Geometric Representations of Graphs, Semidefinite Optimization, and Min-Max Theorems

Marcel de Carli Silva (with Levent Tunçel)

Department of Combinatorics and Optimization University of Waterloo

September 28th, 2011

Unit-distance representations

A unit-distance representation of G = (V, E) is a map $p: V \to \mathbb{R}^d$ s.t.

$$\|p(i)-p(j)\|=1 \qquad \forall \{i,j\} \in E$$

Every graph has a unit-distance representation

lacktriangle complete graphs have a unit-distance repr. $i\mapsto rac{1}{\sqrt{2}}e_i\in\mathbb{R}^n$

Every graph has a unit-distance representation

▶ complete graphs have a unit-distance repr. $i \mapsto \frac{1}{\sqrt{2}} e_i \in \mathbb{R}^n$

ightharpoonup a unit-distance repr. of G "contains" a unit-distance repr. of any subgraph of G

Petersen again

Petersen again

Petersen again

▶ Any unit-distance repr. of K_p contains a unit-distance repr. of any p-colorable graph.

Chromatic number of \mathbb{R}^n

- ▶ The graph $(\mathbb{R}^n, \{\{x,y\} : \|x-y\|=1\})$ "is" a unit-distance repr. of itself.
- ▶ Frankl and Wilson, Raigorodskii, Larman and Rogers: $(1 + o(1))1.2^n \le \operatorname{chromatic}(\mathbb{R}^n) \le (3 + o(1))^n$
- ▶ The "graph" \mathbb{R}^n has a unit-distance repr. in some \mathbb{R}^d with finite image.
- ▶ de Bruijn, Erdős '51: chromatic(\mathbb{R}^n) = max chromatic(G) where G ranges over finite graphs with some unit-distance repr. in \mathbb{R}^n .

Outline

Hypersphere number and Lovász Theta Number

Homomorphisms and Sandwich Theorems

Generalizations

Outline

Hypersphere number and Lovász Theta Number

Homomorphisms and Sandwich Theorems

Generalizations

Hypersphere representations

- ▶ A hypersphere representation of G = (V, E) is a unit-distance representation of G contained in a hypersphere centered at the origin, i.e.,
- lacksquare A hypersphere representation of G is a map $p\colon V o \mathbb{R}^d$ s.t.

$$||p(i)|| = r \qquad \forall i \in V$$

$$||p(i) - p(j)|| = 1 \qquad \forall \{i, j\} \in E$$

▶ hypersphere(G) := $\left[\text{min. radius } r \text{ of a hypersph. repr. of } G\right]^2$

Optimal hypersphere representations of complete graphs

Optimal hypersphere representations of the 5-cycle

hypersphere(G) as an SDP

$$\begin{array}{ll} \mathsf{hypersphere}(\mathit{G}) = \mathsf{min} & t \\ & X_{ii} = t & \forall i \in \mathit{V} \\ & X_{ii} - 2X_{ij} + X_{jj} = 1 & \forall \{i,j\} \in \mathit{E}, \\ & X \succeq 0 \\ \\ & = \mathsf{max} & \sum_{\{i,j\} \in \mathit{E}} z_{\{i,j\}} \\ & \mathsf{Diag}(y) \succeq \sum_{\{i,j\} \in \mathit{E}} z_{\{i,j\}} (e_i - e_j) (e_i - e_j)^T \\ & \sum_{i \in \mathit{V}} y_i = 1 \end{array}$$

Dual may be interpreted as a problem in tensegrity theory.

Relation with Lovász Theta Number

▶ Lovász proved 2[hypersphere(G)] + $\frac{1}{\theta(\overline{G})}$ = 1

Sketch of Proof.

Rewrite dual:

$$2ig[\mathsf{hypersphere}(G)ig] = \mathsf{max} \quad \langle J-I,S
angle \ S\succeq 0 \ S_{ij} = 0 \quad orall \{i,j\}\in \overline{E} \ \langle J,S
angle = 1$$

Relation with Lovász Theta Number

▶ Lovász proved 2[hypersphere(G)] + $\frac{1}{\theta(\overline{G})}$ = 1

Sketch of Proof.

Rewrite dual:

$$2ig[\mathsf{hypersphere}(G)ig] = \mathsf{max} \quad 1-\langle I,S
angle \ S\succeq 0 \ S_{ij} = 0 \quad orall \{i,j\}\in \overline{E} \ \langle J,S
angle = 1$$

Reciprocal SDPs

$$\begin{array}{lll} 1/\theta(\overline{G}) = & & & & & & \\ \min & \langle I,S \rangle & & & & \\ & S \succeq 0 & & & \\ & S_{ij} = 0 & \forall \{i,j\} \in \overline{E} & & & \\ & \langle J,S \rangle = 1 & & & & \\ \end{array}$$

Min-Max Interpretation

- ▶ hypersphere(G) = $\left[\text{min. radius of a hypersph. repr. of } G\right]^2$
- $\qquad \qquad \theta(G) = \max \left\{ \sum_{i \in V} x_i : x \in \underbrace{\mathsf{TH}(G)}_{\mathsf{theta\ body}} \right\}$

Theorem

- Let p be a hypersphere repr. of G with radius r
- ▶ Let $x \in TH(\overline{G})$ with $x \neq 0$

Then
$$2r^2 + \frac{1}{\sum_{i \in V} x_i} \ge 1.$$

Equality holds
$$\iff$$
 $r^2 = \text{hypersphere}(G)$ and $\sum_{i \in V} x_i = \theta(\overline{G})$

SDP-free Interpretation

An orthonormal representation of G = (V, E) is a map u from V to the unit sphere in \mathbb{R}^V s.t. non-adjacent nodes are orthogonal

