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Polynomial Optimization
Polynomial optimization problems (POPs) consist of optimizing a
multivariate polynomial objective subject to multivariate polynomial
constraints:

Polynomial Optimization Problem (POP)

z = sup f (x)
s.t. gi(x) ≥ 0 i = 1, . . . ,m.

Numerous classes of problems can be modelled as POPs, including:
Linear Problems
Mixed-Binary Problems

xi ∈ {0,1} ⇔ xi(1− xi) = 0

Quadratic Problems (Convex / Non-convex)
Thus, solving POPs is in general NP-hard.
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Relaxations of POPs
Polynomial Optimization Problem (POP)

z = sup f (x)
s.t. gi(x) ≥ 0 i = 1, . . . ,m.

Many tractable relaxations of POPs have been proposed using
linear, second-order cone, and semidefinite techniques.

In particular, sum-of-squares (SOS) decompositions which lead to
semidefinite programming (SDP) relaxations

I are theoretically very strong:
F Sequences of relaxations converging to the optimal value in the limit
F Exact (exponential-sized) relaxations for pure binary POPs

I but quickly become too expensive for practical computation.

Research objective:
Improve the SDP relaxations
• without incurring an exponential growth in their size
• by iteratively generating valid polynomial inequalities.
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General POP Perspective
Given a general POP problem:

(POP) z = sup f (x)
s.t. gi(x) ≥ 0 i = 1, . . . ,m.

If λ is the optimal value of POP, then POP is equivalent to

inf λ
s.t. λ− f (x) ≥ 0 ∀x ∈ S := {x : gi(x) ≥ 0, i = 1, . . . ,m}

which we rewrite as

inf λ
s.t. λ− f (x) ∈ Pd (S)

where
Pd (S) = {p(x) ∈ Rd [x ] : p(s) ≥ 0 for all s ∈ S}

is the cone of polynomials of degree at most d that are non-negative
over S.
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Understanding Pd(S)

The set

Pd (S) = {p(x) ∈ Rd [x ] : p(x) ≥ 0 for all x ∈ S}

is in general a very complex object.

It is always a convex cone
In most cases the decision problem for Pd (S) is NP-hard:

Decision problem for Pd(S)

Given p(x), decide if p(x) ∈ Pd (S)
(i.e. if p(x) ≥ 0 for all x ∈ S)

Idea: use algebraic geometry results to approximate (or
represent) Pd (S) in tractable ways, i.e., using only linear,
second-order, and semidefinite cones.
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A General Recipe for Relaxations of POP

We relax λ− f (x) ∈ Pd (S) to

λ− f (x) ∈ K for a suitable K ⊆ Pd (S).

Then

inf λ
s.t. λ− f (x) ∈ K

provides an upper bound for the original problem.

• The choice of K is a key factor in obtaining good bounds on the
problem.

•We are restricted by the need for the optimization over K to be
tractable.
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SOS Approach - Lasserre (2001), Parrilo (2000)
For each r > 0, define the approximation Kr ⊆ Pd (S) as

Kr :=

(
Ψr +

m∑
i=1

gi(x)Ψr−deg(gi )

)
∩ Rd [x ]

where Ψd denotes the cone of real polynomials of degree at most d
that are SOSs of polynomials, and Rd [x ] denotes the set of
polynomials in the variables x of degree at most d .

The corresponding relaxation can be written as

(Lr ) zr = inf
λ,σi

λ

s.t. λ− f (x) = σ0(x) +
∑m

i=1 σi(x)gi(x)
σ0(x) is SOS of degree ≤ r
σi(x) is SOS of degree ≤ r − deg(gi(x)), i = 1, . . . ,m.
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Solving the SOS Relaxation

For each r , the relaxation (Lr ) can be cast as an SDP problem, since
σ(x) is a SOS of degree 2k if and only if

σ(x) =



1
...
xi
...

xixj
...∏
|k |

x



T

M



1
...
xi
...

xixj
...∏
|k |

x


with M � 0.

Note that Ψd = Ψd−1 for every odd degree d .
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Convergence of the SOS Approach

Under mild conditions zr → z:

Lemma
Suppose that

Kd
G ⊆ K

d+1
G ⊆ · · · ⊆ Kr

G ⊆ Pd (S),

where G is a compact semialgebraic set (not necessarily convex) and
there exists a real-valued polynomial u(x) with u(x) ∈

∑m
i=0 gi(x)Ψ

such that {u(x) ≥ 0} is compact. Then

Kr
G ↑ Pd (S) as r →∞,

and therefore
zr ↑ z as r →∞.
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Size of the SOS Relaxation

Good news: (Lr ) can be solved using SDP techniques, and under mild
conditions, zr → z.

