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Polynomial Optimization Problems

For real-valued polynomials f0, f1, . . . , fm, g1, . . . , gk, Polynomial
Optimization Problem (POP) is

(POP) f∗ := inf
x∈Rn

{
f0(x)

∣∣∣∣ fi(x) ≥ 0 (i = 1, . . . , m),
gj(x) = 0 (j = 1, . . . , k)

}
.

POP is NP-hard problem (e.g., MAX-CUT, Max Stable Set)

.

SDP relaxation for POP ([Lasserre 2001] and [Parrilo 2003])

.

.

.

. ..

.

.

Convert POP into a SemiDefinite Programming (SDP):

(SDP) θ := inf
y∈RN

bTy

∣∣∣∣∣∣C −
m∑

j=1

Ajyj ∈ SN
+


The optimal value θ of SDP is a lower bound of f∗,
i.e., f∗ ≥ θ

Hayato Waki On a smaller SDP relaxation for Polynomial Optimization Problems
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Aim of this talk – to overcome numerical difficulties

.

Some difficulties in SDP relaxation

.

.

.

. ..

.

.

Need to solve a huge SDP

size of a matrix variable in SDP relax. ...
(n+r

r

)
×

(n+r
r

)
length of a vector variable in SDP relax. ...

(n+2r
2r

)

SDP relaxation problem often becomes degenerate = SDP
does not have any interior feasible solutions

PDIPM requires the existence of an interior feasible solution
for SDP → PDIPM has numerical difficulties

.

Aim of this talk

.

.

.

. ..

.

.

Propose a smaller SDP relaxation than Lasserre’s SDP
relaxation

May not be able to tighter lower bounds than Lasserre’s SDP
relaxation

Propose some techniques to improve the bounds

Hayato Waki On a smaller SDP relaxation for Polynomial Optimization Problems
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SDP relaxation for POPs (1)

.

Characterization of SOS; σ =
∑k

i=1 g2
i

.

.

.

. ..

.

.

σ is SOS with degree 2r

∃X: p.s.d. such that σ(x) = ur(x)TXur(x) for all x ∈ Rn

ur(x) is a column vector of all monomials with up to deg r
the size of X is

(n+r
r

)
∃vi such that gi(x) := vi

Tur(x)

X :=
∑

i vivi
T

Problem to check whether σ is SOS or not ≡ an SDP

SDP problem is feasible → σ is SOS
SDP problem is infeasible → σ is not SOS
The size of matrix variable is

(n+r
r

)
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Generalized Lagrange Function [Kim-Kojima-W (2005)]

(POP) f∗ := inf
x∈Rn

{
f0(x)

∣∣∣∣ fi(x) ≥ 0 (i = 1, . . . , m),
gj(x) = 0 (j = 1, . . . , k)

}
.

Generalized Lagrange Function:
L(x, σ) := f(x) −

∑m
j=1 σj(x)fj(x), σj: SOS

Generalized Lagrange Relaxation:

sup
σj:SOS

inf
x∈Rn

L(x, σ) = sup
σj:SOS

sup
ρ∈R

{ρ |L(x, σ) − ρ ≥ 0 (x ∈ Rn)}

If ∃σ̃0 and σ̃j: SOS s.t. L(x, σ̃) − ρ̃ = σ̃0(x) for all x,

sup
σj:SOS

inf
x∈Rn

L(x, σ) ≥ ρ̃

Putinar’s Lemma → supσj:SOS infx∈Rn L(x, σ) = f∗

Hayato Waki On a smaller SDP relaxation for Polynomial Optimization Problems
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SDP relaxation for POPs (2)

Let K := {x ∈ Rn | fj(x) ≥ 0 (j = 1, . . . , m)}.

.

Putinar’s Lemma

.

.

.

. ..

.

.

Under a mild assumption, if f(x) − ρ > 0 on K, then ∃ SOS
σ0, . . . , σm such that

f(x) − ρ −
m∑

j=1

σj(x)fj(x) = σ0(x) (∀x ∈ Rn)

Fix r in Generalized Lagrange Relaxation.

ρ∗
r := supρ,σj

ρ

sub. to L(x, σ) − ρ = σ0(x)
σ0, σj : SOS,
deg(σ0) ≤ 2r, deg(σjfj) ≤ 2r.

 = SDP

limr→∞ρ∗
r = f∗ [Lasserre (2001)]

Hayato Waki On a smaller SDP relaxation for Polynomial Optimization Problems
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Let K := {x ∈ Rn | fj(x) ≥ 0 (j = 1, . . . , m)}.

.

Putinar’s Lemma

.

