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Unconstrained nuclear norm regularized LS problem

The affine rank minimization problem has been intensively studied:

min
{

rank(X) : A(X) = b, X ∈ <p×q
}

(NP-hard)

where A : Rp×q → Rm is a linear map and b ∈ Rm. We assume p ≤ q w.l.o.g.
[Fazel 2002] considered the nuclear norm convex relaxation:

min
{
‖X‖∗ =

p∑
i=1

σi(X) : A(X) = b, X ∈ Rp×q
}
. (1)

where σi(X)’s are singular values of X.
For problems with noisy data b, one would typically consider the matrix LS
problem with nuclear norm regularization:

min
{1

2
‖A(X)− b‖2 + ρ‖X‖∗ : X ∈ Rp×q

}
. (2)

It is well known that (1) can be reformulated as an SDP:

min
{1

2
(Tr(W1) + Tr(W2)) : A(X) = b,

(
W1 X
XT W2

)
� 0
}
.

But state-of-the-art interior-point solvers like SeDuMi or SDPT3 are not
suitable for problems with large m or p + q. When p� q, it is especially
advantageous to design algorithms which deal with X directly.
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Some recent approaches

Problem (1) or (2) arises frequently in matrix completion, dimension
reduction in multivariate linear regression, multi-class classification/learning.

1 [Cai,Candès,Shen 2008] designed the SVT algorithm for solving the
following Tikhonov regularized version of (1):

min
{
‖X‖∗ +

1
2τ
‖X‖2 : A(X) = b, X ∈ Rp×q

}
.

2 [Ma,Goldfarb,Chen 2008] developed a fixed point continuation (FPC)
method for (2) and a Bregman algorithm for (1).

3 [Toh,Yun 2009] developed an APG algorithm for (2).
4 [Liu,Sun,Toh 2009] developed inexact proximal point algorithms (PPA)

for (1) with linear and second order cone constraints.
5 [Pong,Tseng,Ji,Ye 2010] developed APG and PG-type methods for

solving various reformulations of the following problem arising from
multi-task learning:

min
X
{‖AX − B‖2 + ρ‖X‖∗}

6 Many papers in recent ICML conferences dealing with some special
variants of nuclear norm regularized problems.
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Example 1

In many applications, we may want a low rank approximation X to a target
matrix M while preserving certain structures, say nonnegative entries (e.g.
concentrations, intensity values), or bounds on the entries.

We consider the nearest matrix approximation problem in
[Golub,Hoffman,Stewart 87] where the classic Eckart-Young-Mirsky theorem
was extended to obtain the nearest lower-rank approximation while certain
columns are fixed:

min
X∈Rp×q

{1
2
‖X −M‖2 | Xe1 = Me1, rank(X) ≤ r

}
.

We may consider the same problem but with the added constraints X ≥ 0:

min
X∈Rp×q

{1
2
‖X −M‖2 + ρ‖X‖∗ | Xe1 = Me1, X ≥ 0

}
.

For approximation by a stochastic matrix, impose “Xe = e”.
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Example 2

Given the largest positive eigenvalue λ and the left and right principal
eigenvectors of M, find a low rank approximation of M while preserving the
left and right principal eigenvectors of M [Ho and Van Dooren 2008]. The
problem can be stated as follows:

min
X∈Rn×n

{1
2
‖XE −ME‖2 + ρ‖X‖∗ : Xv = λv,XTw = λw,X ≥ 0

}
.

[Bonacich 1972] used the principal eigenvector to measure the network
centrality. The Google’s PageRank is a variant of the eigenvector centrality
for ranking web pages.
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Nuclear norm regularized matrix LS problems

We consider the following nuclear norm regularized matrix LS problem with
linear equality and inequality constraints:

(NNLS) min
X∈Rp×q

{
fρ(X) :=

1
2
‖A(X)−b‖2+〈C, X〉+ρ‖X‖∗ | B(X) ∈ d+Q

}
,

where B : Rp×q → Rs is a linear map, d ∈ Rs, C ∈ Rp×q, and
Q = {0}s1 × Rs2

+ is a convex polyhedral cone.

Let u = b−A(X). We will study the equivalent problem:

min
u,X

{
fρ(u,X) :=

1
2
‖u‖2 + 〈C, X〉+ ρ‖X‖∗ |

A(X) + u = b
B(X) ∈ d +Q

}
(3)

The dual problem of (3) is given by:

max
ζ∈<m, ξ∈Q∗

{
− 1

2
‖ζ‖2+〈b, ζ〉+〈d, ξ〉 | A∗(ζ)+B∗(ξ)+Z = C, ‖Z‖2 ≤ ρ

}
.
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Why is NNLS useful for rank constrained LS problem?