Bad news: For a problem with n variables and m inequality
constraints, the size of the relaxation is:

One psd matrix of dimension
(n+r

r

)
;

m psd matrices, each of dimension
(n+r−deg(gi )

r−deg(gi )

)(n+r
r

)
linear constraints.

One way around this difficulty is to exploit any available structure
(sparsity, symmetry) to solve smaller SDP problems.
Much progress has been made in this direction.

Our objective
Avoid the blow-up by keeping r constant (and small).
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A Small Example
infx ,y (x − 1)2 + (y − 1)2

s.t. x2 − 4xy − 1 ≥ 0
yx − 3 ≥ 0
y2 − 4 ≥ 0

122 − (x − 2)2 − 4(y − 1)2 ≥ 0

L2 relaxation
sup
λ,σi (·)

λ

s.t. (x − 1)2 + (y − 1)2 − λ = σ0(x , y) +
∑4

i=1 σi(x , y)gi(x , y)

σ0(x , y) is SOS of degree 2
σi(x , y) is SOS of degree 0

0 5 10 15
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2

3

4

5

6

7

Figure: Structure of the linear system for L2
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A Small Example
L2 relaxation (Optimal value: 9.4083)

sup
λ,σi (·)

λ
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Example (ctd)
L4 relaxation (Optimal value: 36.0654 )

supλ,σi (·) λ

s.t. (x − 1)2 + (y − 1)2 − λ = σ0(x , y) +
∑4

i=1 σi(x , y)gi(x , y)
(15× 73 lin. system )

σ0(x , y) is SOS of degree 4 (6× 6 matrix)
σi(x , y) is SOS of degree 2 (3× 3 SDP matrices)
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Figure: Structure of the linear system for L4
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Example (ctd)
L6 relaxation (Optimal value: 51.7386)

supλ,σi (·) λ

s.t. (x − 1)2 + (y − 1)2 − λ = σ0(x , y) +
∑4

i=1 σi(x , y)gi(x , y)
(28× 245 lin. system )

σ0(x , y) is SOS of degree 6 (10× 10 matrix)
σi(x , y) is SOS of degree 4 (6× 6 SDP matrices)

0 50 100 150 200

0

5

10

15

20

25

Figure: Structure of the linear system for L6
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Lasserre’s Hierarchy for our Example

To solve

infx ,y (x − 1)2 + (y − 1)2

s.t. x2 − 4xy − 1 ≥ 0
yx − 3 ≥ 0
y2 − 4 ≥ 0

122 − (x − 2)2 − 4(y − 1)2 ≥ 0

r 2 4 6
# vars 14 73 245
# constraints 6 15 28
Bound 9.40 36.06 51.73

There is no need to run relaxations for r > 6, because an optimal
solution (and optimality certificate) can be extracted from solution to L6.
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Improving the approximation without growing r
Recall

(POP) z = sup f (x)
s.t. x ∈ S := {x : gi(x) ≥ 0, i = 1, . . . ,m}

(Lr (G)) zr (G) = inf
λ,σi

λ

s.t. λ− f (x) = σ0(x) +
∑m

i=1 σi(x)gi(x)
σ0(x) is SOS of degree ≤ r
σi(x) is SOS of degree ≤ r − deg(gi(x)),

i = 1, . . . ,m.

Observe that
(Lr ) is defined in terms of the functions used to describe S
Call this set G = {gi(x) : i = 1, . . . ,m}

Goal
Improve our description of S by growing G in such a way that the
bound obtained from Lr improves, for fixed r .
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Back to our Example

We start with
G = {x2 − 4xy − 1, yx − 3, y2 − 4,122 − (x − 2)2 − 4(y − 1)2}

For all (x , y) ∈ S,

p1(x , y) = 0.079x2+0.072xy+0.325x−0.850y2−0.339y−0.213 ≥ 0

We say that p1(x , y) is a valid (polynomial) inequality for S.

Let G1 = G ∪ {p1(x , y)}
Then

z2(G1) = 22.8393 > 9.4083 = z2(G)
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Why Stop at p1?

