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Unconstrained nuclear norm regularized LS problem

The affine rank minimization problem has been intensively studied:
min {rank(X) CAX) = b, X€ &eﬂxq} (NP-hard)

where A : RP*? — R” is a linear map and b € R™. We assume p < ¢ w.L.o.g.
[Fazel 2002] considered the nuclear norm convex relaxation:

14
min{HXH* =Y 0i(X) : AX) = b X € RW}. )
i=1

where 0;(X)’s are singular values of X.
For problems with noisy data b, one would typically consider the matrix LS
problem with nuclear norm regularization:

gl
mm{iHA(X) —b|? + plIX]lx xERW}. )
It is well known that (1) can be reformulated as an SDP:
e W X
= : = = 0.
min {Z(Tr(W]) T Te(Ws)) : AX) = b, <xT WZ) - o}
But state-of-the-art interior-point solvers like SeDuMi or SDPT3 are not

suitable for problems with large m or p + g. When p < ¢, it is especially
advantageous to design algorithms which deal with X directly.
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Some recent approaches

Problem (1) or (2) arises frequently in matrix completion, dimension
reduction in multivariate linear regression, multi-class classification/learning.

@ [Cai,Candes,Shen 2008] designed the SVT algorithm for solving the
following Tikhonov regularized version of (1):

1
min {||x||* +5-lIXI?  Ax) = b, X € RW}.
T

@ [Ma,Goldfarb,Chen 2008] developed a fixed point continuation (FPC)
method for (2) and a Bregman algorithm for (1).

© [Toh,Yun 2009] developed an APG algorithm for (2).

© [Liu,Sun,Toh 2009] developed inexact proximal point algorithms (PPA)
for (1) with linear and second order cone constraints.

© [Pong,Tseng,Ji,Ye 2010] developed APG and PG-type methods for
solving various reformulations of the following problem arising from
multi-task learning:

min{[|AX — B]* + p[[X]..}

@ Many papers in recent ICML conferences dealing with some special
variants of nuclear norm regularized problems.
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_________________________________|
Example 1

In many applications, we may want a low rank approximation X to a target
matrix M while preserving certain structures, say nonnegative entries (e.g.
concentrations, intensity values), or bounds on the entries.

We consider the nearest matrix approximation problem in

| Golub,Hoffman,Stewart 87| where the classic Eckart-Young-Mirsky theorem
was extended to obtain the nearest lower-rank approximation while certain
columns are fixed:

1
min {fo—MHZ | Xe; = Mey, rank(X) < r}.
XeRexq (2

We may consider the same problem but with the added constraints X > 0:

1
min {f||x —M|? +p||X|. | Xe; = Mey, X > o}.
XeRrxqa L2

For approximation by a stochastic matrix, impose “Xe = e”.
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_________________________________|
Example 2

Given the largest positive eigenvalue A and the left and right principal
eigenvectors of M, find a low rank approximation of M while preserving the
left and right principal eigenvectors of M [Ho and Van Dooren 2008]. The
problem can be stated as follows:

1
min {*HXg — Me|? 4 plX||s : Xv = v, XTw = w, X > 0}.
XERnxn 2

[Bonacich 1972] used the principal eigenvector to measure the network
centrality. The Google’s PageRank is a variant of the eigenvector centrality
for ranking web pages.
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Nuclear norm regularized matrix LS problems

We consider the following nuclear norm regularized matrix LS problem with
linear equality and inequality constraints:

ONLS)  min {7,00) = 3 IAK) b +(C, X)+plX]. | BX) € a0},

where B : RP*9 — R is a linear map, d € R¥, C € RP*4, and
Q = {0}" x R¥ is a convex polyhedral cone.

Let u = b — A(X). We will study the equivalent problem:

. 1 AX =b
min {fp(u,X) = 5||u\|2+<c, X) + pll Xl | Bé{));?HQ } ©

The dual problem of (3) is given by:

{31 +B.0+d6) | AQO+B©+2=C, |12l < p}.

max
CeRm, £eQ*

Jiang,Sun,Toh (NUS)
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R —
Why is NNLS useful for rank constrained LS problem?