Consider the following rank constrained LS problem:

min
{1

2
‖A(X)− b‖2 | B(X) ∈ d +Q, rank(X) ≤ r

}
By noting that the rank constraint is equivalent to∑p

i=r+1 σi = 0 = ‖X‖∗ −
∑r

i=1 σi, we can consider a penalty approach for
the above problem, and start with the penalized objective function:

1
2
‖A(X)− b‖2 + ρ‖X‖∗ − ρ

r∑
i=1

σi(X) (difference of 2 convex functions)

Given Xk, we can majorize the above function by noting that

−
r∑

i=1

σi(X) ≤ −
r∑

i=1

σi(Xk)− 〈Wk, X − Xk〉 ∀ X

where Wk is a subgradient of
∑r

i=1 σi(X) at Xk. The majorized penalty
problem associated with Xk is the following NNLS:

min
{1

2
‖A(X)− b‖2 + ρ‖X‖∗ − ρ〈Wk, X〉 | B(X) ∈ d +Q

}
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A partial proximal point algorithm

Given a starting point (u0,X0), the inexact partial PPA generates a sequence
(uk,Xk) by approximately solving the following problem [Rockafellar 1976],
[Ha 1990], [Ibaraki,Fukushima 1996]:

(uk+1,Xk+1) ≈ arg min
{

fρ(u,X) +
1

2σk
‖X−Xk‖2 |

A(X) + u = b

B(X) ∈ d +Q

}
(4)

where {σk > 0} is a given nondecreasing sequence.
Let F be the feasible region. Define

f̂ρ(u,X) =
{

fρ(u,X) (u,X) ∈ F
+∞ otherwise.

Then (4) can be compactly written as:

(uk+1,Xk+1) ≈ arg min
{

f̂ρ(u,X) + 1
2σk
‖X − Xk‖2

}
||

Pσk(uk,Xk) := (Π + σk∂ f̂ρ)−1Π(uk,Xk)

where Π(u,X) = (0,X) is the projection of Rm × Rp×q onto {0m} × Rp×q.
In the classical PPA of Rockefellar, we have the identity I instead of Π. Much
of the convergence theory for the classical PPA can be extended to the above
setting.
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Moreau-Yosida regularization

In each PPA iteration, we need to solve the following subproblem:

Fσ(X) = min
u,Y

{1
2
‖u‖2 + 〈C, Y〉+ ρ‖Y‖∗ +

1
2σ
‖Y − X‖2 |

A(Y) + u = b

B(Y) ∈ d +Q

}
(5)

The Lagrangian dual problem of (5) is given by:

sup{Θσ(ζ, ξ; X) | ζ ∈ Rm, ξ ∈ Q∗} (6)

where

Θσ(ζ, ξ; X) := −1
2
‖ζ‖2 + 〈b, ζ〉+ 〈d, ξ〉+

1
2σ
‖X‖2 − 1

2σ
‖Dρσ(W(ζ, ξ; X))‖2,

W(ζ, ξ; X) = X − σ(C −A∗ζ − B∗ξ).
By the saddle point theorem [Rockafellar 1970], we know that
Dρσ(W(ζ, ξ; X)) is the unique solution to (5) for any

(ζ(X), ξ(X)) ∈ argsup{Θσ(ζ, ξ; X) | ζ ∈ Rm, ξ ∈ Q∗}
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Soft Thresholding Operator Dρ(·)

Let (t)+ = max{t, 0}. Define the soft thresholding function gρ : R→ R by

gρ(t) := (t − ρ)+ − (−t − ρ)+

Let the SVD of Y ∈ <p×q be:

Y = U[Σ, 0]VT ,

where U ∈ Rp×p and V ∈ Rq×q are orthogonal, Σ = Diag(σ1, · · · , σp), and
σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 are singular values arranged in decreasing order.

For any given Y ∈ Rp×q and threshold ρ > 0,

Dρ(Y) = argminX

{
‖X‖∗ +

1
2ρ
‖X − Y‖2

}
.

