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Unit-distance representations

A unit-distance representation of G = (V,E) is a map p: V — R9 s.t.

lp() =PI =1 Y{ij}€E
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Every graph has a unit-distance representation

o . 1
» complete graphs have a unit-distance repr. i — —e¢; € R”
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Every graph has a unit-distance representation

o . 1
» complete graphs have a unit-distance repr. i — —e¢; € R”
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> a unit-distance repr. of G “contains’ a unit-distance repr. of any
subgraph of G
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Petersen again
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» Any unit-distance repr. of K, contains a unit-distance repr. of any
p-colorable graph.



Chromatic number of R”

> The graph (R", {{x,y}: [[x —y|| =1}) "is” a unit-distance repr. of
itself.

» Frankl and Wilson, Raigorodskii, Larman and Rogers:
(14 o(1))1.2" < chromatic(R") < (3 + o(1))"

» The “graph” R” has a unit-distance repr. in some R9 with finite
image.

» de Bruijn, Erd8s '51: chromatic(R") = max chromatic(G) where G
ranges over finite graphs with some unit-distance repr. in R”.
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Hypersphere number and Lovdsz Theta Number



Hypersphere representations

» A hypersphere representation of G = (V, E) is a unit-distance
representation of G contained in a hypersphere centered at the
origin, i.e.,

» A hypersphere representation of G is a map p: V — R? s.t.

eIl =r  VieV
lp(i) —pU)I =1 W{ij}€E

2
> hypersphere(G) := [min. radius r of a hypersph. repr. of G}



Optimal hypersphere representations of complete graphs




Optimal hypersphere representations of the 5-cycle
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hypersphere(G) as an SDP

hypersphere(G) = min ¢t

Xi=t VieV
Xi —2X; + X =1 v{i,j} € E,
X >0

= max Z Z{hj}

{ij}€E

Diag(y) = Z zip(ei—¢)(ei— )
{ij}€E

Yievyi=1

» Dual may be interpreted as a problem in tensegrity theory.



Relation with Lovasz Theta Number

b

» Lovdasz proved 2|hypersphere(G)| +
vész proved 2[hypersphere(G)] @)

Sketch of Proof.

Rewrite dual:

=1

2[hypersphere(G)] = max (J—1,5)



Relation with Lovasz Theta Number

1
> Lovész proved 2 |hypersphere(G)]| + 5C) 1
Sketch of Proof.
Rewrite dual:
2[hypersphere(G)] = max 1—(/,S)
5$=0

Sj=0  Wij}eE
(J,8) =1



Reciprocal SDPs




Min-Max Interpretation

2
> hypersphere(G) = [min. radius of a hypersph. repr. of G}

» 0(G) = max{Zx,- :x € TH(G) }
icv —
theta body

Theorem

> Let p be a hypersphere repr. of G with radius r

> Let x € TH(G) with x # 0

Then 2r% + > 1.

1
DievXi

Equality holds <= r? = hypersphere(G) and Zx,- =0(G)
iev



SDP-free Interpretation

» An orthonormal representation of G = (V, E) is a map u from V to
the unit sphere in RV s.t. non-adjacent nodes are orthogonal
Theorem
> Let p be a hypersphere repr. of G with radius r

» Let ¢ be a unit vector and u an orthonormal repr. of G

1
Then 2P >1.
>iev(cTu(i))?

Equality <= r? = hypersphere(G) and z:(cTu(i))2 =0(G)
iev



Characterization of bipartite graphs

G is bipartite «—= 0(G) <2
(proof reduces to 0(Coxt1) > 2)

Equivalently G is bipartite <= hypersphere(G) < 1/4



Characterization of bipartite graphs

G is bipartite «—= 0(G) <2
(proof reduces to 0(Coxt1) > 2)

Equivalently G is bipartite <= hypersphere(G) < 1/4

Proof.
(=): already done.



Characterization of bipartite graphs

G is bipartite «—= 0(G) <2
(proof reduces to 0(Coxt1) > 2)
Equivalently G is bipartite <= hypersphere(G) < 1/4

Proof.
(=): already done.

