Iterative Valid Polynomial Inequality Generation in Polynomial Optimization

Mathématiques et génie industriel

Joint work with B. Ghaddar (Waterloo) and J. Vera (Tilburg)

Workshop on Optimization, Fields Institute – 27 September 2011

morime

Polynomial Optimization

Polynomial optimization problems (POPs) consist of optimizing a multivariate polynomial objective subject to multivariate polynomial constraints:

Polynomial Optimization Problem (POP)

$$z = \sup_{x \in \mathcal{S}} f(x)$$

s.t. $g_i(x) \ge 0$ $i = 1, ..., m$.

Numerous classes of problems can be modelled as POPs, including:

- Linear Problems
- Mixed-Binary Problems

$$x_i \in \{0,1\} \Leftrightarrow x_i(1-x_i) = 0$$

Quadratic Problems (Convex / Non-convex)

Thus, solving POPs is in general NP-hard.

Relaxations of POPs

Polynomial Optimization Problem (POP)

$$z = \sup_{x \in \mathcal{S}} f(x)$$

s.t. $g_i(x) \ge 0$ $i = 1, ..., m$.

 Many tractable relaxations of POPs have been proposed using linear, second-order cone, and semidefinite techniques.

Relaxations of POPs

Polynomial Optimization Problem (POP)

$$z = \sup_{x \in \mathcal{S}} f(x)$$

s.t. $g_i(x) \ge 0$ $i = 1, ..., m$.

- Many tractable relaxations of POPs have been proposed using linear, second-order cone, and semidefinite techniques.
- In particular, sum-of-squares (SOS) decompositions which lead to semidefinite programming (SDP) relaxations
 - are theoretically very strong:
 - ★ Sequences of relaxations converging to the optimal value in the limit
 - ★ Exact (exponential-sized) relaxations for pure binary POPs

Relaxations of POPs

Polynomial Optimization Problem (POP)

$$z = \sup_{x \in \mathcal{S}} f(x)$$

s.t. $g_i(x) \ge 0$ $i = 1, ..., m$.

- Many tractable relaxations of POPs have been proposed using linear, second-order cone, and semidefinite techniques.
- In particular, sum-of-squares (SOS) decompositions which lead to semidefinite programming (SDP) relaxations
 - are theoretically very strong:
 - ★ Sequences of relaxations converging to the optimal value in the limit
 - ★ Exact (exponential-sized) relaxations for pure binary POPs
 - but quickly become too expensive for practical computation.

Research objective:

Improve the SDP relaxations

- without incurring an exponential growth in their size
- by iteratively generating valid polynomial inequalities.

General POP Perspective

Given a general POP problem:

(POP)
$$z = \sup_{s.t.} f(x)$$

s.t. $g_i(x) \ge 0$ $i = 1, ..., m$.

If λ is the optimal value of POP, then POP is equivalent to

inf
$$\lambda$$

s.t. $\lambda - f(x) \ge 0 \quad \forall x \in S := \{x : g_i(x) \ge 0, i = 1, \dots, m\}$

which we rewrite as

inf
$$\lambda$$
 s.t. $\lambda - f(x) \in \mathcal{P}_d(S)$

where

$$\mathcal{P}_d(S) = \{ p(x) \in \mathbf{R}_d[x] : p(s) \ge 0 \text{ for all } s \in S \}$$

is the cone of polynomials of degree at most d that are non-negative over S.

Understanding $\mathcal{P}_d(S)$

The set

$$\mathcal{P}_d(S) = \{ p(x) \in \mathbb{R}_d[x] : p(x) \ge 0 \text{ for all } x \in S \}$$

is in general a very complex object.

- It is always a convex cone
- In most cases the decision problem for $\mathcal{P}_d(S)$ is NP-hard:

Decision problem for $\mathcal{P}_d(S)$

Given p(x), decide if $p(x) \in \mathcal{P}_d(S)$ (i.e. if $p(x) \ge 0$ for all $x \in S$)

• Idea: use algebraic geometry results to approximate (or represent) $\mathcal{P}_d(S)$ in tractable ways, i.e., using only linear, second-order, and semidefinite cones.

A General Recipe for Relaxations of POP

We relax
$$\lambda - f(x) \in \mathcal{P}_d(S)$$
 to

$$\lambda - f(x) \in \mathcal{K}$$
 for a suitable $\mathcal{K} \subseteq \mathcal{P}_d(\mathcal{S})$.