Add valid inequalities iteratively
Start with G0 = G.
Given Gi , generate pi valid (inequality) for S. Let Gi+1 = Gi ∪ {pi}.

p1(x , y) = 0.079x2 + 0.072xy + 0.325x − 0.850y2 − 0.339y − 0.213

i 0 1

2 3 4

9.4083 22.8393

30.1062 32.2653 40.1754

i 5 6 7 8 9
43.1587 49.3414 51.5485 51.7135 51.7382
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Why Stop at p1?

Add valid inequalities iteratively
Start with G0 = G.
Given Gi , generate pi valid (inequality) for S. Let Gi+1 = Gi ∪ {pi}.

p2(x , y) = 0.053x2 + 0.082xy + 0.205x − 0.764y2 − 0.533y − 0.282

i 0 1 2

3 4

9.4083 22.8393 30.1062

32.2653 40.1754

i 5 6 7 8 9
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Why Stop at p1?

Add valid inequalities iteratively
Start with G0 = G.
Given Gi , generate pi valid (inequality) for S. Let Gi+1 = Gi ∪ {pi}.

p3(x , y) = 0.069x2 + 0.002xy − 0.239x − 0.770y2 + 0.551y − 0.200

i 0 1 2 3

4

9.4083 22.8393 30.1062 32.2653

40.1754

i 5 6 7 8 9
43.1587 49.3414 51.5485 51.7135 51.7382
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Why Stop at p1?

Add valid inequalities iteratively
Start with G0 = G.
Given Gi , generate pi valid (inequality) for S. Let Gi+1 = Gi ∪ {pi}.

p4(x , y) = −0.019x2 + 0.338xy + 0.097x − 0.691y2 − 0.577y − 0.254

i 0 1 2 3 4
9.4083 22.8393 30.1062 32.2653 40.1754

i 5 6 7 8 9
43.1587 49.3414 51.5485 51.7135 51.7382
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Why Stop at p1?

Add valid inequalities iteratively
Start with G0 = G.
Given Gi , generate pi valid (inequality) for S. Let Gi+1 = Gi ∪ {pi}.

p5(x , y) = 0.070x2 + 0.071xy − 0.158x − 0.858y2 − 0.425y − 0.214

i 0 1 2 3 4
9.4083 22.8393 30.1062 32.2653 40.1754

i 5

6 7 8 9

43.1587

49.3414 51.5485 51.7135 51.7382
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Why Stop at p1?

Add valid inequalities iteratively
Start with G0 = G.
Given Gi , generate pi valid (inequality) for S. Let Gi+1 = Gi ∪ {pi}.

p6(x , y) = 0.052x2 + 0.047xy + 0.012x − 0.935y2 − 0.130y − 0.321

i 0 1 2 3 4
9.4083 22.8393 30.1062 32.2653 40.1754

i 5 6

7 8 9

43.1587 49.3414

51.5485 51.7135 51.7382
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Why Stop at p1?

Add valid inequalities iteratively
Start with G0 = G.
Given Gi , generate pi valid (inequality) for S. Let Gi+1 = Gi ∪ {pi}.

p7(x , y) = 0.046x2 + 0.006xy − 0.182x − 0.707y2 + 0.652y − 0.195

i 0 1 2 3 4
9.4083 22.8393 30.1062 32.2653 40.1754

i 5 6 7

8 9

43.1587 49.3414 51.5485

51.7135 51.7382
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Why Stop at p1?

Add valid inequalities iteratively
Start with G0 = G.
Given Gi , generate pi valid (inequality) for S. Let Gi+1 = Gi ∪ {pi}.

p8(x , y) = 0.023x2 + 0.093xy + 0.116x − 0.566y2 − 0.621y − 0.519

i 0 1 2 3 4
9.4083 22.8393 30.1062 32.2653 40.1754

i 5 6 7 8

9

43.1587 49.3414 51.5485 51.7135

51.7382

Miguel F. Anjos (Polytechnique Montréal) Polynomial Inequality Generation 27 September 2011 15 / 30



Why Stop at p1?

