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LAROS problem: relationship to NMF and SVD

Finding a feature in a text dataset

Suppose one is given a text corpus, i.e., a collection
of n text documents, and one seeks a topic in the
dataset, that is, a subset of related documents. One
approach:

@ Form the term-document matrix, that is, the
m X n matrix in which /th row corresponds to
the ith term, jth column to jth document, and
A(7,j) is the number of occurrences of term |
in document J.

@ Find a large approximately rank-one submatrix
A(l,J) of A (i.e., A(l,J) =~ whT).
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LAROS problem: relationship to NMF and SVD

Finding a feature in an image dataset

Given an image dataset in which all the n contain
exactly my x my, = m pixels, find a visual feature,
that is, a particular pattern that recurs in the same
subset of pixels in a subset of images.
@ Form an m x n matrix A in which A(/, )
stands for the intensity of pixel / in image j.
@ Find a large approximately rank-one submatrix
(LAROS) A(I, J) of A.
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LAROS problem: relationship to NMF and SVD
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@ Assume A is nonnegative.

@ The above process can be repeated iteratively:
Fori=1:k
Find I;, Ji,w;, h; s.t. A(l;, J;)) =~ w;h].
Pad (W;, h;) with zeros to obtain (w;, h;).
A = max(A—w;h0).
@ Upon completion,
Azwlth+---+wkhkTE WHT,



LAROS problem: relationship to NMF and SVD

Greedy NMF algorithm

@ OK to assume that w; >0, h; > 0
(Perron-Frobenius).

@ Given a nonnegative matrix A, a factorization
A~ WHT is called nonnegative matrix
factorization (NMF) if W H both nonnegative.

@ The algorithm on the previous transparency is a
greedy NMF algorithm (Asgarian & Greiner,
Bergmann et al., Biggs et al., Gillis & Glineur).



LAROS problem: relationship to NMF and SVD

LAROS and SVD

@ Best overall rank-one approximation to A
comes from SVD (Eckart-Young theorem).
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A:

@ The dominant left singular vector is
~ [1;1;0;0]; SVD has identified A(1:2,1:2).



LAROS problem: relationship to NMF and SVD

LAROS and SVD

@ Best overall rank-one approximation to A
comes from SVD (Eckart-Young theorem).

0.8 09 01 0.2
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0.0 0.0 1.1 0.8

A:

@ The dominant left singular vector is
~ [1;1;0;0]; SVD has identified A(1:2,1:2).
@ But with a little noise, dominant left singular
vector ~ [1;1;1;1]; SVD fails to identify
LAROS.
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LAROS problem: relationship to NMF and SVD

SVD as optimization

@ The solution to this problem is to modify the
SVD to promote sparsity.

@ Can write SVD as an optimization problem
(Eckart-Young) and add another term, i.e.,

min ||A — cuv’ || + densityPenalty(u, v)

o,uv

@ Unfortunately, Eckart-Young optimization
problem is not convex.



LAROS problem: relationship to NMF and SVD

SVD as convex optimization

@ Let || - ||. denote the nuclear norm, that is,
Xl = a1(X) + -+ + on(X).

@ Theorem: The nuclear norm is dual to the
2-norm, i.e., | X|[. = max{Z e X : ||Z]» < 1}.

@ Given A, the solution to the convex
optimization problem min{|[X|.: Ae X > 1}
is X = uyv{ /o1, where (o1, uy,vy) is the
dominant singular triple of A.




LAROS problem: relationship to NMF and SVD

Obtaining a sparse solution

@ In order to enforce sparsity, could add a
(nonconvex) penalty term:
min || X|[« + (/|- |J]) st. Ae X >1;(i,j) ¢
| x J= X(i,j) = 0. where 7(-) is an
increasing penalty function.

@ The optimal X will have necessarily have the
form X = u;v] /71, where (51,011, V1) is the
dominant singular triple of A(/, J) for some
(1,J) padded with zeros.

@ This problem is NP-hard.
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Convex relaxation

Convex relaxation of sparsity

@ A common technique in the literature to
promote sparsity is adding an /; penalty term.

@ Applying this to the preceding nonconvex
problem yields

min || X{]. + 8[| X1
st. Ae X > 1.

@ Note: || X||; means |[vec(X)||1;

@ Above problem is convex. (Indeed, it is
semidefinite programming.)

@ Nuclear-plus-1-norm has appeared in
Chandrasekaran et al., Candes et al.
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Convex relaxation

Some properties of the relaxation

@ Norm duality: the function || X||. + 8|/ X]||1 is
actually a norm ||| - |||, and the optimization
problem above computes 1/|||Al|[*.

@ Monotonicity: we establish some weak
monotonicity properties showing that sparsity
increases with 6.

@ For sufficiently large @, the solution X will have
one nonzero entry in the position of the largest
entry of A.
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Nonnegativity

@ Suppose A > 0. Is it true that X* > 07
An optimal nonnegative solution exists if
rank(X*) = 1.