Then

inf
$$\lambda$$
 s.t. $\lambda - f(x) \in \mathcal{K}$

provides an upper bound for the original problem.

- \bullet The choice of ${\cal K}$ is a key factor in obtaining good bounds on the problem.
- ullet We are restricted by the need for the optimization over ${\cal K}$ to be tractable.

SOS Approach - Lasserre (2001), Parrilo (2000)

For each r > 0, define the approximation $\mathcal{K}_r \subseteq \mathcal{P}_d(\mathcal{S})$ as

$$\mathcal{K}_r := \left(\Psi_r + \sum_{i=1}^m g_i(x) \Psi_{r-\deg(g_i)}\right) \cap \mathbf{R}_d[x]$$

where Ψ_d denotes the cone of real polynomials of degree at most d that are SOSs of polynomials, and $\mathbf{R}_d[x]$ denotes the set of polynomials in the variables x of degree at most d.

The corresponding relaxation can be written as

(L_r)
$$z_r = \inf_{\lambda, \sigma_i} \lambda$$

s.t. $\lambda - f(x) = \sigma_0(x) + \sum_{i=1}^m \sigma_i(x)g_i(x)$
 $\sigma_0(x)$ is SOS of degree $\leq r$
 $\sigma_i(x)$ is SOS of degree $\leq r - \deg(g_i(x)), i = 1, \dots, m$.

Solving the SOS Relaxation

For each r, the relaxation (L_r) can be cast as an SDP problem, since $\sigma(x)$ is a SOS of degree 2k if and only if

$$\sigma(x) = \begin{pmatrix} 1 \\ \vdots \\ x_i \\ \vdots \\ x_i x_j \\ \vdots \\ \prod_{|K|} x \end{pmatrix} M \begin{pmatrix} 1 \\ \vdots \\ x_i \\ \vdots \\ x_i x_j \\ \vdots \\ \prod_{|K|} x \end{pmatrix} \text{ with } M \succeq 0.$$

Note that $\Psi_d = \Psi_{d-1}$ for every odd degree d.

Convergence of the SOS Approach

Under mild conditions $z_r \rightarrow z$:

Lemma

Suppose that

$$\mathcal{K}_G^d \subseteq \mathcal{K}_G^{d+1} \subseteq \cdots \subseteq \mathcal{K}_G^r \subseteq \mathcal{P}_d(S),$$

where G is a compact semialgebraic set (not necessarily convex) and there exists a real-valued polynomial u(x) with $u(x) \in \sum_{i=0}^{m} g_i(x) \Psi$ such that $\{u(x) \geq 0\}$ is compact. Then

$$\mathcal{K}_{G}^{r} \uparrow \mathcal{P}_{d}(S)$$
 as $r \to \infty$,

and therefore

$$z_r \uparrow z \text{ as } r \to \infty.$$

Size of the SOS Relaxation

Good news: (L_r) can be solved using SDP techniques, and under mild conditions, $z_r \to z$.

Bad news: For a problem with *n* variables and *m* inequality constraints, the size of the relaxation is:

- One psd matrix of dimension $\binom{n+r}{r}$;
- m psd matrices, each of dimension $\binom{n+r-\deg(g_i)}{r-\deg(g_i)}$
- $\binom{n+r}{r}$ linear constraints.

Size of the SOS Relaxation

Good news: (L_r) can be solved using SDP techniques, and under mild conditions, $z_r \to z$.

Bad news: For a problem with *n* variables and *m* inequality constraints, the size of the relaxation is:

- One psd matrix of dimension $\binom{n+r}{r}$;
- m psd matrices, each of dimension $\binom{n+r-\deg(g_i)}{r-\deg(g_i)}$
- $\binom{n+r}{r}$ linear constraints.

One way around this difficulty is to exploit any available structure (sparsity, symmetry) to solve smaller SDP problems. Much progress has been made in this direction.

Size of the SOS Relaxation

Good news: (L_r) can be solved using SDP techniques, and under mild conditions, $z_r \to z$.

Bad news: For a problem with *n* variables and *m* inequality constraints, the size of the relaxation is:

- One psd matrix of dimension $\binom{n+r}{r}$;
- m psd matrices, each of dimension $\binom{n+r-\deg(g_i)}{r-\deg(g_i)}$
- $\binom{n+r}{r}$ linear constraints.