Consider the following rank constrained LS problem:
1
min {EH.A(X) —b|? | B(X) €d+ Q, rank(X) < r}

By noting that the rank constraint is equivalent to

f":r+1 o; =0 = || X||« — >_i_, 0i, we can consider a penalty approach for

the above problem, and start with the penalized objective function:
l r
EHA(X) —b|* + p||X]|5 — pz 0i(X) (difference of 2 convex functions)
i=1
Given X¥, we can majorize the above function by noting that
r r
=Y o) < =) (X — (wh x—xb) vx
i=1 i=1

where W* is a subgradient of "/_, ¢;(X) at X*. The majorized penalty
problem associated with X* is the following NNLS:

1
min {3 [LACO) = | + plIX]l. = p(WE, X) | B(x) ed+Qf
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A partial proximal point algorithm

Given a starting point (u°, X°), the inexact partial PPA generates a sequence
(u¥, X*) by approximately solving the following problem [Rockafellar 1976],
[Ha 1990], [Ibaraki,Fukushima 1996]:

AX)4+u=> } @

1
k+1.Xk+] ~ ; X +7}(7}(}( 2
()~ argmin {0+ 5 X=X

where {0y > 0} is a given nondecreasing sequence.
Let F be the feasible region. Define

~ _ f (u7X) (M7X) eF
Jou, X) = { +poo otherwise.

Then (4) can be compactly written as:

(uF+1, X 1) ~ arg min {fp(u,X) + ﬁHX - X"Hz}

[
Py, (b, X¥) := (T + 04 0f,) " T (u¥, X*)

where II(u, X) = (0,X) is the projection of R” x RP*? onto {0,,} x RP*4.

In the classical PPA of Rockefellar, we have the identity Z instead of II. Much
of the convergence theory for the classical PPA can be extended to the above
setting.
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Moreau-Yosida regularization

In each PPA iteration, we need to solve the following subproblem:

Fa0) = min {LulP 4 (. 1)+ g+ Ly —xgp | AT )
o = Su s * o -
wy L2 r 20 B(Y)ed+ Q
The Lagrangian dual problem of (5) is given by:
sup{Os(C,&:X) | C€R™, € Q7} (©)

where

00 (G, &) 1= 5 ICI7 4+ (b, )+ {d, €+ = X — 5Dy (W(C,£:)) P
g rS T 2 ) ) 20_ 20_ po S )

W((,&X) =X —o(C— A*( = B7).

By the saddle point theorem [Rockafellar 1970], we know that

D,s(W(¢,&; X)) is the unique solution to (5) for any

(€(X),£(X)) € argsup{O,((,&;X) [ ¢ € R, £ € Q7}
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Soft Thresholding Operator D, (-)

Let (7)1 = max{z, 0}. Define the soft thresholding function g, : R — R by
8p(t) = (t=p)y — (=1 =p)t
Let the SVD of Y € RP*9 be:
Y =U[z, o]V7,

where U € RP*P and V € R are orthogonal, 3 = Diag(oy,- - - ,0,), and
01 > 03 > -+ > 0, > 0 are singular values arranged in decreasing order.

For any given Y € R”*? and threshold p > 0,
. 1
D, (1) = argming {|X]1. + 5 |X ~ Y|P}
Based on [Lemaréchal,Sagastizabal 97], it is known that D,(-) is globally

Lipschitz continuous with modulus 1.
The soft thresholding operator D, is analytically given by

Dy(Y) = Ulgy(2), O]V = U[(S — pl)4, O]VT ©)

Note: D,(-) is not differentiable everywhere, but ||D,,(-)||? is continuously
differentiable with

v (310,01F) = Dy(7)

h (NUS)
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Strong semismoothness of D ,(-)

A locally Lipschitz function F : ®" — $/ is strongly semismooth at x if

@ F is directionally differentiable at x
@ forany h € R" and V € OF (x + h) with h — 0,

F(x 4+ h) — F(x) — Vi = O(||1])?).