.

.

. ..

.

.

Under a mild assumption, if f(x) − ρ > 0 on K, then ∃ SOS
σ0, . . . , σm such that

f(x) − ρ −
m∑

j=1

σj(x)fj(x) = σ0(x) (∀x ∈ Rn)

Fix r in Generalized Lagrange Relaxation.

ρ∗
r := supρ,σj

ρ

sub. to L(x, σ) − ρ = σ0(x)
σ0, σj : SOS,
deg(σ0) ≤ 2r, deg(σjfj) ≤ 2r.

 = SDP

limr→∞ρ∗
r = f∗ [Lasserre (2001)]
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SDP relaxation for POPs (3)

.

A mild assumption

.

.

.

. ..

.

.

Under a mild assumption, limr→∞ρ∗
r = f∗

Even if the feasible region is compact, the assumption may
not hold.

Adding the new constraint R −
∑n

j=1 x2
j ≥ 0, the assumption

holds.

Difficult to estimate R → the POP may become badly scaled.

Practically, we observe,

ρ∗
2 = f∗ or ρ∗

3 = f∗ without adding the new constraint

ρ∗
r = f∗ if mild assumption does not hold.
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An example (1) [W 2011]

f∗ := inf
x,y∈R

{−x − y | x, y ≥ 0.5, 0.5 ≥ xy}

Compact feasible region

f∗ = −1.5, (x∗, y∗) =
(1, 0.5), (0.5, 1)

This example does not
satisfy assumption
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An example (2) [W 2011]

f∗ := inf
x,y∈R

{−x − y | x, y ≥ 0.5, 0.5 ≥ xy}

Compact feasible region

f∗ = −1.5, (x∗, y∗) = (1, 0.5), (0.5, 1)
This example does not satisfy assumption

SDP solvers return the minimum value −1.5

SDP SeDuMi SDPA SDPT3

ρ∗
1 -6.20566047e+07 -4.87662421e+04 -2.7522210e+05

ρ∗
2 -3.23012085e+02 -6.30840406e+01 -3.6963483e+03

ρ∗
3 -1.49999999e+00 -1.50011582e+00 -1.5000000e+00

ρ∗
4 -1.49999998e+00 -1.49999816e+00 -1.5000001e+00

ρ∗
5 -1.49999998e+00 -1.50000010e+00 -1.5000033e+00

ρ∗
6 -1.49999997e+00 -3.55261397e+01 -1.4999921e+00

ρ∗
7 -1.49999997e+00 -1.50000006e+00 -1.5003981e+00

ρ∗
8 -1.49999996e+00 -1.49999999e+00 -1.5000325e+00
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An example (3) [W 2011]

f∗ := inf
x,y∈R

{−x − y | x, y ≥ 0.5, 0.5 ≥ xy}

This example does not satisfy assumption

SDP solvers return the minimum value −1.5

But, SDP is weakly infeasible & its dual is strongly feasible

.

SDP is weakly infeasible

.

.

.

. ..

.

.

∀ρ, 6 ∃σ0, σj: SOS such that

L(x, y, σ) − ρ = σ0(x, y)
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f∗ := inf
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SDP solvers return the minimum value −1.5

But, SDP is weakly infeasible & its dual is strongly feasible
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∀ρ, 6 ∃σ0, σj: SOS such that

L(x, y, σ) − ρ = σ0(x, y)
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An example (3) [W 2011]

f∗ := inf
x,y∈R

{−x − y | x, y ≥ 0.5, 0.5 ≥ xy}

This example does not satisfy assumption

SDP solvers return the minimum value −1.5

But, SDP is weakly infeasible & its dual is strongly feasible

.

SDP is weakly infeasible
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∀ρ, 6 ∃σ0, σj: SOS such that
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An example (4) [W 2011]

f∗ := inf
x,y∈R

{−x − y | x, y ≥ 0.5, 0.5 ≥ xy}

This example does not satisfy the assumption

SDP solvers return the minimum value −1.5

But, SDP is weakly infeasible & its dual is strongly feasible

.

Conjecture for this example

.

.

.

. ..

.

.

∀ε > 0, ∃σ0, σj, µ: SOS such that

L(x, y, σ) − (−1.5) + εµ = σ0(x, y)
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Perturbation Theorem for constrained POP

.

Theorem (W & Muramatsu 2011)

.

.

.

. ..

.

.

Let Rj := max{|fj(x)| | x ∈ [−1, 1]n}. We assume

K ⊆ [−1, 1]n,

f(x) − ρ > 0 for all x ∈ K.