One way around this difficulty is to exploit any available structure (sparsity, symmetry) to solve smaller SDP problems. Much progress has been made in this direction.

Our objective

Avoid the blow-up by keeping *r* constant (and small).

$$\inf_{x,y} \quad (x-1)^2 + (y-1)^2$$
s.t.
$$x^2 - 4xy - 1 \ge 0$$

$$yx - 3 \ge 0$$

$$y^2 - 4 \ge 0$$

$$12^2 - (x-2)^2 - 4(y-1)^2 \ge 0$$

$$\inf_{x,y} \quad (x-1)^2 + (y-1)^2$$
 s.t.
$$x^2 - 4xy - 1 \ge 0$$

$$yx - 3 \ge 0$$

$$y^2 - 4 \ge 0$$

$$12^2 - (x-2)^2 - 4(y-1)^2 \ge 0$$

L₂ relaxation

sup
$$\lambda$$

s.t. $(x-1)^2 + (y-1)^2 - \lambda = \sigma_0(x,y) + \sum_{i=1}^4 \sigma_i(x,y)g_i(x,y)$

 $\sigma_0(x, y)$ is SOS of degree 2 $\sigma_i(x, y)$ is SOS of degree 0

L₂ relaxation

```
sup \lambda

s.t. (x-1)^2 + (y-1)^2 - \lambda = \sigma_0(x,y) + \sum_{i=1}^4 \sigma_i(x,y)g_i(x,y)

(6 \times 14 \text{ lin. system })

\sigma_0(x,y) is SOS of degree 2 (3 × 3 matrix)

\sigma_i(x,y) is SOS of degree 0 (4 non-negative constants)
```


Figure: Structure of the linear system for L₂

L₂ relaxation (Optimal value: 9.4083)

```
sup \lambda

s.t. (x-1)^2 + (y-1)^2 - \lambda = \sigma_0(x,y) + \sum_{i=1}^4 \sigma_i(x,y)g_i(x,y)

(6 \times 14 \text{ lin. system })

\sigma_0(x,y) is SOS of degree 2 (3 \times 3 \text{ matrix})

\sigma_i(x,y) is SOS of degree 0 (4 \text{ non-negative constants})
```


Figure: Structure of the linear system for L₂

Example (ctd)

L₄ relaxation (Optimal value: 36.0654)

sup_{$$\lambda,\sigma_i(\cdot)$$} λ
s.t. $(x-1)^2+(y-1)^2-\lambda=\sigma_0(x,y)+\sum_{i=1}^4\sigma_i(x,y)g_i(x,y)$
 $(15\times73 \text{ lin. system })$
 $\sigma_0(x,y) \text{ is SOS of degree 4 } (6\times6 \text{ matrix})$
 $\sigma_i(x,y) \text{ is SOS of degree 2 } (3\times3 \text{ SDP matrices})$

Figure: Structure of the linear system for L₄

Example (ctd)

L₆ relaxation (Optimal value: 51.7386)

sup_{$$\lambda,\sigma_i(\cdot)$$} λ
s.t. $(x-1)^2 + (y-1)^2 - \lambda = \sigma_0(x,y) + \sum_{i=1}^4 \sigma_i(x,y)g_i(x,y)$
 $(28 \times 245 \text{ lin. system })$
 $\sigma_0(x,y) \text{ is SOS of degree 6 } (10 \times 10 \text{ matrix})$
 $\sigma_i(x,y) \text{ is SOS of degree 4 } (6 \times 6 \text{ SDP matrices})$

Figure: Structure of the linear system for L₆

Lasserre's Hierarchy for our Example

To solve

$$\inf_{x,y} \quad (x-1)^2 + (y-1)^2$$
s.t.
$$x^2 - 4xy - 1 \ge 0$$

$$yx - 3 \ge 0$$

$$y^2 - 4 \ge 0$$

$$12^2 - (x-2)^2 - 4(y-1)^2 \ge 0$$

r	2	4	6
# vars	14	73	245
# constraints	6	15	28
Bound	9.40	36.06	51.73

Lasserre's Hierarchy for our Example

To solve

$$\inf_{x,y} \quad (x-1)^2 + (y-1)^2$$
s.t.
$$x^2 - 4xy - 1 \ge 0$$

$$yx - 3 \ge 0$$

$$y^2 - 4 \ge 0$$

$$12^2 - (x-2)^2 - 4(y-1)^2 \ge 0$$

r	2	4	6
# vars	14	73	245
# constraints	6	15	28
Bound	9.40	36.06	51.73

There is no need to run relaxations for r > 6, because an optimal solution (and optimality certificate) can be extracted from solution to L₆.