Based on [Lemaréchal,Sagastizábal 97], it is known that Dρ(·) is globally
Lipschitz continuous with modulus 1.
The soft thresholding operator Dρ is analytically given by

Dρ(Y) = U[gρ(Σ), 0]VT = U[(Σ− ρI)+, 0]VT (7)

Note: Dρ(·) is not differentiable everywhere, but ‖Dρ(·)‖2 is continuously
differentiable with

∇
(1

2
‖Dρ(Y)‖2

)
= Dρ(Y)
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Strong semismoothness of Dρ(·)

A locally Lipschitz function F : <m → <l is strongly semismooth at x if
1 F is directionally differentiable at x
2 for any h ∈ <m and V ∈ ∂F(x + h) with h→ 0,

F(x + h)− F(x)− Vh = O(‖h‖2).

Recall the SVD: Y = U[Σ, 0]VT = UΣVT
1 . We have the eigenvalue

decomposition

S(Y) :=
[

0 Y
YT 0

]
= Q

 Σ
−Σ

0

QT , where Q =
[

U U 0
V1 −V1

√
2V2

]

Let Π+(·) be the projector onto the PSD cone, which is known to be strongly
semismooth [D.Sun,J.Sun]. Then the strong semismoothness of Dρ(·) follows
from the following result:

gρ(S(Y)) = Π+(S(Y)− ρI)−Π+(−S(Y)− ρI)

= Q

 gρ(Σ)
−gρ(Σ)

0

QT =
[

0 Dρ(Y)
Dρ(Y)T 0

]
= S(Dρ(Y)) =: Ψ(Y)
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Derivatives of Dρ(·) (when they exist)

Let Ω the divided difference of gρ(·) at the eigenvalue vector λ of S(Y), i.e.,

Ωij =
gρ(λi)− gρ(λj)

λi − λj
, i, j = 1, . . . , p + q

By [Löwner, 1934], we have

Ψ′(Y)[H] = g′ρ(S(Y))[S(H)] = Q[Ω ◦ (QTS(H)Q)]QT (8)

=
[

0 D′ρ(Y)[H]
(D′ρ(Y)[H])T 0

]
Let α = {1, . . . , p}, γ = {p + 1, . . . , 2p}, β = {2p + 1, . . . , q}. By
expanding the expression in (8), we get

D′ρ(Y)[H] = U[Ωαα ◦ Hs
1 + Ωαγ ◦ Ha

1 ]VT
1 + U(Ωαβ ◦ H2)VT

2

where H1 = UTHV1 = Hs
1 + Ha

1 , H2 = UTHV2.
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PPA

PPA. Given a tolerance ε > 0. Input X0 ∈ Rp×q and σ0 > 0. Set k := 0.
Iterate:

Step 1. Compute an approximate maximizer

(ζk, ξk) ≈ arg sup
{

Θσk(ζ, ξ; Xk) : ζ ∈ Rm, ξ ∈ Q∗
}
.

Step 2. Compute Wk := W(ζk, ξk; Xk). Set

Xk+1 = Dρσk(Wk), Zk+1 =
1
σk

(Wk − Dρσk(Wk)).

Step 3. If ‖(Xk − Xk+1)/σk‖ ≤ ε; stop; else; update σk; end.
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An inexact smoothing Newton method

From now on, we let Q̂ := Rm ×Q = Rm × Rs1 × Rs2
+. Let

Â =
[
A
B

]
, b̂ =

[
b
d

]
∈ <m+s, y =

[
ζ
ξ

]
∈ Q̂, T =

[
Im 0
0 0s×s

]
In each PPA iteration, for given X and σ > 0, we need to solve the following
subproblem

min
y∈Q̂

{
θ(y) :=

1
2
〈y, Ty〉+

1
2σ
‖Dρσ(W(y; X))‖2 − 〈b̂, y〉

}
(9)

where W(y; X) = X − σ(C − Â∗y). We have

∇θ(y) = Ty + ÂDρσ(W(y; X))− b̂.

Since θ(·) is a convex function, ȳ ∈ Q̂ solves (9) iff it satisfies the following
VI:

〈y− ȳ, ∇θ(ȳ)〉 ≥ 0 ∀ y ∈ Q̂ ⇔ ȳ = ΠQ̂(ȳ−∇θ(ȳ)),

where ΠQ̂(·) denotes the projector over Q̂. Define F : Rm+s → Rm+s by

F(y) := y−ΠQ̂(y−∇θ(y)) (nonsmooth!)