X* >0 if # = 0 (Perron-Frobenius).

All optimal solutions nonnegative if 6 > 1.

How about in general?
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Recoverability

@ Suppose A > 0 has the foom A =uv’ + R
where u,v are sparse and R is random noise.
Can we recover (u,v) from A?
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Recoverability

@ Suppose A > 0 has the foom A =uv’ + R
where u,v are sparse and R is random noise.
Can we recover (u,v) from A?

@ No, but maybe we can recover supp(u) and
supp(v) (positions of nonzero entries).

@ Assume that R is i.i.d. random, e.g., Gaussian.
Assume u, v are deterministic.
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Recoverability

@ Suppose A > 0 has the foom A =uv’ + R
where u,v are sparse and R is random noise.
Can we recover (u,v) from A?

@ No, but maybe we can recover supp(u) and
supp(v) (positions of nonzero entries).

@ Assume that R is i.i.d. random, e.g., Gaussian.
Assume u, v are deterministic.

@ Problem is still unsolvable unless we assume
u(i) > a Vi, v(j) > S Vj where a8 bounded
below in terms the mean of R.
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@ Say A c RM*N,
| supp(v)| = n.

@ Assume entries of R are i.i.d. subgaussian
about their mean .

supp(u)| = m;

@ Assume u, v satisfy above-mentioned condition,
and furthermore, |Jul| < O(y/ma),

vl < O(v/nf), a8 = Q(p).

@ Assume ¢ chosen in a certain range.

@ Then convex relaxation recovers
supp(u), supp(v) with prob. exponentially close
to 1 provided m > Q(+/M) and n > Q(+/N).
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Proof steps

@ To simplify notation, assume support of u, v
are their leading indices.
@ Hypothesize existence of optimal solution of

the form
=T
[ owuv’ O
x=("5"5).

[all = [Jv] = 1.

o KKT condition is A\A =Y + 6Z for some
Y € 0||X|, Z € 9||X]]1, A > 0.

@ KKT condition sufficient for global optimality
in convex optimization.
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Proof steps (cont'd)

@ MA =Y +0Z for some Y € 0||X|.,
ZE@HX 1, A > 0.

@ Specializing to preceding X this means:
dominant singular triple of Y is
(1,[1; 0], [v; 0]); || Z||c = 1 and
Z11 = ones(m, n).

@ Implies that A must be chosen so that
|AA11 — 0 - ones(m,n)|| = 1.

@ This is an algebraic equation for \; can get
good estimates for \ because there is a good
upper bound known for the norm of a
mean-zero random matrix.
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Proof steps (cont'd)

@ Once A is known, u1, v are dominant singular
vectors of AAj; — 0 - ones(m, n).

@ With these choices for A\, u, v, must next fill in
the rest of Y and Z so that || Y| <1 and
170 < 1.

@ The requirement || Y|| < 1 couples the four
blocks together, so replace it with the
restriction that || Yj|| <1/2for i,j = 1,2.
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Proof steps (cont'd)

o KKT multipliers Y5, and Z5, constructed by
taking the mean of \A into Z», (i.e., make it a
multiple of the all-1's matrix) and deviations
from average in Y2,. Uses the fact that ||R]| is
(unexpectedly?) small when R is a random
mean-0 matrix.

@ Construction of KKT multipliers Yi,, Zi» are
more complicated because condition on
dominant singular triple of Y imposes linear
constraint u’ Y;,=0.

@ Need estimates of i, v; use Wedin's sine
theorem (SVD perturbation theorem).
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Proof steps (cont'd)

@ Helping the analysis: because both terms of
the objective are nondifferentiable at the
optimizer, the KK'T multipliers are not uniquely
determined.

@ Simple univariate example of this:
min |x| 4+ |[x|. Can take any subdifferential in
[—1,1] for first term of KKT condition; take
the opposite for the second term.
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Recovery of supp(u), supp(v)

@ The proof of the theorem shows that, under
the assumptions and with high probability,
rank(X) =1, i.e., X = G0 where i is the
extension of i with zeros and similarly for v.

o Furthermore, supp(u) = supp(ti) and

supp(v) = supp(¥).
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Convex relaxation for NP-hard problems

Recent literature has produced a number of
examples of useful NP-hard problems that can be
solved in polynomial time using convex relaxation,
assuming the problem instance is formed in a
particular way.
@ Compressive sensing (Donoho; Candes,
Romberg & Tao)
@ Planted clique & biclique (Feige &
Krauthgamer; Ames & V.)
@ Rank minimization over an affine space (Recht,
Fazel & Parrilo)

@ Matrix completion problem (Candés & Recht)
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Max biclique problem

@ Given a bipartite graph G = (U, V,E), a
biclique is given by U* C U, V* C V such that
all of U* x V* lies in E.

