Hayato Waki

The University of Electro-Communications, Tokyo, Japan University of Waterloo, Waterloo, Canada

2011-09-27

Joint work with Masakazu Muramatsu

Polynomial Optimization Problems

For real-valued polynomials $f_0, f_1, \ldots, f_m, g_1, \ldots, g_k$, Polynomial Optimization Problem (POP) is

$$(\text{POP}) \ f^* := \inf_{\boldsymbol{x} \in \mathbb{R}^n} \left\{ f_0(\boldsymbol{x}) \ \middle| \ \begin{array}{l} f_i(\boldsymbol{x}) \geq 0 \ (i=1,\ldots,m), \\ g_j(\boldsymbol{x}) = 0 \ (j=1,\ldots,k) \end{array} \right\}.$$

POP is NP-hard problem (e.g., MAX-CUT, Max Stable Set)

Polynomial Optimization Problems

For real-valued polynomials $f_0, f_1, \ldots, f_m, g_1, \ldots, g_k$, Polynomial Optimization Problem (POP) is

$$(\text{POP}) \ f^* := \inf_{\boldsymbol{x} \in \mathbb{R}^n} \left\{ f_0(\boldsymbol{x}) \left| \begin{array}{l} f_i(\boldsymbol{x}) \geq 0 \ (i=1,\ldots,m), \\ g_j(\boldsymbol{x}) = 0 \ (j=1,\ldots,k) \end{array} \right. \right\}.$$

POP is NP-hard problem (e.g., MAX-CUT, Max Stable Set)

SDP relaxation for POP ([Lasserre 2001] and [Parrilo 2003])

Convert POP into a SemiDefinite Programming (SDP):

$$(\mathsf{SDP}) \; \theta := \inf_{\mathbf{y} \in \mathbb{R}^\mathsf{N}} \left\{ \mathbf{b}^\mathsf{T} \mathbf{y} \left| \mathsf{C} - \sum_{\mathsf{j}=1}^\mathsf{m} \mathsf{A}_{\mathsf{j}} \mathbf{y}_{\mathsf{j}} \in \mathbb{S}^\mathsf{N}_+ \right. \right\}$$

• The optimal value θ of SDP is a lower bound of \mathbf{f}^* , i.e., $\mathbf{f}^* > \theta$

Some difficulties in SDP relaxation

Need to solve a huge SDP

- Need to solve a huge SDP
 - size of a matrix variable in SDP relax. ... $\binom{n+r}{r} \times \binom{n+r}{r}$
 - length of a vector variable in SDP relax. ... $\binom{n+2r}{2r}$

- Need to solve a huge SDP
 - size of a matrix variable in SDP relax. ... $\binom{n+r}{r} \times \binom{n+r}{r}$
 - length of a vector variable in SDP relax. ... $\binom{n+2r}{2r}$
- SDP relaxation problem often becomes degenerate = SDP does not have any interior feasible solutions

- Need to solve a huge SDP
 - size of a matrix variable in SDP relax. ... $\binom{n+r}{r} \times \binom{n+r}{r}$
 - length of a vector variable in SDP relax. ... $\binom{n+2r}{2r}$
- SDP relaxation problem often becomes degenerate = SDP does not have any interior feasible solutions
 - PDIPM requires the existence of an interior feasible solution for SDP → PDIPM has numerical difficulties

Some difficulties in SDP relaxation

- Need to solve a huge SDP
 - size of a matrix variable in SDP relax. ... $\binom{n+r}{r} \times \binom{n+r}{r}$
 - length of a vector variable in SDP relax. ... $\binom{n+2r}{2r}$
- SDP relaxation problem often becomes degenerate = SDP does not have any interior feasible solutions
 - PDIPM requires the existence of an interior feasible solution for SDP → PDIPM has numerical difficulties

Aim of this talk

Some difficulties in SDP relaxation

- Need to solve a huge SDP
 - size of a matrix variable in SDP relax. ... $\binom{n+r}{r} \times \binom{n+r}{r}$
 - length of a vector variable in SDP relax. ... $\binom{n+2r}{2r}$
- SDP relaxation problem often becomes degenerate = SDP does not have any interior feasible solutions
 - PDIPM requires the existence of an interior feasible solution for SDP → PDIPM has numerical difficulties

Aim of this talk

Propose a smaller SDP relaxation than Lasserre's SDP relaxation

Some difficulties in SDP relaxation

- Need to solve a huge SDP
 - size of a matrix variable in SDP relax. ... $\binom{n+r}{r} \times \binom{n+r}{r}$
 - length of a vector variable in SDP relax. ... $\binom{n+2r}{2r}$
- SDP relaxation problem often becomes degenerate = SDP does not have any interior feasible solutions
 - PDIPM requires the existence of an interior feasible solution for SDP → PDIPM has numerical difficulties

Aim of this talk

- Propose a smaller SDP relaxation than Lasserre's SDP relaxation
- May not be able to tighter lower bounds than Lasserre's SDP relaxation

Some difficulties in SDP relaxation

- Need to solve a huge SDP
 - size of a matrix variable in SDP relax. ... $\binom{n+r}{r} \times \binom{n+r}{r}$
 - length of a vector variable in SDP relax. ... $\binom{n+2r}{2r}$
- SDP relaxation problem often becomes degenerate = SDP does not have any interior feasible solutions
 - PDIPM requires the existence of an interior feasible solution for SDP → PDIPM has numerical difficulties

Aim of this talk

- Propose a smaller SDP relaxation than Lasserre's SDP relaxation
- May not be able to tighter lower bounds than Lasserre's SDP relaxation
- Propose some techniques to improve the bounds

Characterization of SOS; $\sigma = \sum_{i=1}^{k} g_i^2$

- σ is SOS with degree 2r
- ullet $\exists X$: p.s.d. such that $\sigma(x) = u_r(x)^T X u_r(x)$ for all $x \in \mathbb{R}^n$

SDP relaxation for POPs (1)

Characterization of SOS; $\sigma = \sum_{i=1}^{k} \mathbf{g}_{i}^{2}$

- σ is SOS with degree 2r
- $\exists X$: p.s.d. such that $\sigma(x) = u_r(x)^T X u_r(x)$ for all $x \in \mathbb{R}^n$
 - $\mathbf{u}_{\mathbf{r}}(\mathbf{x})$ is a column vector of all monomials with up to $\operatorname{deg} \mathbf{r}$
 - the size of X is $\binom{n+r}{r}$

Characterization of SOS; $\sigma = \sum_{i=1}^{k} g_i^2$

- σ is SOS with degree 2r
- ullet $\exists X$: p.s.d. such that $\sigma(x) = u_r(x)^T X u_r(x)$ for all $x \in \mathbb{R}^n$
 - \bullet $u_r(x)$ is a column vector of all monomials with up to $\deg r$
 - the size of X is $\binom{n+r}{r}$
- $\exists v_i$ such that $g_i(x) := v_i^T u_r(x)$
- $X := \sum_i v_i v_i^T$

Characterization of SOS; $\sigma = \sum_{i=1}^{k} g_i^2$

- σ is SOS with degree 2r
- ullet $\exists X$: p.s.d. such that $\sigma(x) = u_r(x)^T X u_r(x)$ for all $x \in \mathbb{R}^n$
 - $\mathbf{u}_{\mathbf{r}}(\mathbf{x})$ is a column vector of all monomials with up to $\mathbf{deg} \mathbf{r}$
 - the size of X is $\binom{n+r}{r}$
- $\exists v_i$ such that $g_i(x) := v_i^T u_r(x)$
- $X := \sum_i v_i v_i^T$
- ullet Problem to check whether σ is SOS or not \equiv an SDP
 - ullet SDP problem is feasible $o \sigma$ is SOS
 - ullet SDP problem is infeasible $o \sigma$ is not SOS