Add valid inequalities iteratively
Start with G0 = G.
Given Gi , generate pi valid (inequality) for S. Let Gi+1 = Gi ∪ {pi}.

p9(x , y) = 0.049x2 + 0.002xy + 0.117x − 0.647y2 − 0.592y − 0.463

i 0 1 2 3 4
9.4083 22.8393 30.1062 32.2653 40.1754

i 5 6 7 8 9
43.1587 49.3414 51.5485 51.7135 51.7382
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Generating Valid Inequalities for POPs
Recall

z = inf λ
s.t. λ− f (x) ∈ Pd (S)

zr (G) = inf λ
s.t. λ− f (x) ∈ Kr (G)

Lemma
Let G be a description for S, and let p(x) be a valid inequality for S.
Then

zr (G ∪ {p(x)}) ≥ zr (G)

How to generate a valid improving inequality?
Given a description G of S, find p(x) valid for S such that

zr (G ∪ {p(x)})>zr (G)
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Valid Inequality Generation for POPs

Goal
Given a description G of S, find p(x) ∈ Pd (S) \ Kr (G)

Issues to address:
1 Generate p(x) ∈ Pd (S).
2 Ensure that p(x) ( Kr (G)

Issue 1: Generate p(x) ∈ Pd(S)

There is no tractable representation for Pd (S)

Sol: Generate p(x) ∈ Kr+2(G) ∩ Rr [x ] ⊂ Pd (S).
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Let Y be the dual optimal solution of Lr (G)

Then Y ∈ Kr (G)∗

and therefore p ∈ Kr (G)⇒ 〈p,Y 〉 ≥ 0.

⇒ Look for p(x) such that 〈p,Y 〉 < 0.
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Inequality Generating Subproblem

Given G and Y
min 〈p,Y 〉
s.t. p(x) ∈ Kr+2(G)

‖p‖ = 1

The normalization is necessary, otherwise the problem is unbounded
For any c > 0, p(x) ≥ 0⇔ cp(x) ≥ 0.
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Another Small Example
Optimal value = 0

min x1 − x1x3 − x1x4 + x2x4 + x5 − x5x7 − x5x8 + x6x8

s.t. x3 + x4 ≤ 1
x7 + x8 ≤ 1
0 ≤ xi ≤ 1 ∀i ∈ {1, · · · ,8}.

r 2 4 6 8

Objective val. unb. -0.03550 -0.00192 -
Time (s) 1.02 2.81 726.50 > 18000

Table: Lasserre’s Hierarchy

Iter. 0 1 2 3 4 5 10 50

Objective val. unb. -0.109 -0.073 -0.069 -0.068 -0.066 -0.057 -0.014
Time (s)
Subproblem - 1.5 1.8 2.1 1.9 2.0 2.5
Master problem 0.2 0.3 0.3 0.4 0.5 0.5 0.6
Cumulative 0.2 2.0 4.2 6.7 9.2 11.8 26.1 200.1

Table: Inequality Generation
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Figure: Convergence of Inequality Generation
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The Motzkin Polynomial

Optimal value = 0

min
x ,y ,z∈R

x2y2(x2 + y2 − 3z2) + z6

The Lasserre relaxations are unbounded for all values of r (since the
Motzkin polynomial is not a SOS).

Iter. 0 1 2 3 4 5 10

Objective val. unb. -8591.8 -5687.1 -663.8 -643.8 -640.7 -613.5
Time (s)
Subproblem - 0.4 0.3 0.3 0.4 0.4 0.5
Master problem 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Cumulative 0.3 1.0 1.6 2.2 2.9 3.6 7.5

Table: Inequality Generation
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Special Case: Binary Quadratic POPs

Consider the general binary quadratic POP:

max f (x)
s.t. gi(x) ≥ 0 ∀i ∈ I = {1, . . . ,m}

x ∈ {−1,1}n.

where f (x) and gi(x) are polynomials of degree at most 2.

We write the following equivalent formulation:

min λ
s.t. λ− f (x) ∈ P2(S ∩ {−1,1}n)

where S = {x : gi(x) ≥ 0}.
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Valid Inequality Generation for Binary Quadratic POPs
We make use of the following theorem:

Theorem (Peña-Vera-Zuluaga (2006))
Let S be a compact set. For any degree d,

p(x) ∈ Pd (x ∈ S : xj ∈ {−1,1})
⇔

p(x) = (1 + xj)r+(x) + (1− xj)r−(x) + (1− x2
j )c(x),

where r+(x), r−(x) ∈ Pd (S) and c(x) ∈ Rd−1[x ].