Then ȳ ∈ Q̂ solves (9) iff F(ȳ) = 0.
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An inexact smoothing Newton method

Let h(ε, t) : R× R→ R be the Huber smoothing function for
(t)+ = max{t, 0}

h(ε, t) =


t if t ≥ |ε|/2,

1
2|ε|

(
t +
|ε|
2

)2
if − |ε|/2 < t < |ε|/2,

0 if t ≤ −|ε|/2,

We use the following smoothing function for gρ(·):

gρ(ε, t) = h(ε, t − ρ)− h(ε,−t − ρ). (10)

Then a smoothing function for Dρ(Y) is

Dρ(ε,Y) = U
[
Diag(gρ(ε, σ1), . . . , gρ(ε, σp)), 0

]
VT ,

We pick the smoothing function for ΠQ̂(·) to be π : R×Rm+s → Rm+s: to be

πi(ε, z) =

{
zi if 1 ≤ i ≤ m + s1

h(ε, zi) if m + s1 + 1 ≤ i ≤ m + s
(11)

Finally, a smoothing function for F(y) = y−ΠQ̂(y−∇θ(y)) is given by

F(ε, y) := y− π(ε, y− [Ty + ÂDρσ(ε,W(y; X))− b̂]). (12)

We have F(y) = F(0, y) for all y, and F is strongly semismooth at (0, y).
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An inexact smoothing Newton method

Based on [Gao and Sun 2009] for semidefinite LS problems. Let κ > 0 be a
given constant. Define E : R× Rm+s → R× Rm+s by

E(ε, y) :=
[

ε

F(ε, y) := F(ε, y) + κ|ε|y

]

E′(ε, y) is nonsingular for all (ε, y) with ε 6= 0
E is strongly semismooth at (0, y).

Then solving the nonsmooth equation F(y) = 0 is equivalent to solving

E(ε, y) = (0, 0).

The inexact smoothing Newton method is just Newton-Krylov method
applied to minimize the merit function ‖E(ε, y)‖2.
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An inexact smoothing Newton method

Step 0. Choose r ∈ (0, 1), τ ∈ (0, 1), τ̂ ∈ [1,∞). Given a starting
point (ε0, y0), iterate the following steps:

Step 1. Compute

η := r min{1, ‖E(εk, yk)‖2}, η̂ := min{τ, τ̂‖E(εk, yk)‖}.

Step 2. Approximately solve the Newton equation
E(εk, yk) + E′(εk, yk)[∆ε; ∆y] = [ηε0; 0] as follows.

Set ∆ε = −εk + ηε0.
Apply the BiCGstab method to solve the linear system

F′y(ε
k, yk)∆y = rhs := −F(εk, yk)− F′ε(ε

k, yk)∆ε

such that the residual Rk satisfies the condition that

‖Rk‖ ≤ min{η̂‖rhs‖, 0.1‖E(εk, yk)‖}

Step 3. Apply Armijo linesearch to the merit function
‖E(εk + α∆ε, yk + α∆y)‖2 to get a steplength ᾱ.
Set (εk+1, yk+1) = (εk + ᾱ∆ε, yk + ᾱ∆y).
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Quadratic convergence of the inexact smoothing Newton method

The inexact smoothing Newton method is well defined and generates an
infinite sequence {(εk, yk)} such that any accumulation point (ε̄, ȳ) is a
solution of E(ε, y) = 0 and lim

k→∞
‖E(εk, yk)‖ = 0. Moreover, if Slater’s

condition holds for NNLS, then {(εk, yk)} is bounded [Gao and Sun
2009].
To prove the quadratic convergence of {(εk, yk)}, it is enough to show
that E is strongly semismooth at (ε̄ = 0, ȳ), and all elements in ∂BE(ε̄, ȳ)
are nonsingular.

Strong semismoothness of E at (0, ȳ) follows from that of F at (0, ȳ), and
that | · | is strongly semismooth on R.
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Constraint nondegeneracy condition for (NNLS)

Let K be the epigraph of ‖X‖∗, i.e.,

K := epi(‖ · ‖∗) = {(X; t) ∈ Rp×q × R | ‖X‖∗ ≤ t},

which is a closed convex cone. For a given Xt = (X; t) ∈ K, we let TK(Xt) be
the tangent cone of K at Xt, and lin(TK(Xt)) the largest linear subspace
contained in TK(Xt).