(«<=): In a hypersphere with radius 1/2, the only pairs of points at
distance 1 are the pairs of antipodal points. O



Unit-distance representations in Euclidean balls

Recall:

i i 2
o min. radius of a hypersphere
- hypersphere(G) T [ containing a unit-distance repr. of G
Next:
1 H - 2
> ball(G) := [ min. radius of a ball containing ]

a unit-distance repr. of G



Unit-distance representations in Euclidean balls

Recall:
. . 2
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> hypersphere(G) := [ containing a unit-distance repr. of G
Next:
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> ball(G) := [ a unit-distance repr. of G ]

» ball(G) < hypersphere(G)



Unit-distance representations in Euclidean balls

Recall:
. . 2
. min. radius of a hypersphere
> hypersphere(G) := [ containing a unit-distance repr. of G
Next:
. . . 2
| min. radius of a ball containing
> ball(G) := [ a unit-distance repr. of G ]

» ball(G) < hypersphere(G)

> ball(G) < hypersphere(G)



Another min-max relation

1
0(G)

2hypersphere(G) + =1

where 6(G) =

max (J, X)
X >0
Xij =0
{1, X) =

v{i,j} € E

2ball(G) +

where 0,(G) =

max

(4, X)
X =0
Xj =0
(,X)=1
Y X >0 VeV

v{i,j} € E



Another min-max relation

1 1
2hypersphere(G) + — =1 2ball(G)+ —= =1
0(G) 05(G)
where 0(G) = where 0,(G) =
max (J, X) max (J, X)
X >0 X =0
X; =0 v{i,j} € E X;j=0 v{i,j} € E
(1,X) = (1,X) =1
X =0 VeV

hypersphere(-) = ball(-) < 6(-) = 0,(")



Hypersphere = Euclidean Balls?

> But 0() = 0s(-) !

> It was pointed out by Fernando Mario de Oliveira Filho that the
following result can be used to prove 6(-) = 6,()

Theorem (Prop. 9 in Gijswijt's PhD thesis, 2005)

Let K C S" s.t. Diag(h)X Diag(h) € K whenever X € K and h € R'.. If
X* is an optimal solution to

max{(J,X}:Tr(X):l,XEKﬂSi}, (1)

then 3p > 0 s.t. diag(X™*) = pX*1.



The Sandwich Theorem

» clique(G) < (G) < chromatic(G)

hypersphere(Keiique(c)) < hypersphere(G)
> =
hypersphere(G) < hypersphere(Kchromatic(G))

» HC G = hypersphere(H) < hypersphere(G)



The Sandwich Theorem

v

clique(G) < 6(G) < chromatic(G)

v

| hypersphere(Keiique(c)) < hypersphere(G)
- hypersphere(G) < hypersphere(Kchromatic(G))

» HC G = hypersphere(H) < hypersphere(G)

v

if c: V(G) — {1,...,n} is a n-colouring of G, and p is a
hypersphere repr. of the complete graph on {1,...,n}, then pocis
a hypersphere repr. of G



Hypersphere representations of 2-colourable graphs

N
N



Hypersphere representations of 3-colourable graphs
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Homomorphisms and Sandwich Theorems



Graph Homomorphisms

» A homomorphism from a graph G to a graph H is a function
f: V(G) — V(H) that preserves edges, i.e., if {i,j} € E(G), then
{F(7),fU)} € E(H).



Graph Homomorphisms

» A homomorphism from a graph G to a graph H is a function

f: V(G) — V(H) that preserves edges, i.e., if {i,j} € E(G), then
{f(1), fU)} € E(H).

» Notation: G — H = 3 a homomorphism from G to H

» “—" is transitive (compose homs.)



Graph Homomorphisms

v

A homomorphism from a graph G to a graph H is a function
f: V(G) — V(H) that preserves edges, i.e., if {i,j} € E(G), then
{F(7),fU)} € E(H).

Notation: G — H = 3 a homomorphism from G to H

v

» “—" is transitive (compose homs.)

v

G is a subgraphof H = G — H



Graph Homomorphisms

v

A homomorphism from a graph G to a graph H is a function
f: V(G) — V(H) that preserves edges, i.e., if {i,j} € E(G), then
{F(7),fU)} € E(H).