Improving the approximation without growing r

Recall

(POP)
$$z = \sup_{S:L} f(x)$$

s.t. $x \in S := \{x : g_i(x) \ge 0, i = 1, ..., m\}$
($L_r(G)$) $Z_r(G) = \inf_{\lambda, \sigma_i} \lambda$
s.t. $\lambda - f(x) = \sigma_0(x) + \sum_{i=1}^m \sigma_i(x)g_i(x)$
 $\sigma_0(x)$ is SOS of degree $\le r$
 $\sigma_i(x)$ is SOS of degree $\le r - \deg(g_i(x))$, $i = 1, ..., m$.

Observe that

- (L_r) is defined in terms of the functions used to describe S
- Call this set $G = \{g_i(x) : i = 1, ..., m\}$

Goal

Improve our description of S by growing G in such a way that the bound obtained from L_r improves, for fixed r.

Back to our Example

We start with

$$G = \{x^2 - 4xy - 1, yx - 3, y^2 - 4, 12^2 - (x - 2)^2 - 4(y - 1)^2\}$$

Back to our Example

We start with

$$G = \{x^2 - 4xy - 1, yx - 3, y^2 - 4, 12^2 - (x - 2)^2 - 4(y - 1)^2\}$$

• For all $(x, y) \in S$,

$$p_1(x,y) = 0.079x^2 + 0.072xy + 0.325x - 0.850y^2 - 0.339y - 0.213 \ge 0$$

• We say that $p_1(x, y)$ is a valid (polynomial) inequality for S.

Back to our Example

We start with

$$G = \{x^2 - 4xy - 1, yx - 3, y^2 - 4, 12^2 - (x - 2)^2 - 4(y - 1)^2\}$$

• For all $(x, y) \in S$,

$$p_1(x,y) = 0.079x^2 + 0.072xy + 0.325x - 0.850y^2 - 0.339y - 0.213 \ge 0$$

• We say that $p_1(x, y)$ is a valid (polynomial) inequality for S.

Let
$$G_1 = G \cup \{p_1(x, y)\}$$

Then

$$z_2(G_1) = 22.8393 > 9.4083 = z_2(G)$$

- Start with $G_0 = G$.
- Given G_i , generate p_i valid (inequality) for S. Let $G_{i+1} = G_i \cup \{p_i\}$.

- Start with $G_0 = G$.
- Given G_i , generate p_i valid (inequality) for S. Let $G_{i+1} = G_i \cup \{p_i\}$.

$$p_1(x,y) = 0.079x^2 + 0.072xy + 0.325x - 0.850y^2 - 0.339y - 0.213$$

- Start with $G_0 = G$.
- Given G_i , generate p_i valid (inequality) for S. Let $G_{i+1} = G_i \cup \{p_i\}$.

$$p_2(x,y) = 0.053x^2 + 0.082xy + 0.205x - 0.764y^2 - 0.533y - 0.282$$

- Start with $G_0 = G$.
- Given G_i , generate p_i valid (inequality) for S. Let $G_{i+1} = G_i \cup \{p_i\}$.

$$p_3(x,y) = 0.069x^2 + 0.002xy - 0.239x - 0.770y^2 + 0.551y - 0.200$$

- Start with $G_0 = G$.
- Given G_i , generate p_i valid (inequality) for S. Let $G_{i+1} = G_i \cup \{p_i\}$.

$$p_4(x,y) = -0.019x^2 + 0.338xy + 0.097x - 0.691y^2 - 0.577y - 0.254$$

- Start with $G_0 = G$.
- Given G_i , generate p_i valid (inequality) for S. Let $G_{i+1} = G_i \cup \{p_i\}$.

$$p_5(x,y) = 0.070x^2 + 0.071xy - 0.158x - 0.858y^2 - 0.425y - 0.214$$

- Start with $G_0 = G$.
- Given G_i , generate p_i valid (inequality) for S. Let $G_{i+1} = G_i \cup \{p_i\}$.

$$p_6(x,y) = 0.052x^2 + 0.047xy + 0.012x - 0.935y^2 - 0.130y - 0.321$$

- Start with $G_0 = G$.
- Given G_i , generate p_i valid (inequality) for S. Let $G_{i+1} = G_i \cup \{p_i\}$.