Characterization of SOS; $\sigma = \sum_{i=1}^{k} \mathbf{g}_{i}^{2}$

- σ is SOS with degree 2r
- $\exists X$: p.s.d. such that $\sigma(x) = u_r(x)^T X u_r(x)$ for all $x \in \mathbb{R}^n$
 - $u_r(x)$ is a column vector of all monomials with up to deg r
 - the size of X is $\binom{n+r}{r}$
- $\bullet \exists v_i$ such that $g_i(x) := v_i^T u_r(x)$
- $X := \sum_i v_i v_i^T$
- Problem to check whether σ is SOS or not \equiv an SDP
 - SDP problem is feasible $\rightarrow \sigma$ is SOS
 - SDP problem is infeasible $\rightarrow \sigma$ is not SOS
 - The size of matrix variable is $\binom{n+r}{r}$

$$(\text{POP}) \ f^* := \inf_{x \in \mathbb{R}^n} \left\{ f_0(x) \left| \begin{array}{l} f_i(x) \geq 0 \ (i=1,\ldots,m), \\ g_j(x) = 0 \ (j=1,\ldots,k) \end{array} \right. \right\}.$$

Generalized Lagrange Function:

$$L(x,\sigma) := f(x) - \sum_{j=1}^m \sigma_j(x) f_j(x), \ \sigma_j$$
: SOS

$$(\text{POP}) \ f^* := \inf_{x \in \mathbb{R}^n} \left\{ f_0(x) \left| \begin{array}{l} f_i(x) \geq 0 \ (i=1,\ldots,m), \\ g_j(x) = 0 \ (j=1,\ldots,k) \end{array} \right. \right\}.$$

• Generalized Lagrange Function:

$$\mathsf{L}(\mathsf{x},\sigma) := \mathsf{f}(\mathsf{x}) - \sum_{\mathsf{j}=1}^{\mathsf{m}} \sigma_{\mathsf{j}}(\mathsf{x}) \mathsf{f}_{\mathsf{j}}(\mathsf{x}), \ \sigma_{\mathsf{j}}$$
: SOS

Generalized Lagrange Relaxation:

$$\sup_{\sigma_j:\mathsf{SOS}}\inf_{\mathsf{x}\in\mathbb{R}^n}\mathsf{L}(\mathsf{x},\sigma)=\sup_{\sigma_j:\mathsf{SOS}}\sup_{\rho\in\mathbb{R}}\left\{\rho\left|\mathsf{L}(\mathsf{x},\sigma)-\rho\geq 0\right.\left(\mathsf{x}\in\mathbb{R}^n\right)\right\}$$

$$(\text{POP}) \ f^* := \inf_{x \in \mathbb{R}^n} \left\{ f_0(x) \left| \begin{array}{l} f_i(x) \geq 0 \ (i=1,\ldots,m), \\ g_j(x) = 0 \ (j=1,\ldots,k) \end{array} \right. \right\}.$$

Generalized Lagrange Function:

$$L(x, \sigma) := f(x) - \sum_{j=1}^{m} \sigma_j(x) f_j(x), \ \sigma_j$$
: SOS

Generalized Lagrange Relaxation:

$$\sup_{\sigma_j:\mathsf{SOS}}\inf_{\mathsf{x}\in\mathbb{R}^n}\mathsf{L}(\mathsf{x},\sigma)=\sup_{\sigma_j:\mathsf{SOS}}\sup_{\rho\in\mathbb{R}}\left\{\rho\left|\mathsf{L}(\mathsf{x},\sigma)-\rho\geq 0\right.\left(\mathsf{x}\in\mathbb{R}^n\right)\right\}$$

• If $\exists \tilde{\sigma_0}$ and $\tilde{\sigma_j}$: SOS s.t. $L(x, \tilde{\sigma}) - \tilde{\rho} = \tilde{\sigma_0}(x)$ for all x,

$$\sup_{\sigma_{i}:\mathsf{SOS}}\inf_{\mathsf{x}\in\mathbb{R}^{\mathsf{n}}}\mathsf{L}(\mathsf{x},\sigma)\geq \tilde{\rho}$$

$$(\text{POP}) \ f^* := \inf_{x \in \mathbb{R}^n} \left\{ f_0(x) \left| \begin{array}{l} f_i(x) \geq 0 \ (i=1,\ldots,m), \\ g_j(x) = 0 \ (j=1,\ldots,k) \end{array} \right. \right\}.$$

Generalized Lagrange Function:

$$L(x, \sigma) := f(x) - \sum_{j=1}^{m} \sigma_j(x) f_j(x), \ \sigma_j$$
: SOS

Generalized Lagrange Relaxation:

$$\sup_{\sigma_j:\mathsf{SOS}}\inf_{\mathsf{x}\in\mathbb{R}^n}\mathsf{L}(\mathsf{x},\sigma)=\sup_{\sigma_j:\mathsf{SOS}}\sup_{\rho\in\mathbb{R}}\left\{\rho\left|\mathsf{L}(\mathsf{x},\sigma)-\rho\geq 0\right.\left(\mathsf{x}\in\mathbb{R}^n\right)\right\}$$

• If $\exists \tilde{\sigma_0}$ and $\tilde{\sigma_j}$: SOS s.t. $L(x, \tilde{\sigma}) - \tilde{\rho} = \tilde{\sigma_0}(x)$ for all x,

$$\sup_{\sigma_i:\mathsf{SOS}}\inf_{\mathsf{x}\in\mathbb{R}^n}\mathsf{L}(\mathsf{x},\sigma)\geq \tilde{\rho}$$

• Putinar's Lemma $\to \sup_{\sigma_i: SOS} \inf_{x \in \mathbb{R}^n} L(x, \sigma) = f^*$

Let
$$K:=\{x\in\mathbb{R}^n\mid f_j(x)\geq 0\ (j=1,\ldots,m)\}.$$

Putinar's Lemma

Under a mild assumption, if $f(x) - \rho > 0$ on K, then \exists SOS $\sigma_0, \ldots, \sigma_m$ such that

$$f(x) - \rho - \sum_{i=1}^{m} \sigma_j(x) f_j(x) = \sigma_0(x) \ (\forall x \in \mathbb{R}^n)$$

SDP relaxation for POPs (2)

Let
$$K := \{x \in \mathbb{R}^n \mid f_j(x) \ge 0 \ (j = 1, \dots, m)\}.$$

Putinar's Lemma

Under a mild assumption, if $f(x) - \rho > 0$ on K, then \exists SOS $\sigma_0, \ldots, \sigma_m$ such that

$$f(x) - \rho - \sum_{j=1}^{m} \sigma_j(x) f_j(x) = \sigma_0(x) \ (\forall x \in \mathbb{R}^n)$$

• Fix r in Generalized Lagrange Relaxation.

$$\begin{cases} \rho_r^* := \sup_{\rho, \sigma_j} & \rho \\ \text{sub. to} & \mathsf{L}(\mathsf{x}, \sigma) - \rho = \sigma_0(\mathsf{x}) \\ & \sigma_0, \sigma_j : \mathsf{SOS}, \\ & \deg(\sigma_0) \leq 2\mathsf{r}, \deg(\sigma_j \mathsf{f}_j) \leq 2\mathsf{r}. \end{cases} = \mathsf{SDP}$$

SDP relaxation for POPs (2)