Recall the SVD: Y = U[Z, 0]VT = USVT. We have the eigenvalue

decomposition
0 Y > u u 0
-—_ — pa— T =
S(Y) := { T o } =0 by Q" , where Q Vi -V AV

0

Let IT; (-) be the projector onto the PSD cone, which is known to be strongly
semismooth [D.Sun.J.Sun|. Then the strong semismoothness of D,(-) follows
from the following result:

I (S(Y) — pl) — L (~S(Y) — pI)

g(2)
Q ’ —8p(%) o' = Dpé)y)r D”éy) = S(Dy(Y)) =: ¥(Y)

8p(S(Y))

Sun,Toh (NUS) Sep 2011 12/31



Derivatives of D, (-) (when they exist)
Let € the divided difference of g,(-) at the eigenvalue vector A of S(Y), i.e.,

8,0()\1') - gp()\j)

Qi' = )
j A=\

Lj=1,....,p+¢q

By [Lowner, 1934], we have

V(Y)H] = g,(S(Y)[SH)] =Q[0 (Q"S(H)Q)]0" (8)
_ 0 D(Y)[H]

(D, (V)[H])" 0

Leta={l,...,p}, v={p+1,...,2p}, B={2p+1,...,9}.By
expanding the expression in (8), we get

D(Y)[H] = U[Qaaq © H} + Qay 0 H{]V] + U(Qqap 0 Ha)V;

where H = UTHV, = H} + HY, H, = UTHV).
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_________________________________|
PPA

PPA. Given a tolerance ¢ > 0. Input X° € R?*? and o > 0. Set k := 0.
Iterate:

Step 1. Compute an approximate maximizer
(¢ ~ argsup {05,(C.&XY) : CeR™ ge Q).
Step 2. Compute W* := W(¢*, &k; X¥). Set
Xkt — Dpok(Wk)7 Zht+1 _ glk(Wk _ Dpok(Wk))-

Step 3. If Xk — XKD /o || < e; stop; else; update oy; end.
p p
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An inexact smoothing Newton method

From now on, we let O := R" x Q = R” x R x R, Let

A=[s]o=a]emra=E]ear=[ o]

B d I3 0 Ogxs
In each PPA iteration, for given X and o > 0, we need to solve the following
subproblem
. 1 1 ,
min {000) == 50, B) + 5 IDp (WP = B} ©)
yeQ g

where W(y; X) = X — o(C — A*y). We have
VO(y) = Ty + ADyo (W(y; X)) — b.

Since 6(-) is a convex function, y € Q solves (9) iff it satisfies the following
VI

(=3 VIE) >0V¥yeQ & y=IsF - VI{)),
where Hé() denotes the projector over Q. Define F : R™+s — Rm+s by
F(y) = y—Tlg(y = Vo(y)) (nonsmooth!)

Theny € Q solves (9) iff F(y)=0.
in,Toh (NUS) Sep2011  15/31




An inexact smoothing Newton method

Let (e, 1) : R x R — R be the Huber smoothing function for
(1)+ = max{,0}

t ift > |e]/2,
1 2
Hen) =1 3 (r+ ‘;—') if —|el/2 <1< [e]/2,
0 ifr < —|e|/2,

We use the following smoothing function for g,(-):
g,(e.t) = h(e,t = p) — h(e,~t — p). (10)
Then a smoothing function for D,(Y) is
D,(c,Y) = U[Diag(g/](s,rrl),...7g/](57 ay)), 0] VT,

We pick the smoothing function for II5(-) to be 7 : R x R™+S — R™F5: to be

Zi if1 <i<m+s
mi(e,27) = . an
h(g,z;) ifm+s1+1<i<m+s
Finally, a smoothing function for F(y) = y — II5(y — V0(y)) is given by
F(e.y) =y = m(e.y = [Iy+ ADpo(e, Wi X)) — b)) (12)

We have F(y) = F(0,y) for all y, and F is strongly semismooth at (0, y).