Then ∀ε > 0, ∃r̂ ∈ N and ∃σ0: SOS such that for all r ≥ r̂

f(x) − ρ + ε

(
1 +

n∑
i=1

x2r
i

)
−

m∑
j=1

fj(x)

(
1 −

fj(x)

Rj

)2r

= σ0(x)

Not need mild assumption

Need a highly perturbation ε
(
1 +

∑n
i=1 x2r

i

)
SDP relaxation by Perturbation Theorem
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Sketch of proof of Perturbation Theorem (1)

.

Theorem (I; Approximation of penalty function on K)

.

.

.

. ..

.

.

f(x) − ρ −
m∑

j=1

fj(x)

(
1 −

fj(x)

Rj

)2r

> 0 (x ∈ [−1, 1]n)

x ∈ K, for sufficiently large r,

−
m∑

j=1

fj(x)

(
1 −

fj(x)

Rj

)2r

≈ 0

x ∈ [−1, 1]n \ K and M > 0, for sufficiently large r,

−
m∑

j=1

fj(x)

(
1 −

fj(x)

Rj

)2r

> M

⇒ Approximation of Penalty function on K
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Sketch of proof of Perturbation Theorem (2)

.

Theorem (I; Approximation of penalty function on K)

.

.

.

. ..

.

.

f(x) − ρ −
m∑

j=1

fj(x)

(
1 −

fj(x)

Rj

)2r

> 0 (x ∈ [−1, 1]n)

.

Theorem (II; Netzer-Lasserre 2007)

.

.

.

. ..

.

.

f(x) ≥ 0 over [−1, 1]n. For any ε > 0, ∃r̂ ∈ R and σ0: SOS
such that for all r ≥ r̂

f(x) + ε

1 +
n∑

j=1

x2r
j

 = σ0(x).

Theorem I + II ⇒ Perturbation Theorem for constrained POP
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SDP relaxation by Perturbation Theorem

f(x) − ρ + ε

(
1 +

n∑
i=1

x2r
i

)
−

m∑
j=1

fj(x)

(
1 −

fj(x)

Rj

)2r

is

SOS(
1 − fj(x)

Rj

)2r
is SOS

.

Theorem

.

.

.

. ..

.

.

∀ε > 0, let ρ(ε, r) be the optimal value;
supρ,σj

ρ

sub. to f(x) − ρ + ε
(
1 +

∑n
i=1 x2r

i

)
−

∑m
j=1 σj(x)fj(x) = σ0(x)

σ0, σj : SOS,
deg(σ0) ≤ 2r, deg(σjfj) ≤ 2r.

Then, f∗ − ε ≤ ρ(ε, r) ≤ f∗ + (constant) × ε for large r.
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A smaller SDP relaxation (1)

(
1 − fj(x)

Rj

)2r
is SOS → ”σj: SOS” in our SDP relaxation

In our SDP relaxation, replace

”σj: SOS with deg(σj) ≤ 2r” by

”σj: SOS with monomials in
(
1 − fj(x)

Rj

)r

”

Size of SDP relaxation depends on the number of monomials
in SOS

Reduce the size of SDP relaxation

Example fj(x) = 1 − xj

SOS with deg(σj) ≤ 2r...
(n+r

r

)
monomials in

(
1 − fj(x)

Rj

)r

... r + 1
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A smaller SDP relaxation (2)

Remove ε
(
1 +

∑n
i=1 x2r

i

)
→ implicitly introduced by the

floating point computation

.

Theorem (A smaller SDP relaxation)

.

.

.

. ..

.

.


supρ,σj

ρ

sub. to f(x) − ρ −
∑m

j=1 σj(x)fj(x) = σ0(x)

σ0 : SOS, σj : a smaller SOS,
deg(σ0) ≤ 2r, deg(σjfj) ≤ 2r.
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Summary

An extension of Perturbation Theorem (1)

K is compact → the set of optimal solutions is compact

POP with symmetric cones [Kojima-Muraamtsu, 2007]{
infx∈Rn f(x)
sub. to G(x) :=

∑
α Gαxα ∈ E+

where Gα ∈ E and xα is a monomial

e.g., Bilinear matrix inequalities{
infx∈Rn

x,y∈Rn
y

f(x, y)

sub. to G00 + · · · +
∑nx

i=1

∑ny

j=1 Gijxiyj ∈ Sk
+

Extend Putinar’s Lemma and establish SDP relaxation
[Kojima-Muraamtsu, 2007]
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Summary

An extension of Perturbation Theorem (2)

Approximation of Penalty Function on K for POP with
symmetric cones

Φr(x) := −G(x) •
(

1 −
G(x)

R

)2r

,

where G(x)k := G(x) ◦ G(x)k−1 for all k ∈ N.