Let
$$K := \{x \in \mathbb{R}^n \mid f_j(x) \ge 0 \ (j = 1, \dots, m)\}.$$

Putinar's Lemma

Under a mild assumption, if $f(x) - \rho > 0$ on K, then \exists SOS $\sigma_0, \ldots, \sigma_m$ such that

$$f(x) - \rho - \sum_{j=1}^{m} \sigma_j(x) f_j(x) = \sigma_0(x) \ (\forall x \in \mathbb{R}^n)$$

• Fix **r** in Generalized Lagrange Relaxation.

$$\left. \begin{array}{ll} \rho_r^* := \sup_{\rho,\sigma_j} & \rho \\ \text{sub. to} & \mathsf{L}(\mathsf{x},\sigma) - \rho = \sigma_0(\mathsf{x}) \\ & \sigma_0,\sigma_j : \mathsf{SOS}, \\ & \deg(\sigma_0) \leq 2\mathsf{r}, \deg(\sigma_j \mathsf{f}_j) \leq 2\mathsf{r}. \end{array} \right\} = \mathsf{SDP}$$

• $\lim_{r\to\infty} \rho_r^* = f^*$ [Lasserre (2001)]

A mild assumption

• Under a mild assumption, $\lim_{r\to\infty} \rho_r^* = f^*$

A mild assumption

- Under a mild assumption, $\lim_{r\to\infty} \rho_r^* = f^*$
- Even if the feasible region is compact, the assumption may not hold.

SDP relaxation for POPs (3)

A mild assumption

- Under a mild assumption, $\lim_{r\to\infty} \rho_r^* = f^*$
- Even if the feasible region is compact, the assumption may not hold.
- Adding the new constraint $R \sum_{i=1}^{n} x_i^2 \ge 0$, the assumption holds.
- Difficult to estimate $\mathbf{R} \to \text{the POP}$ may become badly scaled.

SDP relaxation for POPs (3)

A mild assumption

- Under a mild assumption, $\lim_{r\to\infty} \rho_r^* = f^*$
- Even if the feasible region is compact, the assumption may not hold.
- Adding the new constraint $R \sum_{j=1}^{n} x_j^2 \ge 0$, the assumption holds.
- ullet Difficult to estimate ${f R}
 ightarrow$ the POP may become badly scaled.

- $\rho_2^* = \mathbf{f}^*$ or $\rho_3^* = \mathbf{f}^*$ without adding the new constraint
- $\rho_r^* = \mathbf{f}^*$ if mild assumption does not hold.

An example (1) [W 2011]

$$f^* := \inf_{\mathsf{x},\mathsf{y} \in \mathbb{R}} \left\{ -\mathsf{x} - \mathsf{y} \mid \mathsf{x},\mathsf{y} \geq 0.5, 0.5 \geq \mathsf{x} \mathsf{y} \right\}$$

- Compact feasible region
- $f^* = -1.5, (x^*, y^*) = (1, 0.5), (0.5, 1)$
- This example does not satisfy assumption

An example (2) [W 2011]

This talk

$$f^* := \inf_{x,y \in \mathbb{R}} \left\{ -x - y \mid x,y \geq 0.5, 0.5 \geq xy \right\}$$

- Compact feasible region
- $f^* = -1.5, (x^*, y^*) = (1, 0.5), (0.5, 1)$
- This example does not satisfy assumption

SDP	SeDuMi	SDPA	SDPT3
$ ho_1^*$	-6.20566047e+07	-4.87662421e+04	-2.7522210e+05
$ ho_2^*$	-3.23012085e+02	-6.30840406e+01	-3.6963483e+03
$ ho_3^*$	-1.49999999e+00	-1.50011582e+00	-1.5000000e+00
$ ho_4^*$	-1.49999998e+00	-1.49999816e+00	-1.5000001e+00
$ ho_5^*$	-1.49999998e+00	-1.50000010e+00	-1.5000033e+00
$ ho_6^*$	-1.49999997e+00	-3.55261397e+01	-1.4999921e+00
$ ho_7^*$	-1.49999997e+00	-1.50000006e+00	-1.5003981e+00
$ ho_8^*$	-1.49999996e+00	-1.49999999e+00	-1.5000325e+00

Summary

$$f^* := \inf_{x,y \in \mathbb{R}} \left\{ -x - y \mid x,y \geq 0.5, 0.5 \geq xy \right\}$$

- Compact feasible region
- $f^* = -1.5, (x^*, y^*) = (1, 0.5), (0.5, 1)$
- This example does not satisfy assumption
- SDP solvers return the minimum value -1.5

SDP	SeDuMi	SDPA	SDPT3
$ ho_1^*$	-6.20566047e+07	-4.87662421e+04	-2.7522210e+05
$ ho_2^*$	-3.23012085e+02	-6.30840406e+01	-3.6963483e+03
$ ho_3^*$	-1.49999999e+00	-1.50011582e+00	-1.5000000e+00
$ ho_4^*$	-1.49999998e+00	-1.49999816e+00	-1.5000001e+00
$ ho_5^*$	-1.49999998e+00	-1.50000010e+00	-1.5000033e+00
$ ho_6^*$	-1.49999997e+00	-3.55261397e+01	-1.4999921e+00
$ ho_7^*$	-1.49999997e+00	-1.50000006e+00	-1.5003981e+00
$ ho_8^*$	-1.49999996e+00	-1.49999999e+00	-1.5000325e+00

$$f^* := \inf_{\textbf{x}, \textbf{y} \in \mathbb{R}} \left\{ -\textbf{x} - \textbf{y} \mid \textbf{x}, \textbf{y} \geq 0.5, 0.5 \geq \textbf{x} \textbf{y} \right\}$$

- This example does not satisfy assumption
- SDP solvers return the minimum value -1.5

An example (3) [W 2011]

$$f^* := \inf_{x,y \in \mathbb{R}} \left\{ -x - y \mid x,y \geq 0.5, 0.5 \geq xy \right\}$$

- This example does not satisfy assumption
- ullet SDP solvers return the minimum value -1.5
- But, SDP is weakly infeasible & its dual is strongly feasible

$$f^* := \inf_{x,y \in \mathbb{R}} \left\{ -x - y \mid x,y \geq 0.5, 0.5 \geq xy \right\}$$

- This example does not satisfy assumption
- SDP solvers return the minimum value -1.5
- But, SDP is weakly infeasible & its dual is strongly feasible

SDP is weakly infeasible

 $\forall \rho, \ \exists \sigma_0, \sigma_i$: SOS such that

$$L(x, y, \sigma) - \rho = \sigma_0(x, y)$$

$$f^* := \inf_{x,y \in \mathbb{R}} \left\{ -x - y \mid x,y \geq 0.5, 0.5 \geq xy \right\}$$

- This example does not satisfy the assumption
- SDP solvers return the minimum value -1.5
- But, SDP is weakly infeasible & its dual is strongly feasible

Numerical Results

$$f^* := \inf_{x,y \in \mathbb{R}} \left\{ -x - y \mid x,y \geq 0.5, 0.5 \geq xy \right\}$$

- This example does not satisfy the assumption
- SDP solvers return the minimum value -1.5
- But, SDP is weakly infeasible & its dual is strongly feasible

Conjecture for this example

 $\forall \epsilon > 0$, $\exists \sigma_0, \sigma_i, \mu$: SOS such that

$$L(x, y, \sigma) - (-1.5) + \epsilon \mu = \sigma_0(x, y)$$

Theorem (W & Muramatsu 2011)

Let $R_i := \max\{|f_i(x)| \mid x \in [-1,1]^n\}$. We assume

- $K \subseteq [-1,1]^n$,
- $f(x) \rho > 0$ for all $x \in K$.