(NUS)
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An inexact smoothing Newton method

Based on [Gao and Sun 2009] for semidefinite LS problems. Let x > 0 be a
given constant. Define E : R x R"™ — R x R™S by

9
E(e,y) == F(s,y) = F(e,y) + klely

@ E'(e,y) is nonsingular for all (e,y) with e # 0
@ E is strongly semismooth at (0, y).

Then solving the nonsmooth equation F(y) = 0 is equivalent to solving
E(e,y) = (0,0).

The inexact smoothing Newton method is just Newton-Krylov method
applied to minimize the merit function ||E(e, y)||*.
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An inexact smoothing Newton method

Step 0.

Step 1.

Step 2.

Step 3.

Choose r € (0,1), 7 € (0,1), 7 € [1,00). Given a starting
point (¢°,°), iterate the following steps:

Compute
0= rmin{1, [E(5 9|2} 7= min{r, 7B )1}
Approximately solve the Newton equation

E(e*,y%) + E' (5, y%)[Ae; Ay] = [ne°; 0] as follows.

Set Ae = —&k 4 el
Apply the BiCGstab method to solve the linear system

Fi(,59Ay = ths:= —F(e",y) = FL(", ") Ae

y

such that the residual R* satisfies the condition that
[Re]l < min{A|rhs||, 0.1]|E(e*, y*) ||}

Apply Armijo linesearch to the merit function
|E(eF + ale,y* + alAy)|? to get a steplength .
Set (k1 Y1) = (b + alAe, y* + aAy).

Sep 2011
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Quadratic convergence of the inexact smoothing Newton method

@ The inexact smoothing Newton method is well defined and generates an
infinite sequence {(£*, y*)} such that any accumulation point (£, y) is a
solution of E(e,y) = 0 and klim |E(*, %) || = 0. Moreover, if Slater’s

—00

condition holds for NNLS, then {(£¥,y*)} is bounded [Gao and Sun
2009].

@ To prove the quadratic convergence of { (¥, %)}, it is enough to show
that E is strongly semismooth at (£ = 0,y), and all elements in 9gE(£,y)
are nonsingular.

Strong semismoothness of E at (0,y) follows from that of F at (0, y), and
that | - | is strongly semismooth on R.
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Constraint nondegeneracy condition for (NNLS)
Let K be the epigraph of || X]|., i.e.,
K = epi(] - [l«) = {(X;1) e R x R | [|X]], <1},

which is a closed convex cone. For a given X, = (X; 1) € K, we let Tk (X;) be
the tangent cone of K at X;, and lin(Tk (X;)) the largest linear subspace
contained in Tk (X;).

Let B := (B, 0). The problem (NNLS) can be rewritten as:
1 N
min {EH.A(X) —bP+pt+(CX) : BX;H)ed+Q, (X;1) € K}. (13)

Let X be the unique optimal solution to (NNLS). Then X is an optimal
solution to (13) with 7 = ||X||... The constraint nondegeneracy condition is
said to hold at (X;7) if

B PXq lin(To(B(X,7) —d)) B RS
< A ) (RP*7 x R) + < (T (X, ) ) = ( ROV R > . (14)

Note that lin(To(B(X,7) — d)) = lin(To(B(X) — d)).

Jiang,Sun,Toh (NUS) Sep 2011
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Characterization of the constraint nondegeneracy condition

Let [ be the number active inequality constraints at X. Define

Bactive . Rpxa — R+ to be the part of B corresponding to the active
constraints.

Let W(y; X) admit the SVD: U[%, 0]VT. Decompose the index set

a = {1,...,p} into the following two subsets:

aj :={i|o;(W)>po}, @ :=a\y.
Then U = [U,,, Uy}, V = [Va,, Va,, V2. Consider the following subspace
in RP*4;
T(X):={H € R*1| UL H [Vs,, V2] =0}.