.

Theorem (W & Muramatsu 2011)

.

.

.

. ..

.

.

Let Rj := max{λmax(G(x)) | x ∈ [−1, 1]n}. We assume

set of opt. sol. ⊆ [−1, 1]n and f(x) − ρ > 0 for all x ∈ K.

Then ∀ε > 0, ∃r̂ ∈ N and ∃σ0: SOS such that for all r ≥ r̂

f(x) − ρ + ε

(
1 +

n∑
i=1

x2r
i

)
+ Φr(x) = σ0(x)
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Sparse SDP relaxation (1)

Insufficient to obtain tighter lower bounds by smaller SDP
relaxation

Sparse SDP relaxation for POPs [Waki et al. 2006]
f: SOS and f = f1(xC1) + · · · + fk(xCk)

⇒ f(x) =
k∑

p=1

σp(xCp), σp : SOS with xCp

≡ Sparse SDP relaxation

The size of SDP becomes too small to compute;(n+r
r

)
→

(#(Cp)+r
r

)
Practically, the quality of sparse SDP relaxation is comparable
to Lasserre’s relaxation.
In a smaller SDP relaxation,

f(x) − ρ −
m∑

j=1

σj(x)fj(x) =
k∑

p=1

σ̃p(xCp), σ̃p : SOS with xCp
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Addition of valid inequalities (1)

.

Its dual of SDP relaxation

.

.

.

. ..

.

.

(POP) ≡


infx f(x)

sub.to fj(x)urj(x)urj(x)
T º O,

ur(x)ur(x)T º O, (moment matrix)

where uk(x) = (1, x1, . . . , xn, x2
1, x1x2, . . . , x2

n, . . . , xk
n)

T.
Replacing xα by yα, obtain its dual of SDP relax.

Assume K ⊆ [0, 1]n

Add valid inequalities 0 ≤ xα ≤ 1 for all monomials
→ 0 ≤ yα ≤ 1

Stronger than the original SDP relaxation
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Addition of valid inequalities (2)

Reduce the number of valid inequalities by moment matrix

For example, n = 2, r = 2

1 y10 y01 y20 y11 y02

y20 y11 y30 y21 y12

y02 y21 y12 y03

y40 y31 y22

y22 y13

y04

 ∈ S6
+

y40, y04 ≤ 1 ⇒ yα ≤ 1

because principal matrices(
1 y20

y20 y40

)
,

(
1 y02

y02 y04

)
,

(
y04 y22

y22 y04

)
∈ S2

+

Not need to add y20, y02, y40, y22, y04 ≥ 0
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Summary

Refine approximated solution by SDP relaxation

(POP) inf
x∈Rn

{f0(x) |fj(x) ≥ 0 (j = 1, . . . , m)}

In its dual of SDP relaxation: xα → yα
x1 → y(1,0,...,0)

x2 → y(0,1,...,0)
...

xn → y(0,0,...,1)

Candidate for solution of POP:
x̂ = (y∗

(1,0,...,0), . . . , y∗
(0,...,0,1))

T

Refine x̂ by using a local solver in MATLAB Optimization
toolbox → Use x̂ as an initial solution

No guarantee on the global optimality for refined solutions
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Summary of some techniques

Insufficient to obtain tighter lower bounds by smaller SDP
relaxation

By using Sparse SDP relaxation, reduce the size of smaller
SDP relaxation

By adding valid inequalities, obtain tighter lower bounds

By using local solvers, refine solutions obtained by SDP
relaxation
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Indices for checking the quality of SDP relaxation

(POP) f∗ := inf
x∈Rn

{f0(x) |fj(x) ≥ 0 (j = 1, . . . , m)}

Let x̂ = (y∗
(1,0,...,0), . . . , y∗

(0,...,0,1))
T be a solution obtained

by SDP relaxation.