Then $\forall \epsilon > 0$, $\exists \hat{\mathbf{r}} \in \mathbb{N}$ and $\exists \sigma_0$: SOS such that for all $\mathbf{r} \geq \hat{\mathbf{r}}$

$$f(x) - \rho + \epsilon \left(1 + \sum_{i=1}^{n} x_i^{2r}\right) - \sum_{j=1}^{m} f_j(x) \left(1 - \frac{f_j(x)}{R_j}\right)^{2r} = \sigma_0(x)$$

Perturbation Theorem for constrained POP

Theorem (W & Muramatsu 2011)

Let $R_i := \max\{|f_i(x)| \mid x \in [-1,1]^n\}$. We assume

- $K \subset [-1,1]^n$
- $f(x) \rho > 0$ for all $x \in K$.

Then $\forall \epsilon > \mathbf{0}$, $\exists \hat{\mathbf{r}} \in \mathbb{N}$ and $\exists \sigma_0$: SOS such that for all $\mathbf{r} > \hat{\mathbf{r}}$

$$f(x) - \rho + \epsilon \left(1 + \sum_{i=1}^{n} x_i^{2r} \right) - \sum_{j=1}^{m} f_j(x) \left(1 - \frac{f_j(x)}{R_j} \right)^{2r} = \sigma_0(x)$$

- Not need mild assumption
- Need a highly perturbation $\epsilon (1 + \sum_{i=1}^{n} x_i^{2r})$

Perturbation Theorem for constrained POP

Theorem (W & Muramatsu 2011)

Let $R_j := max\{|f_j(x)| \mid x \in [-1,1]^n\}$. We assume

- $K \subseteq [-1,1]^n$,
- $f(x) \rho > 0$ for all $x \in K$.

Then $\forall \epsilon > 0$, $\exists \hat{\mathbf{r}} \in \mathbb{N}$ and $\exists \sigma_0$: SOS such that for all $\mathbf{r} \geq \hat{\mathbf{r}}$

$$f(x) - \rho + \epsilon \left(1 + \sum_{i=1}^{n} x_i^{2r}\right) - \sum_{j=1}^{m} f_j(x) \left(1 - \frac{f_j(x)}{R_j}\right)^{2r} = \sigma_0(x)$$

- Not need mild assumption
- Need a highly perturbation $\epsilon \left(1 + \sum_{i=1}^{n} x_i^{2r}\right)$
- SDP relaxation by Perturbation Theorem

Sketch of proof of Perturbation Theorem (1)

Theorem (I; Approximation of penalty function on **K**)

$$f(x) - \rho - \sum_{i=1}^{m} f_j(x) \left(1 - \frac{f_j(x)}{R_j}\right)^{2r} > 0 \ (x \in [-1, 1]^n)$$

Theorem (I; Approximation of penalty function on **K**)

$$f(x) - \rho - \sum_{i=1}^m f_j(x) \left(1 - \frac{f_j(x)}{R_j}\right)^{2r} > 0 \ (x \in [-1, 1]^n)$$

• $x \in K$, for sufficiently large r,

$$-\sum_{i=1}^{m} f_j(x) \left(1 - \frac{f_j(x)}{R_j}\right)^{2r} \approx 0$$

• $x \in [-1,1]^n \setminus K$ and M > 0, for sufficiently large r,

$$-\sum_{i=1}^m f_j(x) \left(1-\frac{f_j(x)}{R_j}\right)^{2r} > M$$

Theorem (I; Approximation of penalty function on **K**)

$$f(x) - \rho - \sum_{i=1}^m f_j(x) \left(1 - \frac{f_j(x)}{R_j}\right)^{2r} > 0 \ (x \in [-1,1]^n)$$

• $x \in K$, for sufficiently large r,

$$-\sum_{i=1}^{m} f_j(x) \left(1 - \frac{f_j(x)}{R_j}\right)^{2r} \approx 0$$

• $x \in [-1,1]^n \setminus K$ and M > 0, for sufficiently large r,

$$-\sum_{i=1}^m f_j(x) \left(1 - \frac{f_j(x)}{R_j}\right)^{2r} > M$$

ullet \Rightarrow Approximation of Penalty function on ${f K}$

Sketch of proof of Perturbation Theorem (2)

Theorem (I; Approximation of penalty function on **K**)

$$f(x) - \rho - \sum_{i=1}^{m} f_j(x) \left(1 - \frac{f_j(x)}{R_j}\right)^{2r} > 0 \ (x \in [-1, 1]^n)$$

Theorem (I; Approximation of penalty function on **K**)

$$f(x) - \rho - \sum_{i=1}^m f_j(x) \left(1 - \frac{f_j(x)}{R_j}\right)^{2r} > 0 \ (x \in [-1,1]^n)$$

Theorem (II; Netzer-Lasserre 2007)

f(x) > 0 over $[-1,1]^n$. For any $\epsilon > 0$, $\exists \hat{r} \in \mathbb{R}$ and σ_0 : SOS such that for all $\mathbf{r} > \hat{\mathbf{r}}$

$$f(x) + \epsilon \left(1 + \sum_{j=1}^{n} x_j^{2r}\right) = \sigma_0(x).$$

Sketch of proof of Perturbation Theorem (2)

Theorem (I; Approximation of penalty function on **K**)

$$f(x) - \rho - \sum_{i=1}^m f_j(x) \left(1 - \frac{f_j(x)}{R_j}\right)^{2r} > 0 \ (x \in [-1,1]^n)$$

Theorem (II; Netzer-Lasserre 2007)

 $f(x) \geq 0$ over $[-1,1]^n$. For any $\epsilon > 0$, $\exists \hat{r} \in \mathbb{R}$ and σ_0 : SOS such that for all $r > \hat{r}$

$$f(x) + \epsilon \left(1 + \sum_{j=1}^{n} x_j^{2r}\right) = \sigma_0(x).$$

Theorem I + II ⇒ Perturbation Theorem for constrained POP

$$\begin{split} \bullet & \ f(\textbf{x}) - \rho + \epsilon \left(1 + \sum_{i=1}^{n} x_i^{2r}\right) - \sum_{j=1}^{m} f_j(\textbf{x}) \left(1 - \frac{f_j(\textbf{x})}{R_j}\right)^{2r} \text{ is } \\ \text{SOS} \\ \bullet & \left(1 - \frac{f_j(\textbf{x})}{R_i}\right)^{2r} \text{ is SOS} \end{split}$$

$$\begin{split} \bullet & \ f(\textbf{x}) - \rho + \epsilon \left(1 + \sum_{i=1}^{n} \textbf{x}_i^{2r}\right) - \sum_{j=1}^{m} f_j(\textbf{x}) \left(1 - \frac{f_j(\textbf{x})}{R_j}\right)^{2r} \text{ is } \\ \text{SOS} \\ \bullet & \left(1 - \frac{f_j(\textbf{x})}{R_i}\right)^{2r} \text{ is SOS} \end{split}$$

Theorem

 $\forall \epsilon > 0$, let $\rho(\epsilon, \mathbf{r})$ be the optimal value;

$$\begin{cases} \sup_{\rho,\sigma_j} & \rho \\ \text{sub. to} & f(x) - \rho + \epsilon \left(1 + \sum_{i=1}^n x_i^{2r}\right) - \sum_{j=1}^m \sigma_j(x) f_j(x) = \sigma_0(x) \\ & \sigma_0,\sigma_j: \textit{SOS}, \\ & \deg(\sigma_0) \leq 2r, \deg(\sigma_j f_j) \leq 2r. \end{cases}$$

Then, $\mathbf{f}^* - \epsilon \leq \rho(\epsilon, \mathbf{r}) \leq \mathbf{f}^* + (constant) \times \epsilon$ for large \mathbf{r} .