Notation: G — H = 3 a homomorphism from G to H

v

» “—" is transitive (compose homs.)

v

G is a subgraphof H = G — H

» G — K, <= chromatic(G) < p

v

chromatic(G) = min{p: G — K,}



Homomorphism-monotone invariants

A real-valued graph invariant f is hom-monotone if
» f(G)<f(H)ifG—H



Homomorphism-monotone invariants

A real-valued graph invariant f is hom-monotone if
» f(G) < f(H)if G— H and
> there is a nondecreasing function g: Im(f) — R s.t.
g(f(Ky,)=n ¥n>1
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A real-valued graph invariant f is hom-monotone if
» f(G) < f(H)if G— H and
> there is a nondecreasing function g: Im(f) — R s.t.
g(f(Ky,)=n ¥n>1

Examples:
> clique(+)
» chromatic(+)

» chromatic™(+)



Homomorphism-monotone invariants
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Homomorphism-monotone invariants

A real-valued graph invariant f is hom-monotone if
» f(G) < f(H)if G— H and
> there is a nondecreasing function g: Im(f) — R s.t.
g(f(Ky,)=n ¥n>1

Examples:
> clique(+)
» chromatic(+)
» chromatic™(+)
> hypersphere(+)

» some variants of hypersphere(-)



Homomorphism-monotone invariants

A real-valued graph invariant f is hom-monotone if
» f(G) < f(H)if G— H and
> there is a nondecreasing function g: Im(f) — R s.t.
g(f(Ky))=n Vn>1

Then clique(G) < g(f(G)) < chromatic(G).
Proof.

Keiique(6) = G = Kchromatic(G)
= f(Kaique(6)) < f(G) < f(Kehromatic(G))
— clique(G) = g(f(Kaique(c))) < 8(F(G)) < g(F(Kchromatic(6)))
= chromatic(G)



Yet another variant

Define hypersphere’(G) similarly as hypersphere(G), but require edges to
be at distance > 1.

2 hypersphere(G) +

where 0(G) =

max (J, X)
X=0
Xij=0
(LX)y=1

1
0(G)

=1

vi{i,j} € E

2 hypersphere’(G) +

where ¢'(G) =

max (J, X)
X =0
Xij=0
(LXy=1
X >0

vi{i,j} € E

0'(-) was introduced by McEliece, Rodemich, Rumsey, and,
independently, by Schrijver



An aside: sparse solutions to SDPs

Theorem (de C.S., Harvey, Sato 2011)

Let By, ..., Bn be psd n x n matrices. Set B := ", B;. Then Ve € (0,1)
there exists y € R\, with < 4n/e? nonzero entries and

(1-2)B=> yiBi = (1+¢)B.

1



An aside: sparse solutions to SDPs

Theorem (de C.S., Harvey, Sato 2011)

Let By, ..., Bn be psd n x n matrices. Set B := ", B;. Then Ve € (0,1)
there exists y € R\, with < 4n/e? nonzero entries and

(1-¢)B= ZY:‘B; < (1+¢)B.

1

When applied to the dual SDP for hypersphere’(G), we get:

for all € € (0,1) and every graph G, there exists a spanning subgraph H
of G such that
[V(6)|

E(H) <81

and
hypersphere’(G)

11 e < hypersphere’(H) < hypersphere/(G).



Unit-Distance Dimension

» dim(G) := smallest d s.t. 3 a unit-distance repr. of G in RY.

v

if G — H and H has a unit-distance repr. in RY, then so does G

» dim(K,)=n—1

v

so dim(-) is hom-monotone

v

Sandwich: clique(G) < dim(G) + 1 < chromatic(G)



Unit-Distance Dimension

» dim(G) := smallest d s.t. 3 a unit-distance repr. of G in RY.

» if G — H and H has a unit-distance repr. in R?, then so does G
» dim(K,)=n—1

» so dim(-) is hom-monotone

» Sandwich: clique(G) < dim(G) + 1 < chromatic(G)

» dim(G) < maxdegree(G)

» Brooks' Theorem = G is connected and not complete nor an odd
cycle, then dim(G) < maxdegree(G) — 1.



Golomb graph and Mosers' spindle




Golomb graph and Mosers' spindle

v

Golomb — Moser

Assume G — H

v

» dim(G) < dim(H) and chromatic(G) < chromatic(H)

v

chromatic(R¥™(H)) > chromatic(H) > chromatic(G), i.e., G cannot
improve the lower bound of chromatic(Rdi”‘(H)) given by H.