We can approximate P2(S ∩ {−1,1}n) by

Qj
2(G) = {(1 + xj)r+(x) + (1− xj)r−(x) + (1− x2

j )c(x) :

r+(x), r−(x) ∈ K2(G), c(x) ∈ R1[x ]}

and we have that

K2(G) ⊂ Qj
2(G) ⊂ P2(S ∩ {−1,1}n)
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Valid Inequality Generation for Binary Quadratic POPs

Goal
Given G describing S, find p(x) ∈ P2(S ∩ {−1,1}n) \ K2(G)

Given G and Y
min 〈p,Y 〉
s.t. p(x) ∈ Qj

2(G)
‖p‖ = 1

Note that there is exactly one subproblem per binary variable j .
Moreover,

the size of Qj
2(G) is only twice size of K2(G)

while the size of K4(G) is ∼ n2 times size of K2(G)
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Convergence Result

Theorem
When the polynomial inequality generation scheme is applied to a
binary quadratic optimization problem with linear constraints Ax = b,
and the initial set is

G0 =

{
n − ‖x‖2,

∑
i

(AT
i x − bi)

2,−
∑

i

(AT
i x − bi)

2

}
,

then if all the subproblems have an optimal value 0, then the algorithm
has converged to a global optimal solution.
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Computational Results

Quadratic Knapsack Problem

max xT Px

s.t. wT x ≤ c
x ∈ {−1,1}n

Lasserre r = 4 Lasserre r = 2 Poly. Ineq. Gen.
n Optimal Obj. Time (s) Obj. Time (s) Iter. 0 Iter. 1 Iter. 5 Iter. 10 Time (s)

10 1653 1707.3 28.1 1857.7 0.8 1857.7 1821.9 1797.4 1784.8 5.8
20 8510 8639.7 17269.1 9060.3 2.9 9060.3 9015.3 8925.9 8850.3 35.4
30 18229 - - 19035.9 4.3 19035.9 18920.2 18791.7 18727.2 196.6
40 2679 - - 4735.9 6.8 4735.9 4590.7 4248.2 4126.7 1009.7
50 16192 - - 21777.9 19.2 21777.9 21390.3 20162.1 19407.1 7014.3
60 58451 - - 62324.4 126.6 62324.4 62019.1 60906.0 60585.5 17961.1
70 16982 - - 23884.9 231.4 23884.9 23484.0 22852.8 - 15582.2
80 - - - 80482.7 365.4 80482.7 79738.9 - - 11072.3

(5-hour time limit)
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Computational Results

Quadratic Assignment Problem

min
∑

i 6=k ,j 6=l fikdjlxijxkl

s.t.
∑

ixij = 1 1 ≤ j ≤ n∑
jxij = 1 1 ≤ i ≤ n

x ∈ {0,1}n×n.

Lasserre r = 4 Lasserre r = 2 Poly. Ineq. Gen.
n Optimal Obj. Time (s) Obj. Time (s) Iter. 0 Iter. 1 Iter. 5 Iter. 10 Time (s)

3 46 46.0 0.3 46.0 0.3
4 52 52.0 1154.8 50.8 1.0 50.8 51.8 52.0 6.3
5 110 - - 104.3 3.4 104.3 105.1 106.3 106.8 68.5
6 272 - - 268.9 9.3 268.9 269.4 269.8 270.2 404.4
7 356 - - 344.2 18.1 344.2 344.9 345.6 346.0 3331.3
8 100 - - 77.2 73.2 77.2 77.8 78.9 - 11413.9
9 280 - - 247.5 281.7 247.5 248.6 - - 13171.5

(5-hour time limit)
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Computational Results

Degree Three Binary POPs

max
∑
|α|≤3

cαxα

s.t. aT x ≤ b
x ∈ {−1,1}n

Lasserre r = 6 Lasserre r = 4 Poly. Ineq. Gen.
n Optimal Obj. Time (s) Obj. Time (s) Iter. 0 Iter. 1 Iter. 5 Iter. 10 Time (s)

5 58 58.00 9.6 59.37 2.1 67.16 58.45 58.00 5.2
10 139 139.00 4866.0 148.97 35.9 154.59 148.85 143.41 139.12 75.3
15 1371 - - 1524.71 1436.2 1582.04 1575.49 1519.88 1494.01 1319.9
20 1654 - - 1707.95 18106.6 1718.53 1716.00 1708.66 1705.15 15763.9
25 - - - - - 3967.12 3960.78 - - 14287.3

(5-hour time limit)
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Plenty of Future Research!

Theoretical issues:
I Prove convergence for (some scheme of) the general case

I Specialize the methodology to other interesting problem classes,
such as:

F complementarity problems
F quadratic constrained quadratic problems

Algorithmic issues:
I Choice of index for j for inequality generation in the binary case
I Add multiple inequalities at each iteration
I Find ways to reduce size of SDP subproblems
I Avoid SDP altogether: second-order cone optimization?
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