A smaller SDP relaxation (1)

$$ullet$$
 $\left(1-rac{f_j(x)}{R_i}
ight)^{2r}$ is SOS $ightarrow$ " σ_j : SOS" in our SDP relaxation

- ullet $\left(1-rac{f_j(x)}{R_i}
 ight)^{2r}$ is SOS ightarrow " σ_j : SOS" in our SDP relaxation
- In our SDP relaxation, replace
 - ullet " σ_j : SOS with $\deg(\sigma_j) \leq 2r$ " by
 - \bullet " σ_j : SOS with monomials in $\left(1-\frac{f_j(x)}{R_j}\right)^r$ "

A smaller SDP relaxation (1)

- $\bullet \ \left(1-\frac{f_j(x)}{R_i}\right)^{2r}$ is SOS \to " σ_j : SOS" in our SDP relaxation
- In our SDP relaxation, replace
 - " σ_i : SOS with $deg(\sigma_i) < 2r$ " by
 - \bullet " σ_j : SOS with monomials in $\left(1-\frac{f_j(x)}{R:}\right)^r$ "
- Size of SDP relaxation depends on the number of monomials in SOS
- Reduce the size of SDP relaxation

A smaller SDP relaxation (1)

- $\bullet \ \left(1-\frac{f_j(\textbf{x})}{R_i}\right)^{2r}$ is SOS \to " σ_j : SOS" in our SDP relaxation
- In our SDP relaxation, replace
 - " σ_i : SOS with $deg(\sigma_i) < 2r$ " by
 - " σ_j : SOS with monomials in $\left(1-\frac{f_j(x)}{R_i}\right)^r$ "
- Size of SDP relaxation depends on the number of monomials in SOS
- Reduce the size of SDP relaxation
- Example $f_i(x) = 1 x_i$
 - SOS with $deg(\sigma_i) \leq 2r... \binom{n+r}{r}$
 - monomials in $\left(1 \frac{f_j(x)}{R}\right)^r \dots r + 1$

• Remove $\epsilon \left(1 + \sum_{i=1}^{n} x_{i}^{2r}\right) \rightarrow$ implicitly introduced by the floating point computation

A smaller SDP relaxation (2)

• Remove $\epsilon \left(1 + \sum_{i=1}^{n} x_i^{2r}\right) \rightarrow \text{implicitly introduced by the}$ floating point computation

Theorem (A smaller SDP relaxation)

```
\begin{cases} \sup_{\rho,\sigma_{j}} & \rho \\ \text{sub. to} & f(x) - \rho - \sum_{j=1}^{m} \sigma_{j}(x) f_{j}(x) = \sigma_{0}(x) \\ & \sigma_{0} : SOS, \sigma_{j} : \text{a smaller SOS}, \\ & \deg(\sigma_{0}) \leq 2r, \deg(\sigma_{j}f_{j}) \leq 2r. \end{cases}
```

An extension of Perturbation Theorem (1)

ullet K is compact o the set of optimal solutions is compact

An extension of Perturbation Theorem (1)

- K is compact → the set of optimal solutions is compact
- POP with symmetric cones [Kojima-Muraamtsu, 2007]

where $G_{\alpha} \in \mathcal{E}$ and \mathbf{x}^{α} is a monomial

- K is compact → the set of optimal solutions is compact
- POP with symmetric cones [Kojima-Muraamtsu, 2007]

$$\left\{ \begin{array}{ll} \inf_{\mathsf{x} \in \mathbb{R}^n} & \mathsf{f}(\mathsf{x}) \\ \text{sub. to} & \mathsf{G}(\mathsf{x}) := \sum_{\alpha} \mathsf{G}_{\alpha} \mathsf{x}^{\alpha} \in \mathcal{E}_+ \end{array} \right.$$

where $G_{\alpha} \in \mathcal{E}$ and \mathbf{x}^{α} is a monomial

e.g., Bilinear matrix inequalities

$$\left\{ \begin{array}{ll} \text{inf}_{x \in \mathbb{R}^n_x, y \in \mathbb{R}^n_y} & f(x,y) \\ \text{sub. to} & G_{00} + \dots + \sum_{i=1}^{n_x} \sum_{j=1}^{n_y} G_{ij} x_i y_j \in \mathbb{S}^k_+ \end{array} \right.$$

 Extend Putinar's Lemma and establish SDP relaxation [Kojima-Muraamtsu, 2007]

An extension of Perturbation Theorem (2)

 Approximation of Penalty Function on K for POP with symmetric cones

$$\Phi_{\mathsf{r}}(\mathsf{x}) := -\mathsf{G}(\mathsf{x}) \bullet \left(1 - \frac{\mathsf{G}(\mathsf{x})}{\mathsf{R}}\right)^{2\mathsf{r}},$$

where $G(x)^k := G(x) \circ G(x)^{k-1}$ for all $k \in \mathbb{N}$.

An extension of Perturbation Theorem (2)

 Approximation of Penalty Function on K for POP with symmetric cones

$$\Phi_{r}(x) := -G(x) \bullet \left(1 - \frac{G(x)}{R}\right)^{2r},$$

where $G(x)^k := G(x) \circ G(x)^{k-1}$ for all $k \in \mathbb{N}$.

Theorem (W & Muramatsu 2011)

Let $R_i := \max\{\lambda_{\max}(G(x)) \mid x \in [-1,1]^n\}$. We assume

$$ullet$$
 set of opt. sol. $\subseteq [-1,1]^n$ and $f(x)-
ho>0$ for all $x\in K$.

Then $\forall \epsilon > \mathbf{0}$, $\exists \hat{\mathbf{r}} \in \mathbb{N}$ and $\exists \sigma_0$: SOS such that for all $\mathbf{r} > \hat{\mathbf{r}}$

$$f(x) - \rho + \epsilon \left(1 + \sum_{i=1}^{n} x_i^{2r}\right) + \Phi_r(x) = \sigma_0(x)$$

This talk

Insufficient to obtain tighter lower bounds by smaller SDP relaxation

Summary

- Insufficient to obtain tighter lower bounds by smaller SDP relaxation
- Sparse SDP relaxation for POPs [Waki et al. 2006]
- f: SOS and $f = f_1(x_{C_1}) + \cdots + f_k(x_{C_k})$

$$\Rightarrow f(x) = \sum_{p=1}^{k} \sigma_{p}(x_{C_{p}}), \sigma_{p} : SOS \text{ with } x_{C_{p}}$$

$$\equiv Sparse SDP \text{ relaxation}$$

This talk

- Insufficient to obtain tighter lower bounds by smaller SDP relaxation
- Sparse SDP relaxation for POPs [Waki et al. 2006]
- f: SOS and $f = f_1(x_{C_1}) + \cdots + f_k(x_{C_k})$

$$\Rightarrow f(x) = \sum_{p=1}^{k} \sigma_{p}(x_{C_{p}}), \sigma_{p} : SOS \text{ with } x_{C_{p}}$$

$$\equiv Sparse SDP \text{ relaxation}$$

 The size of SDP becomes too small to compute; $\binom{\mathsf{n+r}}{\mathsf{n}} \to \binom{\#(\mathsf{C}_{\mathsf{p}})+\mathsf{r}}{\mathsf{n}}$

- Insufficient to obtain tighter lower bounds by smaller SDP relaxation
- Sparse SDP relaxation for POPs [Waki et al. 2006]
- f: SOS and $f = f_1(x_{C_1}) + \cdots + f_k(x_{C_k})$

$$\Rightarrow f(x) = \sum_{p=1}^{k} \sigma_{p}(x_{C_{p}}), \sigma_{p} : SOS \text{ with } x_{C_{p}}$$

$$\equiv Sparse SDP \text{ relaxation}$$

- The size of SDP becomes too small to compute; $\binom{\mathsf{n+r}}{\mathsf{r}} \to \binom{\#(\mathsf{C}_{\mathsf{p}})+\mathsf{r}}{\mathsf{r}}$
- Practically, the quality of sparse SDP relaxation is comparable to Lasserre's relaxation.