$$p_7(x,y) = 0.046x^2 + 0.006xy - 0.182x - 0.707y^2 + 0.652y - 0.195$$

i	0	1	2	3	4
	9.4083	22.8393	30.1062	32.2653	40.1754
i	5	6	7		

- Start with $G_0 = G$.
- Given G_i , generate p_i valid (inequality) for S. Let $G_{i+1} = G_i \cup \{p_i\}$.

$$p_8(x,y) = 0.023x^2 + 0.093xy + 0.116x - 0.566y^2 - 0.621y - 0.519$$

i	0	1	2	3	4
	9.4083	22.8393	30.1062	32.2653	40.1754
	_	_	_	_	
Í	5	6	7	8	

- Start with $G_0 = G$.
- Given G_i , generate p_i valid (inequality) for S. Let $G_{i+1} = G_i \cup \{p_i\}$.

Generating Valid Inequalities for POPs

Recall

$$z = \inf$$
 λ
s.t. $\lambda - f(x) \in \mathcal{P}_d(S)$
 $z_r(G) = \inf$ λ
s.t. $\lambda - f(x) \in \mathcal{K}_r(G)$

Lemma

Let G be a description for S, and let p(x) be a valid inequality for S. Then

$$z_r(G \cup \{p(x)\}) \geq z_r(G)$$

Generating Valid Inequalities for POPs

Recall

$$z = \inf \quad \lambda$$
s.t. $\lambda - f(x) \in \mathcal{P}_d(S)$

$$z_r(G) = \inf \quad \lambda$$
s.t. $\lambda - f(x) \in \mathcal{K}_r(G)$

Lemma

Let G be a description for S, and let p(x) be a valid inequality for S. Then

$$z_r(G \cup \{p(x)\}) \geq z_r(G)$$

How to generate a valid improving inequality?

Given a description G of S, find p(x) valid for S such that

$$z_r(G \cup \{p(x)\}) > z_r(G)$$

Goal

Given a description G of S, find $p(x) \in \mathcal{P}_d(S) \setminus \mathcal{K}_r(G)$

Issues to address:

- Generate $p(x) \in \mathcal{P}_d(S)$.
- 2 Ensure that $p(x) \subsetneq \mathcal{K}_r(G)$

Goal

Given a description G of S, find $p(x) \in \mathcal{P}_d(S) \setminus \mathcal{K}_r(G)$

Issues to address:

- Generate $p(x) \in \mathcal{P}_d(S)$.
- **2** Ensure that $p(x) \subseteq \mathcal{K}_r(G)$

Issue 1: Generate $p(x) \in \mathcal{P}_d(S)$

There is no tractable representation for $\mathcal{P}_d(S)$

Goal

Given a description G of S, find $p(x) \in \mathcal{P}_d(S) \setminus \mathcal{K}_r(G)$

Issues to address:

- Generate $p(x) \in \mathcal{P}_d(S)$.
- **2** Ensure that $p(x) \subseteq \mathcal{K}_r(G)$

Issue 1: Generate $p(x) \in \mathcal{P}_d(S)$

There is no tractable representation for $\mathcal{P}_d(S)$

• Sol: Generate $p(x) \in \mathcal{K}_{r+2}(G) \cap \mathbf{R}_r[x] \subset \mathcal{P}_d(S)$.

Goal

Given *G* describing *S*, find $p(x) \in \mathcal{P}_d(S) \setminus \mathcal{K}_r(G)$

Issues to address:

- Generate $p(x) \in \mathcal{P}_d(S)$.
- **2** Ensure that $p(x) \notin \mathcal{K}_r(G)$

Issue 2: Ensure $p(x) \notin \mathcal{K}_r(G)$

Goal

Given *G* describing *S*, find $p(x) \in \mathcal{P}_d(S) \setminus \mathcal{K}_r(G)$

Issues to address:

- Generate $p(x) \in \mathcal{P}_d(S)$.
- 2 Ensure that $p(x) \notin \mathcal{K}_r(G)$

Issue 2: Ensure $p(x) \notin \mathcal{K}_r(G)$

- Let Y be the dual optimal solution of $L_r(G)$
- Then $Y \in \mathcal{K}_r(G)^*$
- and therefore $p \in \mathcal{K}_r(G) \Rightarrow \langle p, Y \rangle \geq 0$.
- \Rightarrow Look for p(x) such that $\langle p, Y \rangle < 0$.

