for  i = 1, 3, …, n - 2 with lower indices having 

precedence. �

LATER !

General Conjecture (1998) (Laflamme, Meng, Szalkai)

no parallel => the minimal configurations in Rn are:
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Reducing the dimension (n=3):

vectors => points,  2D-planes => lines

R3 R2
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So, after the reduction we get:

Definition: (affine) simplexes in R2 are 

i)   3 colinear points, 

ii)   4 general points: no three colinear,

�

Elementary question in R2 :

What is the minimal number of (total) simplexes

if the number of points (spanning  R2)  is m ? 
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Theorem 3 [1998] (Laflamme-Szalkai)  

For H ⊂ R3

and for m>8 :   simp(H)  is  minimal iff

|H|=m ,   H  spans  Rn ,  no parallel elements

H = 

�

( vectors = points,   planes = lines )

m-2
3

n=3
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Reducing the dimension (n=4):

vectors => points,  2D-planes => lines, h.-planes => 2D-planes



27

So, after the reduction we get:

Definition: (affine) simplexes in R3 are 

i)   3 colinear points, 

ii)   4 coplanar, no three colinear,

iii) 5 general points: no three or four as above.   

�
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So, after the reduction we get:

Definition: (affine) simplexes in R3 are 

i)   3 colinear points, 

ii)   4 coplanar, no three colinear,

iii) 5 general points: no three or four as above.   

�

Still elementary question in R3 :

What is the minimal number of (total) simplexes

if the number of points (spanning  R3)  is m ? 
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Theorem 4 [2010] (Balázs Szalkai - I.Szalkai) 

For H ⊂ R4

and for m>24   simp(H)   is minimal iff H  is 

placed into two (skew) detour line

|H|=m ,   H  spans  Rn ,  no parallel elements

�

n=4
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?  1) If  n is even => H contains n linearly independent vectors

{ui : i = 1,…,n} and the remaining of  H is divided as evenly as 

possible between the planes  [ui , ui+1]   for  i = 1, 3, …, n - 1 .  �

General Conjecture (1998) (Laflamme, Meng, Szalkai)

no parallel => the only minimal configurations in Rn are:

[u1, u2]       [u3, u4]          . . . [ui, ui+1]     . . . [un-1, un]



31

?  2) If  n is odd => H contains n linearly independent vectors

{ui : i = 1,…,n} ,  one extra vector in the plane [un-1 ,un] and finally 

the remaining vectors are divided as evenly as possible between the 

planes  [ui , ui+1]   for  i = 1, 3, …, n - 2 with lower indices having 

precedence. �

General Conjecture (1998) (Laflamme, Meng, Szalkai)

no parallel => the only minimal configurations in Rn are:

[u1, u2]       [u3, u4]          . . . [ui, ui+1]   . . . [un-2, un-1] , [un-1, un]
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Matroids (hypergraphs) :

What is the minimal and maximal number of cycles and bases

in a matroid of size m and given rank n ?
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√√√√ [2006] (Laflamme, Dósa, Szalkai) : 

Matroids (hypergraphs) :

What is the minimal and maximal number of cycles and bases

in a matroid of size m and given rank n ?

Theorem 5 If  m > n+1 then only the uniform matroid  Um,n contains 

the maximum number of circuits: 

If  m = n+1 then all matroids of size m and of rank n contain exactly 1

circuit.  �

Theorem 6 If  m > n then only the uniform matroid  Um,n contains 

the maximum number of bases: 

�









m

n
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√√√√ [2006] (Laflamme, Dósa, Szalkai) : 

Matroids (hypergraphs) :

What is the minimal and maximal number of cycles and bases

in a matroid of size m and given rank n ? 

Theorem 7 For each m and n there is a unique matroid Mo of size m

and of rank n containing the minimum number of bases, namely 1 when 

we allow loops in the matroid.  �

Theorem 8   Any matroid M of size m and of rank n contains the  

minimum number m-n circuits if and only if the circuits of the 

matroid are pairwise disjoint. �
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