- Insufficient to obtain tighter lower bounds by smaller SDP relaxation
- Sparse SDP relaxation for POPs [Waki et al. 2006]
- f: SOS and $f = f_1(x_{C_1}) + \cdots + f_k(x_{C_k})$

$$\Rightarrow f(x) = \sum_{p=1}^{k} \sigma_{p}(x_{C_{p}}), \sigma_{p} : SOS \text{ with } x_{C_{p}}$$

$$\equiv Sparse SDP \text{ relaxation}$$

- The size of SDP becomes too small to compute; $\binom{\mathsf{n+r}}{\mathsf{r}} \to \binom{\#(\mathsf{C}_{\mathsf{p}})+\mathsf{r}}{\mathsf{r}}$
- Practically, the quality of sparse SDP relaxation is comparable to Lasserre's relaxation.
- In a smaller SDP relaxation.

$$f(x) - \rho - \sum_{j=0}^{m} \sigma_j(x) f_j(x) = \sum_{j=0}^{k} \tilde{\sigma_p}(x_{C_p}), \tilde{\sigma_p}$$
; SOS, with x_{C_p}

Addition of valid inequalities (1)

Its dual of SDP relaxation

$$\label{eq:pop} (\text{POP}) \equiv \left\{ \begin{array}{ll} \text{inf}_x & f(x) \\ \text{sub.to} & f_j(x) u_{r_j}(x) u_{r_j}(x)^T \succeq 0, \\ & u_r(x) u_r(x)^T \succeq 0, \text{ (moment matrix)} \end{array} \right.$$

where $\mathbf{u_k}(\mathbf{x}) = (1, \mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{x}_1^2, \mathbf{x}_1 \mathbf{x}_2, \dots, \mathbf{x}_n^2, \dots, \mathbf{x}_n^k)^\mathsf{T}$. Replacing \mathbf{x}^{α} by \mathbf{y}_{α} , obtain its dual of SDP relax.

Addition of valid inequalities (1)

Its dual of SDP relaxation

$$\label{eq:pop} \text{(POP)} \equiv \left\{ \begin{array}{ll} \text{inf}_x & f(x) \\ \text{sub.to} & f_j(x) u_{r_j}(x) u_{r_j}(x)^T \succeq 0, \\ & u_r(x) u_r(x)^T \succeq 0, \text{ (moment matrix)} \end{array} \right.$$

where $u_k(x) = (1, x_1, \dots, x_n, x_1^2, x_1x_2, \dots, x_n^2, \dots, x_n^k)^T$. Replacing \mathbf{x}^{α} by \mathbf{y}_{α} , obtain its dual of SDP relax.

- Assume $K \subset [0,1]^n$
- Add valid inequalities $0 < x^{\alpha} < 1$ for all monomials $\rightarrow 0 < v_{\alpha} < 1$

Addition of valid inequalities (1)

Its dual of SDP relaxation

$$\label{eq:pop} (\text{POP}) \equiv \left\{ \begin{array}{ll} \text{inf}_x & f(x) \\ \text{sub.to} & f_j(x) u_{r_j}(x) u_{r_j}(x)^T \succeq 0, \\ & u_r(x) u_r(x)^T \succeq 0, \text{ (moment matrix)} \end{array} \right.$$

where $u_k(x) = (1, x_1, \dots, x_n, x_1^2, x_1x_2, \dots, x_n^2, \dots, x_n^k)^T$. Replacing \mathbf{x}^{α} by \mathbf{y}_{α} , obtain its dual of SDP relax.

- Assume $K \subset [0,1]^n$
- Add valid inequalities $0 < x^{\alpha} < 1$ for all monomials $\rightarrow 0 < v_{\alpha} < 1$
- Stronger than the original SDP relaxation

Addition of valid inequalities (2)

This talk

• Reduce the number of valid inequalities by moment matrix

Summary

Addition of valid inequalities (2)

- Reduce the number of valid inequalities by moment matrix
- For example, n = 2, r = 2

$$\left(\begin{array}{c|ccccccc} 1 & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\ \hline & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\ & & y_{02} & y_{21} & y_{12} & y_{03} \\ \hline & & & y_{40} & y_{31} & y_{22} \\ & & & & y_{22} & y_{13} \\ & & & & & y_{04} \end{array}\right) \in \mathbb{S}_{+}^{6}$$

- Reduce the number of valid inequalities by moment matrix
- For example, n = 2, r = 2

$$\left(\begin{array}{c|cccccc} 1 & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\ \hline & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\ & & y_{02} & y_{21} & y_{12} & y_{03} \\ \hline & & & y_{40} & y_{31} & y_{22} \\ & & & & y_{22} & y_{13} \\ & & & & & y_{04} \end{array}\right) \in \mathbb{S}_{+}^{6}$$

• $y_{40}, y_{04} \leq 1 \Rightarrow y_{\alpha} \leq 1$

Addition of valid inequalities (2)

- Reduce the number of valid inequalities by moment matrix
- For example, n = 2, r = 2

$$\left(\begin{array}{c|ccccc} 1 & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\ \hline & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\ & & y_{02} & y_{21} & y_{12} & y_{03} \\ \hline & & & y_{40} & y_{31} & y_{22} \\ & & & & y_{22} & y_{13} \\ & & & & & y_{04} \end{array}\right) \in \mathbb{S}_{+}^{6}$$

- $y_{40}, y_{04} < 1 \Rightarrow y_{\alpha} < 1$
- because principal matrices

$$\begin{pmatrix} 1 & y_{20} \\ y_{20} & y_{40} \end{pmatrix}, \begin{pmatrix} 1 & y_{02} \\ y_{02} & y_{04} \end{pmatrix}, \begin{pmatrix} y_{04} & y_{22} \\ y_{22} & y_{04} \end{pmatrix} \in \mathbb{S}^2_+$$

Addition of valid inequalities (2)

- Reduce the number of valid inequalities by moment matrix
- For example, n = 2, r = 2

$$\left(\begin{array}{c|ccccc} 1 & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\ \hline & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\ & & y_{02} & y_{21} & y_{12} & y_{03} \\ \hline & & & y_{40} & y_{31} & y_{22} \\ & & & & y_{22} & y_{13} \\ & & & & & y_{04} \end{array}\right) \in \mathbb{S}_{+}^{6}$$

- $y_{40}, y_{04} < 1 \Rightarrow y_{\alpha} < 1$
- because principal matrices

$$\begin{pmatrix} 1 & y_{20} \\ y_{20} & y_{40} \end{pmatrix}, \begin{pmatrix} 1 & y_{02} \\ y_{02} & y_{04} \end{pmatrix}, \begin{pmatrix} y_{04} & y_{22} \\ y_{22} & y_{04} \end{pmatrix} \in \mathbb{S}^2_+$$