Inequality Generating Subproblem

Given G and Y

min
$$\langle p, Y \rangle$$

s.t. $p(x) \in \mathcal{K}_{r+2}(G)$
 $\|p\| = 1$

Inequality Generating Subproblem

Given G and Y

min
$$\langle p, Y \rangle$$

s.t. $p(x) \in \mathcal{K}_{r+2}(G)$
 $\|p\| = 1$

The normalization is necessary, otherwise the problem is unbounded

• For any c > 0, $p(x) \ge 0 \Leftrightarrow cp(x) \ge 0$.

Optimal value = 0

min
$$x_1 - x_1x_3 - x_1x_4 + x_2x_4 + x_5 - x_5x_7 - x_5x_8 + x_6x_8$$

s.t. $x_3 + x_4 \le 1$
 $x_7 + x_8 \le 1$
 $0 \le x_i \le 1$ $\forall i \in \{1, \dots, 8\}.$

Optimal value = 0

min
$$x_1 - x_1x_3 - x_1x_4 + x_2x_4 + x_5 - x_5x_7 - x_5x_8 + x_6x_8$$

s.t. $x_3 + x_4 \le 1$
 $x_7 + x_8 \le 1$
 $0 \le x_i \le 1$ $\forall i \in \{1, \dots, 8\}.$

r	2	4	6	8
Objective val.	unb.	-0.03550	-0.00192	> 18000
Time (s)	1.02	2.81	726.50	

Table: Lasserre's Hierarchy

Optimal value = 0

min
$$x_1 - x_1x_3 - x_1x_4 + x_2x_4 + x_5 - x_5x_7 - x_5x_8 + x_6x_8$$

s.t. $x_3 + x_4 \le 1$
 $x_7 + x_8 \le 1$
 $0 \le x_i \le 1$ $\forall i \in \{1, \dots, 8\}.$

r	2	4	6	8	
Objective val.	unb.	-0.03550	-0.00192	-	
Time (s)	1.02	2.81	726.50	> 18000	

Table: Lasserre's Hierarchy

Iter.	0	1	2	3	4	5	10	50
Objective val. Time (s)	unb.	-0.109	-0.073	-0.069	-0.068	-0.066	-0.057	-0.014
Subproblem	-	1.5	1.8	2.1	1.9	2.0	2.5	
Master problem Cumulative	0.2 0.2	0.3 2.0	0.3 4.2	0.4 6.7	0.5 9.2	0.5 11.8	0.6 26.1	200.1

Table: Inequality Generation

Optimal value = 0

min
$$x_1 - x_1x_3 - x_1x_4 + x_2x_4 + x_5 - x_5x_7 - x_5x_8 + x_6x_8$$

s.t. $x_3 + x_4 \le 1$
 $x_7 + x_8 \le 1$
 $0 \le x_i \le 1$ $\forall i \in \{1, \dots, 8\}.$

The Motzkin Polynomial

Optimal value = 0

$$\min_{x,y,z\in\mathbb{R}} x^2 y^2 (x^2 + y^2 - 3z^2) + z^6$$

The Motzkin Polynomial

Optimal value = 0

$$\min_{x,y,z\in\mathbb{R}} x^2 y^2 (x^2 + y^2 - 3z^2) + z^6$$

The Lasserre relaxations are unbounded for all values of r (since the Motzkin polynomial is not a SOS).

The Motzkin Polynomial

Optimal value = 0

$$\min_{x,y,z\in\mathbb{R}} x^2 y^2 (x^2 + y^2 - 3z^2) + z^6$$

The Lasserre relaxations are unbounded for all values of r (since the Motzkin polynomial is not a SOS).

Iter.	0	1	2	3	4	5	10
Objective val.	unb.	-8591.8	-5687.1	-663.8	-643.8	-640.7	-613.5
Time (s)							
Subproblem	-	0.4	0.3	0.3	0.4	0.4	0.5
Master problem	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Cumulative	0.3	1.0	1.6	2.2	2.9	3.6	7.5

Table: Inequality Generation

Special Case: Binary Quadratic POPs

Consider the general binary quadratic POP:

max
$$f(x)$$

s.t. $g_i(x) \ge 0$ $\forall i \in I = \{1, ..., m\}$
 $x \in \{-1, 1\}^n$.

where f(x) and $g_i(x)$ are polynomials of degree at most 2.