Then the constraint nondegeneracy condition (14) can be shown to be
equivalent to

Bactive(T(X)) _ RSH-Z. (15)

If the condition (15) holds at X, then all elements in OgE(£,y) are nonsingular.
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Some remarks

@ When the NNLS problem only has equality constraints, the inner
subproblem can be solved by semismooth Newton-CG method.
@ The partial PPA (with inexact smoothing Newton) can be applied to
semidefinite LS problems with equality/inequality constraints.
o Efficient implementation of partial PPA (with inexact smoothing
Newton):
e Good starting point for partial PPA — we use the alternating direction
method of multipliers [Gabay & Mercier 1976, Glowinski & Marrocco
1975] on a reformulation of the NNLS.
o efficient matrix-vector multiplication for F (e, y¥)
o preconditioners for the above matrix
e Implicit computation and storage of V,, especially when p < q.
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Numerical performance

In our implementation, we apply ADMM to generate a good starting point for
the PPA. The stopping criterion for ADMM is max{Rp, Rp} < 1072 or that
maximal number of 30 iterations is reached.

We stop the PPA when

jpobj — dobj||  _ s
1 + |pobj| + |dobj| —

max{Rp,Rp} < 107® and relgap :=

Jiang,Sun,Toh (NUS) Sep 2011 23/31



_________________________________|
Example 1

We consider the approximation problem of M by a low-rank doubly stochastic
matrix via solving the following:

1 ~
min {—\|X—M||2 FplX|ls : Xe=e, X e =e, X;1 =My, X > 0}.
XE?R"X" 2

We assume that the observed data is given by M = M + 7N||M||/||N||, where
T is the noise factor and N is a random matrix.

For each pair (n, r), we generate a random positive matrix M € R"*" of rank r
by setting M = M1M2T where M; € R"" and M, € R"*" have i.i.d. uniform
entries in (0, 1). Then M is made doubly stochastic via the Sinkhorn-Knopp
algorithm (iteratively perform diagonal scalings on left and right).
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Average numerical results over 5 random instances with 10% noise

| n/t | r | m+s | itlitsublbicg [| R, | Rp | relgap || MSE | #sv | time |
500 /0.1| 10 350148)|7.0 | 16.0 | 3.2{{1.97¢-7 | 1.93e-7 | -6.27e-6/| 5.42¢e-2 174 26
50 501000| 5.0 9.2 | 2.0 |[1.65¢-7 | 2.31e-7 | -8.58¢-6|3.97e-2 177 | 12
100 501000 5.0 9.0 | 2.1 |[l.11e-7 | 1.83e-7 | -5.37¢-6]| 3.65¢-2| 177 12
1000 /0.1] 101201034 8.0 | 18.8 | 3.6 |[1.45¢-7 | 9.18e-8 | -9.31e-6|| 5.50e-2| 234 | 2:41
501976915||5.0 | 10.0 | 2.7([7.25e-7 | 7.91e-8 | -3.93e-6|| 3.30e-2] 145 | 1:13
1002002000/ 3.0 | 6.6 | 2.1 ||4.43e-7 | 3.32¢-7 | -7.58e-6/| 3.07e-2] 143 45
1500 /0.1| 10[2552194{[9.0 | 22.2 | 3.9{{1.69¢-7 | 3.84¢-8 | -5.68¢e-6|| 5.49¢-2] 275 | 8:56
503727481||5.0 | 11.0 | 2.7 |4.76e-7 | 1.11e-7 | -6.87e-6|| 3.41e-2| 194 | 3:36
1004503000/ 2.0|5.2| 3.1 |2.11e-7 | 2.71e-7 | -3.26e-6/| 3.19¢-2] 68 | 1:55

Jiang,Sun,Toh (NUS)
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_________________________________|
Example 2

Now consider the low-rank approximation problem of preserving the principal
eigenvectors:

1 -
min {fux — M+ pl| X[ | Xv = Av, XTw = Aw, X > o}.
XeRnxn 2
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Average numerical results over 5 random instances with 10% noise

| n/r [ r | m+s [ itlitsublbicg || R, | Rp | relgap | MSE | r(x) |

500 /0.1 10 | 350157 || 2.0]5.8]2.2 || 1.85¢-7 | 4.88¢-7 | -4.58¢-6 || 5.38¢-2 | 170
50 | 501000 || 1.6]5.6]2.1 || 4.68¢-7|8.07¢-9 | -4.63e-7 || 3.94e-2 | 177
100 | 501000 || 1.8]6.2]2.1 || 3.35¢-7]9.18¢-9 | -2.35¢-7 || 3.64e-2 | 176

1000 /0.1] 10 | 1201029 || 2.0|5.2| 1.9 || 6.13e-7 | 2.54e-7 | -2.08e-6 || 5.28e-2 | 230
50 | 1976912 || 2.0|6.8 2.4 | 9.95¢-8 | 1.61e-8 | -5.18e-8 || 3.27e-2 | 145
100 | 2002000 || 2.0]6.0|2.2 || 9.21e-7 | 1.73e-7 | -2.64e-6 || 3.04e-2 | 142

1500 /0.1 10 | 2552187 || 2.0|5.0| 1.8 || 4.56e-7 | 1.83e-7 | 2.16e-6 || 5.22e-2 | 278
50 | 3727471 || 2.0|5.6 |24 | 3.95e-7|2.93e-8 | 1.75e-7 || 3.35¢-2 | 192
100 | 4503000 || 2.0|7.4]2.2 | 6.33e-8 | 4.31e-8|-5.30e-7 || 3.14e-2 67
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Euclidean metric embedding problem

Given an incomplete, possibly noisy, dissimilarity matrix B € S" with
Diag(B) = 0 and sparsity pattern specified by the index set £. The goal is to
find an Euclidean distance matrix (EDM) that is nearest to B:
. 1 2 1% .
min {5 (;5 W;(Dy = By)' + 2-(E. D) | Dis EDM},
1j)e

where W;; are given weights, E = matrix of ones.

We added £-(E, D) to encourage a sparse solution. From the standard
characterization of EDM, we have D = diag(X)e! + e diag(X)" — 2X for
some X >~ 0 with Xe = 0. The problem can be rewritten as:

e
min {2 57 Wyl(Ay, X) ~ By + {1, X) | {E,X) =0, X = 0},
(ij)e€

where A;; = el-jeg with e;; = e; — e;. Note that desiring sparsity in D leads to

the regularization term p(I, X), which is a proxy for desiring a low-rank X.
Jiang,Sun,Toh (NUS) Sep 2011 28/31




Regularized kernel estimation (RKE) problem in statistics

We have set of n proteins and dissimilarity measures B;; for certain protein
pairs (i,j) € € [Lu,Wahba,Wright 05]. The goal is to estimate a positive

semidefinite kernel matrix X € &'} such that the fitted squared distances
induced by X for the protein pairs satisfy

Xii + X — 2X;; = (A, X) =~ B,?j VY (i,j) € &,

problem n m o it.|itsublcg R, | Rp | relgap #sv | ti
RKE630 | 630 | 198136 | 5.07e-1 ||6]36]24.6|[1.07¢-7 | 2.42¢-8 | -1.81e-6| 388 | 1:
PDB25 | 1898 | 1646031 | 1.84e+0 || 18 |55 |55.8 |4.89e-7 | 4.78e-6 | -1.46e-5|| 1388 |1:1'

Jiang,Sun,Toh (NUS)
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Conclusion & Future Work

@ We introduced a proximal point algorithm for solving nuclear norm
regularized matrix LS problems with a large number of equality and
inequality constraints

@ The inner subproblems are solved by an inexact smoothing Newton
method, which is proved to be quadratically convergent under the
constraint nondegeneracy condition.

@ Numerical experiments on selected examples demonstrated that our PPA
based algorithm is efficient.

@ Our framework can be extended to LS problems with other regularizers
such as ||X||2, cone of epi-graph of "nice" norm, mixed-norm like
S L IXkll2, ete. (As long as the associated proximal-point operator can
be computed efficiently).
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Thank you for your attention!
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