Hardness

Deciding whether dim(G) = 2 is NP-complete.

Proof.

» k-Embeddability Problem:
> input: graph G = (V, E) and prescribed edge lengths £: E — R,

> decide if Ip: V — R* such that ||p(i) — p(j)|| = ¢; for all ij € E.
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> decide if Ip: V — R* such that ||p(i) — p(j)|| = ¢; for all ij € E.

» Saxe '79: Yk > 1, the problem k-Embeddability is NP-complete,
even if £(E) C {1,2}.
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> We show 2-Embeddability with ¢(E) C {1,2} reduces to deciding if
dim(G) = 2.



Hardness

Deciding whether dim(G) = 2 is NP-complete.

Proof.

» k-Embeddability Problem:
> input: graph G = (V, E) and prescribed edge lengths £: E — R,

> decide if Ip: V — R* such that ||p(i) — p(j)|| = ¢; for all ij € E.

» Saxe '79: Yk > 1, the problem k-Embeddability is NP-complete,
even if £(E) C {1,2}.

> We show 2-Embeddability with ¢(E) C {1,2} reduces to deciding if
dim(G) = 2.

» We need a gadget to force distance 2 using only distance 1
requirements.



Unique embedding of Mosers’ spindle




Gadget

’
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Generalizations



Weighted Hypersphere Number

We want to define hypersphere(G, w) for w € RY so that

2 hypersphere(G, w) + e =1.

hypersphere(G, w) =

min t
Xi=wt+ (1—w;)/2 VieV
Xi —2Xj 4+ X =1+ (t = 1/2)(w; — 2\/wjw; + w;) Y{i,j} € E
X =0

Solutions encode hypersphere repr. for graph obtained from G by
“blowing up” each node i into a clique of size w;.



Objective Function as Norm

» ball(G) = min { (| (u] ui)icv|| . : u a unit-distance repr. of G}



Objective Function as Norm

» ball(G) = min { (| (u] ui)icv|| . : u a unit-distance repr. of G}

» for A> 0 and p € [1, o0], define

ellipse, (G, A) := inf{ H(u,-TAu,-),-eva : u a unit-distance repr. of G}



Objective Function as Norm

» ball(G) = min { (| (u] ui)icv|| . : u a unit-distance repr. of G}

» for A> 0 and p € [1, o0], define
ellipse, (G, A) := inf{ H(U,’TAUi)ieva : u a unit-distance repr. of G}

> for a fixed A > 0, the invariant ellipse (+, A) satisfies the first
condition of hom-monotonicity, i.e.,

G — H = ellipse (G, A) < ellipse . (H, A)



Action of the Orthogonal Group

ellipse; (G, A) = min { Z |AY2;(13 - u a unit-distance repr. of G}
iev



Action of the Orthogonal Group

ellipse; (G, A) = min { Z |AY2;(13 - u a unit-distance repr. of G}
iev

ellipse; (G, A) = Q21Oi?v)min (QAQT, X)
s.t. Xi— 2XU —|—)<Jj =1 V{I,j} cE

X =0



Action of the Orthogonal Group

ellipse; (G, A) = min { Z |AY2;(13 - u a unit-distance repr. of G}
iev

ellipse; (G, A) = Q21Oi?v)min (QAQT, X)
s.t. Xi— 2X,J —|—)<J'j =1 V{I,j} cE

X =0

ellipse; (G, A) = min Z)\ An—it1(X)

s.t. Xi —2X,'j -‘erj =1 V{i,j} €E

X =0



Complete Graphs

ellipse; (G, A) = min Z)\ An—it1(X)

st. Xy —2X;+X;=1 vi{i,j} € E

X>0

» for G = K,,, a matrix X is feasible iff X is of the form
(y™ +y17 +21)/4 with [[1[|[ly[]| <2+ 1Ty

> ellipse; (Kp, A) = Tr(A) — Amax(A) using SOC program



Hardness

» if Ais nx n diagonal with n — 2 one entries and 2 zeroes on the
diagonal, then ellipse; (G, A) = 0 if and only if dim(G) < 2

» Computing ellipse; (G, A) given G and A = 0 as inputs is NP-hard.

> For any fixed p € [1, 00], computing ellipse,(G, A) given G and
A = 0 as inputs is NP-hard.
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