We write the following equivalent formulation:

min
$$\lambda$$

s.t. $\lambda - f(x) \in \mathcal{P}_2(S \cap \{-1, 1\}^n)$

where $S = \{x : g_i(x) \ge 0\}.$

Valid Inequality Generation for Binary Quadratic POPs We make use of the following theorem:

Theorem (Peña-Vera-Zuluaga (2006))

Let S be a compact set. For any degree d,

$$p(x) \in \mathcal{P}_d(x \in \mathcal{S} : x_j \in \{-1, 1\})$$

$$\Leftrightarrow$$

$$p(x) = (1+x_j)r_+(x) + (1-x_j)r_-(x) + (1-x_j^2)c(x),$$

where $r_+(x), r_-(x) \in \mathcal{P}_d(S)$ and $c(x) \in \mathbf{R}_{d-1}[x]$.

Valid Inequality Generation for Binary Quadratic POPs

We make use of the following theorem:

Theorem (Peña-Vera-Zuluaga (2006))

Let S be a compact set. For any degree d,

$$p(x) \in \mathcal{P}_d(x \in \mathcal{S} : x_j \in \{-1, 1\})$$

$$\Leftrightarrow$$

$$p(x) = (1 + x_j)r_+(x) + (1 - x_j)r_-(x) + (1 - x_j^2)c(x),$$

where
$$r_+(x), r_-(x) \in \mathcal{P}_d(S)$$
 and $c(x) \in \mathbf{R}_{d-1}[x]$.

We can approximate $\mathcal{P}_2(S \cap \{-1,1\}^n)$ by

$$Q_2^j(G) = \{ (1+x_j)r_+(x) + (1-x_j)r_-(x) + (1-x_j^2)c(x) : r^+(x), r^-(x) \in \mathcal{K}_2(G), \quad c(x) \in \mathbf{R}_1[x] \}$$

and we have that

$$\mathcal{K}_2(G) \subset \mathcal{Q}_2^j(G) \subset \mathcal{P}_2(S \cap \{-1,1\}^n)$$

Valid Inequality Generation for Binary Quadratic POPs

Goal

Given G describing S, find $p(x) \in \mathcal{P}_2(S \cap \{-1,1\}^n) \setminus \mathcal{K}_2(G)$

Given G and Y

min
$$\langle p, Y \rangle$$

s.t. $p(x) \in \mathcal{Q}_2^j(G)$
 $\|p\| = 1$

Valid Inequality Generation for Binary Quadratic POPs

Goal

Given *G* describing *S*, find $p(x) \in \mathcal{P}_2(S \cap \{-1,1\}^n) \setminus \mathcal{K}_2(G)$

Given G and Y

min
$$\langle p, Y \rangle$$

s.t. $p(x) \in \mathcal{Q}_2^j(G)$
 $\|p\| = 1$

Note that there is exactly one subproblem per binary variable j. Moreover.

- the size of $\mathcal{Q}_2^j(G)$ is only twice size of $\mathcal{K}_2(G)$
- while the size of $\mathcal{K}_4(G)$ is $\sim n^2$ times size of $\mathcal{K}_2(G)$

Convergence Result

Theorem

When the polynomial inequality generation scheme is applied to a binary quadratic optimization problem with linear constraints Ax = b, and the initial set is

$$G_0 = \left\{ n - \|x\|^2, \sum_i (A_i^T x - b_i)^2, -\sum_i (A_i^T x - b_i)^2 \right\},$$

then if all the subproblems have an optimal value 0, then the algorithm has converged to a global optimal solution.

Computational Results

Quadratic Knapsack Problem

$$\max x^T P x$$
s.t. $w^T x \le c$

$$x \in \{-1, 1\}^n$$

		Lasserre $r = 4$ Lasserre $r = 2$			Poly. Ineq. Gen.					
n	Optimal	Obj.	Time (s)	Obj.	Time (s)	Iter. 0	Iter. 1	Iter. 5	Iter. 10	Time (s)
10	1653	1707.3	28.1	1857.7	0.8	1857.7	1821.9	1797.4	1784.8	5.8
20	8510	8639.7	17269.1	9060.3	2.9	9060.3	9015.3	8925.9	8850.3	35.4
30	18229	-	-	19035.9	4.3	19035.9	18920.2	18791.7	18727.2	196.6
40	2679	-	-	4735.9	6.8	4735.9	4590.7	4248.2	4126.7	1009.7
50	16192	-	-	21777.9	19.2	21777.9	21390.3	20162.1	19407.1	7014.3
60	58451	-	-	62324.4	126.6	62324.4	62019.1	60906.0	60585.5	17961.1
70	16982	-	-	23884.9	231.4	23884.9	23484.0	22852.8	-	15582.2
80	-	-	-	80482.7	365.4	80482.7	79738.9	-	-	11072.3