• Not need to add $y_{20}, y_{02}, y_{40}, y_{22}, y_{04} \ge 0$

Refine approximated solution by SDP relaxation

$$(\mathsf{POP})\inf_{\mathbf{x}\in\mathbb{R}^n}\left\{f_0(\mathbf{x})\left|f_j(\mathbf{x})\geq 0\right.\left(j=1,\ldots,m\right)\right\}$$

• In its dual of SDP relaxation: $\mathbf{x}^{\alpha} \to \mathbf{y}_{\alpha}$

$$\left\{ \begin{array}{ccc} x_1 & \rightarrow & y_{(1,0,\ldots,0)} \\ x_2 & \rightarrow & y_{(0,1,\ldots,0)} \\ & \vdots \\ x_n & \rightarrow & y_{(0,0,\ldots,1)} \end{array} \right.$$

Refine approximated solution by SDP relaxation

$$(\text{POP})\inf_{\boldsymbol{x}\in\mathbb{R}^n}\left\{f_0(\boldsymbol{x})\left|f_j(\boldsymbol{x})\geq 0\right.\left(j=1,\ldots,m\right)\right\}$$

ullet In its dual of SDP relaxation: $\mathbf{x}^{oldsymbol{lpha}} o \mathbf{y}_{oldsymbol{lpha}}$

• Candidate for solution of POP:

$$\hat{\mathbf{x}} = (y^*_{(1,0,\dots,0)},\dots,y^*_{(0,\dots,0,1)})^\mathsf{T}$$

This talk

Refine approximated solution by SDP relaxation

$$(\text{POP})\inf_{\boldsymbol{x}\in\mathbb{R}^n}\left\{f_0(\boldsymbol{x})\left|f_j(\boldsymbol{x})\geq 0\right.\left(j=1,\ldots,m\right)\right\}$$

• In its dual of SDP relaxation: $\mathbf{x}^{\alpha} \to \mathbf{y}_{\alpha}$

$$\begin{cases} \begin{array}{cccc} x_1 & \rightarrow & y_{(1,0,\ldots,0)} \\ x_2 & \rightarrow & y_{(0,1,\ldots,0)} \\ & \vdots \\ x_n & \rightarrow & y_{(0,0,\ldots,1)} \end{array} \end{cases}$$

Candidate for solution of POP:

$$\hat{\mathbf{x}} = (\mathbf{y}_{(1,0,\dots,0)}^*, \dots, \mathbf{y}_{(0,\dots,0,1)}^*)^\mathsf{T}$$

• Refine $\hat{\mathbf{x}}$ by using a local solver in MATLAB Optimization toolbox \rightarrow Use $\hat{\mathbf{x}}$ as an initial solution

Refine approximated solution by SDP relaxation

$$(\text{POP})\inf_{\boldsymbol{x}\in\mathbb{R}^n}\left\{f_0(\boldsymbol{x})\left|f_j(\boldsymbol{x})\right.\geq 0\ (j=1,\ldots,m)\right.\right\}$$

ullet In its dual of SDP relaxation: ${f x}^{m lpha}
ightarrow {f y}_{m lpha}$

$$\left\{ \begin{array}{ccc} x_1 & \rightarrow & y_{(1,0,\ldots,0)} \\ x_2 & \rightarrow & y_{(0,1,\ldots,0)} \\ & \vdots \\ x_n & \rightarrow & y_{(0,0,\ldots,1)} \end{array} \right.$$

Candidate for solution of POP:

$$\hat{\mathbf{x}} = (\mathbf{y}_{(1,0,\ldots,0)}^*, \ldots, \mathbf{y}_{(0,\ldots,0,1)}^*)^\mathsf{T}$$

- Refine x̂ by using a local solver in MATLAB Optimization toolbox → Use x̂ as an initial solution
- No guarantee on the global optimality for refined solutions

Summary of some techniques

Insufficient to obtain tighter lower bounds by smaller SDP relaxation

Summary of some techniques

This talk

- Insufficient to obtain tighter lower bounds by smaller SDP relaxation
- By using Sparse SDP relaxation, reduce the size of smaller SDP relaxation

Summary of some techniques

- Insufficient to obtain tighter lower bounds by smaller SDP relaxation
- By using Sparse SDP relaxation, reduce the size of smaller SDP relaxation
- By adding valid inequalities, obtain tighter lower bounds

This talk

- Insufficient to obtain tighter lower bounds by smaller SDP relaxation
- By using Sparse SDP relaxation, reduce the size of smaller SDP relaxation
- By adding valid inequalities, obtain tighter lower bounds
- By using local solvers, refine solutions obtained by SDP relaxation

$$(\text{POP}) \ f^* := \inf_{\boldsymbol{x} \in \mathbb{R}^n} \left\{ f_0(\boldsymbol{x}) \left| f_j(\boldsymbol{x}) \geq 0 \right. \left(j = 1, \ldots, m \right) \right\}$$

• Let $\hat{\mathbf{x}} = (\mathbf{y}^*_{(1,0,\dots,0)},\dots,\mathbf{y}^*_{(0,\dots,0,1)})^\mathsf{T}$ be a solution obtained by SDP relaxation.

$$(\text{POP}) \ f^* := \inf_{\boldsymbol{x} \in \mathbb{R}^n} \left\{ f_0(\boldsymbol{x}) \ | f_j(\boldsymbol{x}) \geq 0 \ (j=1,\ldots,m) \right\}$$

- Let $\hat{\mathbf{x}} = (\mathbf{y}^*_{(1,0,\dots,0)},\dots,\mathbf{y}^*_{(0,\dots,0,1)})^\mathsf{T}$ be a solution obtained by SDP relaxation.
- Check the feasibility in POP: $\epsilon_{\text{feas}} := \min_{j=1,...,m} \{f_j(\hat{\mathbf{x}})\}$

$$(\text{POP}) \ f^* := \inf_{\boldsymbol{x} \in \mathbb{R}^n} \left\{ f_0(\boldsymbol{x}) \ | f_j(\boldsymbol{x}) \geq 0 \ (j=1,\ldots,m) \right\}$$

- Let $\hat{\mathbf{x}} = (\mathbf{y}^*_{(1,0,\dots,0)},\dots,\mathbf{y}^*_{(0,\dots,0,1)})^\mathsf{T}$ be a solution obtained by SDP relaxation.
- Check the feasibility in POP: $\epsilon_{\text{feas}} := \min_{j=1,...,m} \{f_j(\hat{\mathbf{x}})\}$
- Check the optimality: $\epsilon_{\mathrm{obj}} := (\mathrm{opt.val.~of~SDP~relax.}) f(\hat{\mathbf{x}})$

$$(\text{POP}) \ f^* := \inf_{\boldsymbol{x} \in \mathbb{R}^n} \left\{ f_0(\boldsymbol{x}) \left| f_j(\boldsymbol{x}) \right. \geq 0 \ (j=1,\ldots,m) \right. \right\}$$

- Let $\hat{\mathbf{x}} = (\mathbf{y}^*_{(1,0,\dots,0)},\dots,\mathbf{y}^*_{(0,\dots,0,1)})^\mathsf{T}$ be a solution obtained by SDP relaxation.
- Check the feasibility in POP: $\epsilon_{\text{feas}} := \min_{j=1,...,m} \{f_j(\hat{\mathbf{x}})\}$
- Check the optimality: $\epsilon_{\text{obj}} := (\text{opt.val. of SDP relax.}) f(\hat{\mathbf{x}})$
- ullet ϵ_{feas} and $\epsilon_{\mathsf{obj}} pprox \mathbf{0} \Rightarrow \mathsf{(opt. val. of SDP relax.)} = \mathbf{f}^*$