@ Max-edge biclique problem asks for biclique
with max number of edges.

@ Problem is NP-hard.
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Planted biclique problem

@ Our relaxation can solve this problem in the
case that |U*| > Q(|U[Y?), |V*| > Q(|V|/?),
and the non-clique edges are inserted at
random.

@ Same bound achieved earlier by Ames & V.

@ Unlike Ames & V., our relaxation needs prior
knowledge of the biclique size to correctly pick
6. But our relaxation solves a more general
problem.
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Proximal point algorithm

Convex solver

@ Recall our relaxation

min || X}, + 0] X]]
st. AeX > 1.

is convex and indeed SDP-expressible.

@ Interior point SDP solvers (Sedumi, SDPT3)
require O(p®) flops per iteration, where
p = MN (number of unknowns).

@ Too inefficient for large problems.
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Proximal point algorithm

Subgradient descent

@ We use a subgradient descent method.

@ On each step, approximately minimize proximal
point mapping. Proximal-point mapping for
convex ¢(x) defined to be solution to

miny ¢(x) + Al|x — c|| (2-norm for vectors,
F-norm for matrices).
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Proximal point algorithm

Proximal point mapping for objective

@ We do not know how to efficiently minimize
the proximal-point mapping for our objective
function ¢(X) = || X|. + 0| X]|1 + M| X — C||F.

@ Therefore, rewrite relaxation as

min [ X[l 4 0] Xa|1
st. AeX; > 1,
X1 = X

@ This allows us to compute the proximal point
mapping separately for || - || and || - [|1.
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Proximal point algorithm

Proximal point mapping for nuclear norm

@ Proximal-point mapping for nuclear norm:
given C, minimizer of || X||. + A||X — C||fr is

(o1 —1/A)"
U v
(00 —1/A)"

where C = UX VT,

@ PROPACK (Fortran routines using Lanczos)
used for this step.
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Proximal point algorithm

Termination test

@ Since only nonzero pattern of optimal X is
useful, would like to terminate as soon as
nonzero pattern is determined.

@ Assume that optimal rank(X*) = 1. (Test
won't be satisfied if this assumption fails.)

@ Would like a test that, when satisfied,
guarantees correct answer has been found.

20



Proximal point algorithm

Termination test (cont'd)

@ New termination test: given approximate
solution X, take (approximation to) dominant
singular triple (&, (i, V) and approximate
Lagrange multiplier .

@ Consider system of equations:

(M1 — 0Z11)vi = uy,
(M —0Z11)Tuy = vy,
ulTul = 1.

where Z;7 is all 1's.
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Proximal point algorithm

Termination test (cont'd)

@ Can apply Kantorovich theorem to determine
that the system has an exact solution distance
e from (\, @i, V).

@ KKT conditions for a rank-one sparse solution
include above equations and also inequalities.

@ Use simple least squares to guess remaining
multipliers.

@ Check whether the inequalities hold for all
points within a ball of radius € around (), ii, ¥).

@ If so, a rank-one solution with correct sparsity
pattern has been found.
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Proximal point algorithm

Termination test (cont'd)

@ Complexity of this technique unknown.

@ In practice, technique can sometimes cut
number of iterations almost in half but is
computationally expensive, so is not applied on
every iteration.
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Proximal point algorithm

Termination test for matrix completion

problem

@ Problem is: given a matrix M with many
missing entries, fill in the missing entries to
minimize the rank. NP-hard.

@ Candes & Recht; Candes and Tao: relaxation
min || X|. s.t. Xij = Mj;, (i,j) € Q can
efficiently solve MCP for instances constructed
a certain way.

@ Our technique from an approximate solution

can yield a computational proof that
rank(X) < k for some k.
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Computational experiments

@ Two black/white image datasets used in
experiments.

@ In both cases, LAROS run repeatedly in order
to extract several features (find approximate
NMF).

@ Termination test: either as on previous
transparency, or achievable accuracy achieved.

@ Choice of 0: heuristic used.
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Frey face data

Frey face dataset consists of 1965 grayscale
mugshots of a person’s face in different poses.
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Computational experiment

Applying the method to Frey dataset

@ Can form a 560 x 1965 matrix, one mugshot
per column and look for a large rank-one
submatrix.

@ Feature corresponds to subset of images in
database with common visual feature in the
same groups of pixels.

@ Can find multiple features by iteratively solving
LARQOS and subtracting off previous features.
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Computational experiment

Results
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Computational experiment

Results
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Computational experiment

Open questions previously mentioned

@ Can we show that X > 0 when A > 07

@ Does the new termination test admit a
complexity-based analysis?
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Other open questions

@ Can we recover multiple features at once?
@ How to choose 6 more rigorously?
@ Faster algorithms?
@ Characterize extreme points of
{X X[l + 01Xl < 1}
@ More generally: designing new matrix norms.
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