(5-hour time limit)

Computational Results

Quadratic Assignment Problem

$$\min \sum_{i \neq k, j \neq l} f_{ik} d_{jl} x_{ij} x_{kl}$$
s.t.
$$\sum_{i} x_{ij} = 1$$

$$\sum_{j} x_{ij} = 1$$

$$x \in \{0, 1\}^{n \times n}.$$

$$1 \leq j \leq n$$

$$1 \leq i \leq n$$

		Lasserre r = 4		Lasserre r = 2		Poly. Ineq. Gen.					
n	Optimal	Obj.	Time (s)	Obj.	Time (s)	Iter. 0	Iter. 1	Iter. 5	Iter. 10	Time (s)	
3	46			46.0	0.3	46.0				0.3	
4	52	52.0	1154.8	50.8	1.0	50.8	51.8	52.0		6.3	
5	110	-	-	104.3	3.4	104.3	105.1	106.3	106.8	68.5	
6	272	-	-	268.9	9.3	268.9	269.4	269.8	270.2	404.4	
7	356	-	-	344.2	18.1	344.2	344.9	345.6	346.0	3331.3	
8	100	-	-	77.2	73.2	77.2	77.8	78.9	-	11413.9	
9	280	-	-	247.5	281.7	247.5	248.6	-	-	13171.5	

(5-hour time limit)

Computational Results

Degree Three Binary POPs

$$\max \sum_{|\alpha| \le 3} c_{\alpha} x^{\alpha}$$
s.t. $a^{T} x \le b$

$$x \in \{-1, 1\}^{n}$$

		Lasser	re <i>r</i> = 6	Lasserr	e r = 4		Poly. Ineq. Gen.				
n	Optimal	Obj.	Time (s)	Obj.	Time (s)	Iter. 0	Iter. 1	Iter. 5	Iter. 10	Time (s)	
5	58	58.00	9.6	59.37	2.1	67.16	58.45	58.00		5.2	
10	139	139.00	4866.0	148.97	35.9	154.59	148.85	143.41	139.12	75.3	
15	1371	-	-	1524.71	1436.2	1582.04	1575.49	1519.88	1494.01	1319.9	
20	1654	-	-	1707.95	18106.6	1718.53	1716.00	1708.66	1705.15	15763.9	
25	-	-	-	-	-	3967.12	3960.78	-	-	14287.3	

(5-hour time limit)

- Theoretical issues:
 - Prove convergence for (some scheme of) the general case

Theoretical issues:

- Prove convergence for (some scheme of) the general case
- Specialize the methodology to other interesting problem classes, such as:
 - ★ complementarity problems
 - quadratic constrained quadratic problems

- Theoretical issues:
 - Prove convergence for (some scheme of) the general case
 - Specialize the methodology to other interesting problem classes, such as:
 - complementarity problems
 - quadratic constrained quadratic problems
- Algorithmic issues:
 - Choice of index for j for inequality generation in the binary case

- Theoretical issues:
 - Prove convergence for (some scheme of) the general case
 - Specialize the methodology to other interesting problem classes, such as:
 - complementarity problems
 - quadratic constrained quadratic problems
- Algorithmic issues:
 - Choice of index for j for inequality generation in the binary case
 - Add multiple inequalities at each iteration

Theoretical issues:

- Prove convergence for (some scheme of) the general case
- Specialize the methodology to other interesting problem classes, such as:
 - complementarity problems
 - quadratic constrained quadratic problems

• Algorithmic issues:

- Choice of index for j for inequality generation in the binary case
- Add multiple inequalities at each iteration
- Find ways to reduce size of SDP subproblems

Theoretical issues:

- Prove convergence for (some scheme of) the general case
- Specialize the methodology to other interesting problem classes, such as:
 - complementarity problems
 - quadratic constrained quadratic problems

• Algorithmic issues:

- Choice of index for j for inequality generation in the binary case
- Add multiple inequalities at each iteration
- Find ways to reduce size of SDP subproblems
- Avoid SDP altogether: second-order cone optimization?