GLOBAL Library (1)

Test problems in

http://www.gamsworld.org/global/globallib/globalstat.htm & SDP solver is SeDuMi

- Feasibility in POP: $\epsilon_{\text{feas}} := \min_{i=1,...,m} \{f_i(\hat{\mathbf{x}})\}$
- Optimality: $\epsilon_{obj} := (opt.va. of SDP relax.) f(\hat{x})$
- $ex2_1_8...$ Quadratic Optimization Problem (n = 24, m = 58, r = 2

	sizeA	nnzA
Lasserre	[2924,38223]	68788
Sparse	[1789, 15059]	23144
Our	[565, 2409]	3495

	S	SDP relaxat	Refine by t	fmincon	
	ϵ_{obj}	ϵ_{feas}	time[sec]	obj.val.	ϵ_{feas}
Lasserre	3.9e-09	-5.7e-11	286.62	1.5639e+04	-5.7e-11
Sparse	3.5e-09	-1.1e-12	12.68	1.5639e+04	-3.5e-11
Our	4.7e-02	-1.3e-09	9.94	1.5639e+04	∍-3.6e-15

GLOBAL Library (2)

- Feasibility in POP: $\epsilon_{\mathsf{feas}} := \mathsf{min}_{\mathsf{j}=1,\dots,\mathsf{m}}\{\mathsf{f}_{\mathsf{j}}(\hat{\mathsf{x}})\}$
- Optimality: $\epsilon_{\text{obj}} := (\text{opt.va. of SDP relax.}) f(\hat{\mathbf{x}})$
- meanvarx... contains 0-1 constraints with (n = 35, m = 66, r = 3)
- No improvement by local solver (fmincon)

	sizeA	nnzA
Lasserre	[37597,258331]	34220
Sparse	[526, 2980]	4482
Our	[406, 1791]	2887

	obj.val.	$\epsilon_{\sf obj}$	ϵ_{feas}	time[sec]
Lasserre		Out of me	mory	
Sparse	1.4327558e+01	2.3e-04	-1.0e-01	161.90
Our	1.4327495e+01	2.3e-04	-1.0e-01	69.30

GLOBAL Library (3)

- Feasibility in POP: $\epsilon_{\text{feas}} := \min_{j=1,...,m} \{f_j(\hat{\mathbf{x}})\}$
- Optimality: $\epsilon_{obj} := (opt.va. of SDP relax.) f(\hat{x})$
- $st_fp7a...$ QOP (n = 20, m = 20, r = 2)

Table: Numerical Result for st_fp7a by SeDuMi

	SDP relaxation					
	ϵ_{obj}	ϵ_{feas}	time[sec]	sizeA	nnzA	# iter.
Lasserre	1.5e-08	0.0e+00	156.37	[1770, 15421]	87294	32
Our	5.7e-03	0.0e + 00	217.87	[1770, 5313]	55450	48

GLOBAL Library (3)

- Feasibility in POP: $\epsilon_{\text{feas}} := \min_{j=1,...,m} \{f_j(\hat{\mathbf{x}})\}$
- Optimality: $\epsilon_{obj} := (opt.va. of SDP relax.) f(\hat{x})$
- $st_fp7a... QOP (n = 20, m = 20, r = 2)$

Table: Numerical Result for st_fp7a by SDPT3

	SDP relaxation					
	ϵ_{obj}	ϵ_{feas}	time[sec]	sizeA	nnzA	# iter.
Lasserre	4.1e-09	0.0e+00	49.31	[1770, 15421]	87294	29
Our	5.6e-03	0.0e + 00	49.67	[1770, 5313]	55450	42

GLOBAL Library (4)

- Feasibility in POP: $\epsilon_{\text{feas}} := \min_{j=1,...,m} \{f_j(\hat{\mathbf{x}})\}$
- Optimality: $\epsilon_{obj} := (opt.va. of SDP relax.) f(\hat{x})$
- $ex5_3_2...$ QOP with (n = 22, m = 60, r = 2 & r = 3)

Table: Numerical Result for ex5_3_2

		SDP relaxation			Refine by	fmincon	
	r	ϵ_{obj}	ϵ_{feas}	time[sec]	obj.val.	ϵ_{feas}	
Lasserre	2		Out of memory				
Sparse	2	1.1e-07	-6.5e-01	170.05	1.8746711	-2.4e-15	
Our	2	4.5e-09	-3.3e-01	13.93	1.8641595	-3.6e-15	
Lasserre	3	Out of memory					
Sparse	3	Out of memory					
Our	3	1.1e-06	-1.3e-01	168.37	1.8641595	3.6e-15	

Bilinear Matrix Inequality

$$\begin{split} \mathsf{B}_{k}(\textbf{x},\textbf{y}) &:= \sum_{i=1}^{n} \sum_{j=1}^{n} \mathsf{B}_{ij} \textbf{x}_{i} \textbf{y}_{j} + \sum_{i=1}^{n} \mathsf{B}_{i0} \textbf{x}_{i} + \sum_{j=1}^{n} \mathsf{B}_{0j} \textbf{y}_{j} + \mathsf{B}_{00} \\ & (\mathsf{BMI}) \qquad \inf_{\textbf{s} \in \mathbb{R}, \textbf{x}, \textbf{y} \in [0,1]^{n}} \left\{ \textbf{s} \left| \textbf{s} \textbf{I}_{k} - \mathsf{B}_{k} (\textbf{x}, \textbf{y}) \in \mathbb{S}_{+}^{k}, \right. \right\}. \end{split}$$

- No correlative sparsity in (BMI)
- # of var. in (BMI) = 2n + 1 and r = 2

		Lasserre			Our $\epsilon_{\rm feas}$ time[sec] $0.0e+00$ 1.33 1.2×10 $1.37.00$	
(n, k)	ϵ_{obj}	ϵ_{feas}	time[sec]	$\epsilon_{\sf obj}$	ϵ_{feas}	time[sec]
(2, 5)	2.7e-09	0.0e+00	6.88	1.5e-09	0.0e+00	1.33
(4, 5)	9.2e-09	-1.4e-10	3846.19	6.4e-09	-1.2e-10	137.89
(2, 10)	Out of memory			6.9e-10	0.0e+00	2.58
(4, 10)		Out of memory			-5.4e-12	331.87

Summary

- Establish Perturbation Theorem to understand strange behavior of SDP solver for some SDP relaxation
- Propose a smaller SDP relaxation than Lasserre's

Summary

This talk

- Establish Perturbation Theorem to understand strange behavior of SDP solver for some SDP relaxation
- Propose a smaller SDP relaxation than Lasserre's
- Insufficient to obtain tighter lower bounds
- Combine some techniques with our SDP relaxation

- Establish Perturbation Theorem to understand strange behavior of SDP solver for some SDP relaxation
- Propose a smaller SDP relaxation than Lasserre's
- Insufficient to obtain tighter lower bounds
- Combine some techniques with our SDP relaxation
- Our SDP relaxation is weaker than Lasserre's
- Increase relaxation order r and get a tighter lower bound than Lasserre's

Summary,

- Establish Perturbation Theorem to understand strange behavior of SDP solver for some SDP relaxation
- Propose a smaller SDP relaxation than Lasserre's
- Insufficient to obtain tighter lower bounds
- Combine some techniques with our SDP relaxation
- Our SDP relaxation is weaker than Lasserre's.
- Increase relaxation order r and get a tighter lower bound than Lasserre's
- Thank you for your attention

Numerical Results