Check the feasibility in POP: εfeas := minj=1,...,m{fj(x̂)}
Check the optimality: εobj := (opt.val. of SDP relax.) − f(x̂)

εfeas and εobj ≈ 0 ⇒ (opt. val. of SDP relax.) = f∗
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GLOBAL Library (1)

Test problems in
http://www.gamsworld.org/global/globallib/globalstat.htm & SDP
solver is SeDuMi

Feasibility in POP: εfeas := minj=1,...,m{fj(x̂)}
Optimality: εobj := (opt.va. of SDP relax.) − f(x̂)

ex2 1 8... Quadratic Optimization Problem (n = 24,
m = 58, r = 2)

sizeA nnzA
Lasserre [2924,38223] 68788
Sparse [1789, 15059] 23144
Our [565, 2409] 3495

SDP relaxation Refine by fmincon
εobj εfeas time[sec] obj.val. εfeas

Lasserre 3.9e-09 -5.7e-11 286.62 1.5639e+04 -5.7e-11
Sparse 3.5e-09 -1.1e-12 12.68 1.5639e+04 -3.5e-11
Our 4.7e-02 -1.3e-09 9.94 1.5639e+04 -3.6e-15
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GLOBAL Library (2)

Feasibility in POP: εfeas := minj=1,...,m{fj(x̂)}
Optimality: εobj := (opt.va. of SDP relax.) − f(x̂)

meanvarx... contains 0-1 constraints with (n = 35, m = 66,
r = 3)

No improvement by local solver (fmincon)

sizeA nnzA
Lasserre [37597,258331] 34220
Sparse [526, 2980] 4482
Our [406, 1791] 2887

obj.val. εobj εfeas time[sec]

Lasserre Out of memory
Sparse 1.4327558e+01 2.3e-04 -1.0e-01 161.90
Our 1.4327495e+01 2.3e-04 -1.0e-01 69.30
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GLOBAL Library (3)

Feasibility in POP: εfeas := minj=1,...,m{fj(x̂)}
Optimality: εobj := (opt.va. of SDP relax.) − f(x̂)

st fp7a... QOP (n = 20, m = 20, r = 2)

Table: Numerical Result for st fp7a by SeDuMi

SDP relaxation
εobj εfeas time[sec] sizeA nnzA # iter.

Lasserre 1.5e-08 0.0e+00 156.37 [1770, 15421] 87294 32
Our 5.7e-03 0.0e+00 217.87 [1770, 5313] 55450 48
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GLOBAL Library (3)

Feasibility in POP: εfeas := minj=1,...,m{fj(x̂)}
Optimality: εobj := (opt.va. of SDP relax.) − f(x̂)

st fp7a... QOP (n = 20, m = 20, r = 2)

Table: Numerical Result for st fp7a by SDPT3

SDP relaxation
εobj εfeas time[sec] sizeA nnzA # iter.

Lasserre 4.1e-09 0.0e+00 49.31 [1770, 15421] 87294 29
Our 5.6e-03 0.0e+00 49.67 [1770, 5313] 55450 42
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GLOBAL Library (4)

Feasibility in POP: εfeas := minj=1,...,m{fj(x̂)}
Optimality: εobj := (opt.va. of SDP relax.) − f(x̂)

ex5 3 2... QOP with (n = 22, m = 60, r = 2 & r = 3)

Table: Numerical Result for ex5 3 2

SDP relaxation Refine by fmincon

r εobj εfeas time[sec] obj.val. εfeas
Lasserre 2 Out of memory
Sparse 2 1.1e-07 -6.5e-01 170.05 1.8746711 -2.4e-15
Our 2 4.5e-09 -3.3e-01 13.93 1.8641595 -3.6e-15

Lasserre 3 Out of memory
Sparse 3 Out of memory
Our 3 1.1e-06 -1.3e-01 168.37 1.8641595 3.6e-15
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Bilinear Matrix Inequality

Bk(x, y) :=
n∑

i=1

n∑
j=1

Bijxiyj +
n∑

i=1

Bi0xi +
n∑

j=1

B0jyj + B00

(BMI) inf
s∈R,x,y∈[0,1]n

{
s
∣∣∣sIk − Bk(x, y) ∈ Sk

+,
}

.

No correlative sparsity in (BMI)
# of var. in (BMI) = 2n + 1 and r = 2

Lasserre Our
(n, k) εobj εfeas time[sec] εobj εfeas time[sec]

(2, 5) 2.7e-09 0.0e+00 6.88 1.5e-09 0.0e+00 1.33
(4, 5) 9.2e-09 -1.4e-10 3846.19 6.4e-09 -1.2e-10 137.89
(2, 10) Out of memory 6.9e-10 0.0e+00 2.58
(4, 10) Out of memory 1.7e-09 -5.4e-12 331.87
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Summary

Establish Perturbation Theorem to understand strange
behavior of SDP solver for some SDP relaxation

Propose a smaller SDP relaxation than Lasserre’s

Insufficient to obtain tighter lower bounds

Combine some techniques with our SDP relaxation

Our SDP relaxation is weaker than Lasserre’s

Increase relaxation order r and get a tighter lower bound than
Lasserre’s

Thank you for your attention
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