Let B̂ := (B, 0). The problem (NNLS) can be rewritten as:

min
{1

2
‖A(X)− b‖2 + ρ t + 〈C,X〉 : B̂(X; t) ∈ d +Q, (X; t) ∈ K

}
. (13)

Let X be the unique optimal solution to (NNLS). Then X is an optimal
solution to (13) with t̄ = ‖X‖∗. The constraint nondegeneracy condition is
said to hold at (X; t̄) if(
B̂
I

)
(Rp×q × R) +

(
lin(TQ(B̂(X, t̄)− d))

lin(TK(X, t̄))

)
=
(

Rs

Rp×q × R

)
. (14)

Note that lin(TQ(B̂(X, t̄)− d)) = lin(TQ(B(X)− d)).
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Characterization of the constraint nondegeneracy condition

Let l be the number active inequality constraints at X. Define
Bactive : Rp×q → Rs1+l to be the part of B corresponding to the active
constraints.
Let W(ȳ; X) admit the SVD: U[Σ, 0]VT . Decompose the index set
α = {1, . . . , p} into the following two subsets:

α1 := {i | σi(W) > ρσ}, ᾱ1 := α\α1.

Then U = [Uα1 , Uᾱ1 ],V = [Vα1 , Vᾱ1 , V2]. Consider the following subspace
in Rp×q:

T (X) := {H ∈ <p×q | UT
ᾱ1

H [Vᾱ1 , V2] = 0}.

Then the constraint nondegeneracy condition (14) can be shown to be
equivalent to

Bactive(T (X)) = Rs1+l. (15)

If the condition (15) holds at X, then all elements in ∂BE(ε̄, ȳ) are nonsingular.
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Some remarks

When the NNLS problem only has equality constraints, the inner
subproblem can be solved by semismooth Newton-CG method.
The partial PPA (with inexact smoothing Newton) can be applied to
semidefinite LS problems with equality/inequality constraints.
Efficient implementation of partial PPA (with inexact smoothing
Newton):

Good starting point for partial PPA — we use the alternating direction
method of multipliers [Gabay & Mercier 1976, Glowinski & Marrocco
1975] on a reformulation of the NNLS.
efficient matrix-vector multiplication for F′

y(ε
k, yk)

preconditioners for the above matrix
Implicit computation and storage of V2, especially when p� q.
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Numerical performance

In our implementation, we apply ADMM to generate a good starting point for
the PPA. The stopping criterion for ADMM is max{RP,RD} ≤ 10−2 or that
maximal number of 30 iterations is reached.

We stop the PPA when

max{RP,RD} ≤ 10−6 and relgap :=
|pobj− dobj||

1 + |pobj|+ |dobj|
≤ 10−5
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Example 1

We consider the approximation problem of M̃ by a low-rank doubly stochastic
matrix via solving the following:

min
X∈<n×n

{1
2
‖X − M̃‖2 + ρ‖X‖∗ : Xe = e, XTe = e, X11 = M11, X ≥ 0

}
.

We assume that the observed data is given by M̃ = M + τN‖M‖/‖N‖, where
τ is the noise factor and N is a random matrix.

For each pair (n, r), we generate a random positive matrix M ∈ Rn×n of rank r
by setting M = M1MT

2 where M1 ∈ Rn×r and M2 ∈ Rn×r have i.i.d. uniform
entries in (0, 1). Then M is made doubly stochastic via the Sinkhorn-Knopp
algorithm (iteratively perform diagonal scalings on left and right).
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Average numerical results over 5 random instances with 10% noise

n /τ r m + s it.|itsub|bicg Rp | RD | relgap MSE #sv time

500 /0.1 10 350148 7.0 | 16.0 | 3.2 1.97e-7 | 1.93e-7 | -6.27e-6 5.42e-2 174 26
50 501000 5.0 | 9.2 | 2.0 1.65e-7 | 2.31e-7 | -8.58e-6 3.97e-2 177 12

100 501000 5.0 | 9.0 | 2.1 1.11e-7 | 1.83e-7 | -5.37e-6 3.65e-2 177 12
1000 /0.1 10 1201034 8.0 | 18.8 | 3.6 1.45e-7 | 9.18e-8 | -9.31e-6 5.50e-2 234 2:41

50 1976915 5.0 | 10.0 | 2.7 7.25e-7 | 7.91e-8 | -3.93e-6 3.30e-2 145 1:13
100 2002000 3.0 | 6.6 | 2.1 4.43e-7 | 3.32e-7 | -7.58e-6 3.07e-2 143 45

1500 /0.1 10 2552194 9.0 | 22.2 | 3.9 1.69e-7 | 3.84e-8 | -5.68e-6 5.49e-2 275 8:56
50 3727481 5.0 | 11.0 | 2.7 4.76e-7 | 1.11e-7 | -6.87e-6 3.41e-2 194 3:36

100 4503000 2.0 | 5.2 | 3.1 2.11e-7 | 2.71e-7 | -3.26e-6 3.19e-2 68 1:55
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Example 2

Now consider the low-rank approximation problem of preserving the principal
eigenvectors:

min
X∈Rn×n

{1
2
‖X − M̃‖2 + ρ‖X‖∗ | Xv = λv,XTw = λw, X ≥ 0

}
.
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Average numerical results over 5 random instances with 10% noise

n /τ r m + s it.|itsub|bicg Rp | RD | relgap MSE r(X) time

500 /0.1 10 350157 2.0 | 5.8 | 2.2 1.85e-7 | 4.88e-7 | -4.58e-6 5.38e-2 170 18
50 501000 1.6 | 5.6 | 2.1 4.68e-7 | 8.07e-9 | -4.63e-7 3.94e-2 177 19

100 501000 1.8 | 6.2 | 2.1 3.35e-7 | 9.18e-9 | -2.35e-7 3.64e-2 176 19
1000 /0.1 10 1201029 2.0 | 5.2 | 1.9 6.13e-7 | 2.54e-7 | -2.08e-6 5.28e-2 230 1:35

50 1976912 2.0 | 6.8 | 2.4 9.95e-8 | 1.61e-8 | -5.18e-8 3.27e-2 145 1:30
100 2002000 2.0 | 6.0 | 2.2 9.21e-7 | 1.73e-7 | -2.64e-6 3.04e-2 142 1:25

1500 /0.1 10 2552187 2.0 | 5.0 | 1.8 4.56e-7 | 1.83e-7 | 2.16e-6 5.22e-2 278 4:26
50 3727471 2.0 | 5.6 | 2.4 3.95e-7 | 2.93e-8 | 1.75e-7 3.35e-2 192 4:04

100 4503000 2.0 | 7.4 | 2.2 6.33e-8 | 4.31e-8 | -5.30e-7 3.14e-2 67 4:24
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Euclidean metric embedding problem

Given an incomplete, possibly noisy, dissimilarity matrix B ∈ Sn with
Diag(B) = 0 and sparsity pattern specified by the index set E . The goal is to
find an Euclidean distance matrix (EDM) that is nearest to B:

min
{1

2

∑
(i,j)∈E

Wij(Dij − Bij)2 +
ρ

2n
〈E, D〉 | D is EDM

}
,

where Wij are given weights, E = matrix of ones.
We added ρ

2n〈E, D〉 to encourage a sparse solution. From the standard
characterization of EDM, we have D = diag(X)eT + e diag(X)T − 2X for
some X � 0 with Xe = 0. The problem can be rewritten as:

min
{1

2

∑
(i,j)∈E

Wij(〈Aij, X〉 − Bij)2 + ρ〈I, X〉 | 〈E, X〉 = 0, X � 0
}
,

where Aij = eijeT
ij with eij = ei − ej. Note that desiring sparsity in D leads to

the regularization term ρ〈I, X〉, which is a proxy for desiring a low-rank X.
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Regularized kernel estimation (RKE) problem in statistics

We have set of n proteins and dissimilarity measures Bij for certain protein
pairs (i, j) ∈ E [Lu,Wahba,Wright 05]. The goal is to estimate a positive
semidefinite kernel matrix X ∈ Sn

+ such that the fitted squared distances
induced by X for the protein pairs satisfy

Xii + Xjj − 2Xij = 〈Aij, X〉 ≈ B2
ij ∀ (i, j) ∈ E ,

problem n m ρ it.|itsub|cg Rp | RD | relgap #sv time
RKE630 630 198136 5.07e-1 6 | 36 | 24.6 1.07e-7 | 2.42e-8 | -1.81e-6 388 1:59
PDB25 1898 1646031 1.84e+0 18 |55 |55.8 4.89e-7 | 4.78e-6 | -1.46e-5 1388 1:19:11
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Conclusion & Future Work

We introduced a proximal point algorithm for solving nuclear norm
regularized matrix LS problems with a large number of equality and
inequality constraints
The inner subproblems are solved by an inexact smoothing Newton
method, which is proved to be quadratically convergent under the
constraint nondegeneracy condition.
Numerical experiments on selected examples demonstrated that our PPA
based algorithm is efficient.
Our framework can be extended to LS problems with other regularizers
such as ‖X‖2, cone of epi-graph of "nice" norm, mixed-norm like∑N

k=1 ‖Xk‖2, etc. (As long as the associated proximal-point operator can
be computed efficiently).
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Thank you for your attention!
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