Theorem

- Let p be a hypersphere repr. of G with radius r
- Let c be a unit vector and u an orthonormal repr. of G

Then
$$2r^2 + \frac{1}{\sum_{i \in V} (c^T u(i))^2} \ge 1.$$

Equality
$$\iff$$
 $r^2 = \text{hypersphere}(G) \text{ and } \sum_{i \in V} (c^T u(i))^2 = \theta(\overline{G})$

Characterization of bipartite graphs

$$G$$
 is bipartite $\iff \theta(\overline{G}) \le 2$ (proof reduces to $\theta(\overline{C_{2k+1}}) > 2$)

Equivalently G is bipartite \iff hypersphere(G) $\leq 1/4$

Characterization of bipartite graphs

G is bipartite
$$\iff \theta(\overline{G}) \leq 2$$

(proof reduces to
$$\theta(\overline{C_{2k+1}}) > 2$$
)

Equivalently G is bipartite \iff hypersphere $(G) \le 1/4$

Proof.

 (\Longrightarrow) : already done.

Characterization of bipartite graphs

G is bipartite
$$\iff \theta(\overline{G}) \leq 2$$

(proof reduces to
$$\theta(\overline{C_{2k+1}}) > 2$$
)

Equivalently G is bipartite \iff hypersphere $(G) \le 1/4$

Proof.

 (\Longrightarrow) : already done.

(\Leftarrow): In a hypersphere with radius 1/2, the only pairs of points at distance 1 are the pairs of antipodal points.

Unit-distance representations in Euclidean balls

Recall:

▶ hypersphere(G) := $\begin{bmatrix} min. radius of a hypersphere \\ containing a unit-distance repr. of <math>G \end{bmatrix}^2$

Next:

▶ ball(G) := $\begin{bmatrix} min. radius of a ball containing a unit-distance repr. of <math>G \end{bmatrix}^2$

Unit-distance representations in Euclidean balls

Recall:

▶ hypersphere(G) := $\begin{bmatrix} min. radius of a hypersphere \\ containing a unit-distance repr. of <math>G \end{bmatrix}^2$

Next:

- ▶ ball(G) := $\begin{bmatrix} min. radius of a ball containing \\ a unit-distance repr. of <math>G \end{bmatrix}^2$
- ▶ $ball(G) \le hypersphere(G)$

Unit-distance representations in Euclidean balls

Recall:

▶ hypersphere(G) := $\begin{bmatrix} min. radius of a hypersphere \\ containing a unit-distance repr. of <math>G \end{bmatrix}^2$

Next:

- ▶ ball(G) := $\begin{bmatrix} min. radius of a ball containing \\ a unit-distance repr. of <math>G \end{bmatrix}^2$
- ▶ $ball(G) \le hypersphere(G)$
- ▶ ball(G) $\stackrel{?}{=}$ hypersphere(G)

Another min-max relation

Another min-max relation

$$\begin{array}{lll} \mbox{2hypersphere}(G) + \frac{1}{\theta(\overline{G})} = 1 & 2 \operatorname{ball}(G) + \frac{1}{\theta_b(\overline{G})} = 1 \\ & \mbox{where } \theta(\overline{G}) = & \mbox{where } \theta_b(\overline{G}) = \\ & \mbox{max} \quad \langle J, X \rangle & \mbox{max} \quad \langle J, X \rangle & \\ & X \succeq 0 & \mbox{} X \succeq 0 & \\ & X_{ij} = 0 & \forall \{i,j\} \in \overline{E} & \\ & \langle I, X \rangle = 1 & \mbox{} \langle I, X \rangle = 1 & \\ & \sum_i X_{ij} \geq 0 & \forall j \in V & \end{array}$$

$$\mathsf{hypersphere}(\cdot) = \mathsf{ball}(\cdot) \iff \theta(\cdot) = \theta_b(\cdot)$$

Hypersphere = Euclidean Balls?

- ▶ But $\theta(\cdot) = \theta_b(\cdot)$!
- ▶ It was pointed out by Fernando Mario de Oliveira Filho that the following result can be used to prove $\theta(\cdot) = \theta_b(\cdot)$

Theorem (Prop. 9 in Gijswijt's PhD thesis, 2005)

Let $\mathbb{K} \subseteq \mathbb{S}^n$ s.t. $\mathsf{Diag}(h)X \, \mathsf{Diag}(h) \in \mathbb{K}$ whenever $X \in \mathbb{K}$ and $h \in \mathbb{R}^n_+$. If X^* is an optimal solution to

$$\max\Big\{\left\langle J,X\right\rangle : \mathsf{Tr}(X) = 1,\, X \in \mathbb{K} \cap \mathbb{S}^n_+\Big\},\tag{1}$$

then $\exists \mu > 0$ s.t. $\operatorname{diag}(X^*) = \mu X^* \mathbb{1}$.

The Sandwich Theorem

▶ $clique(G) \le \theta(\overline{G}) \le chromatic(G)$

$$\blacktriangleright \equiv \begin{cases} & \mathsf{hypersphere}(K_{\mathsf{clique}(G)}) \leq \mathsf{hypersphere}(G) \\ & \mathsf{hypersphere}(G) \leq \mathsf{hypersphere}(K_{\mathsf{chromatic}(G)}) \end{cases}$$

▶ $H \subseteq G \implies \text{hypersphere}(H) \le \text{hypersphere}(G)$

The Sandwich Theorem

- ▶ clique(G) ≤ $\theta(\overline{G})$ ≤ chromatic(G)
- $\blacktriangleright \equiv \begin{cases} & \mathsf{hypersphere}(K_{\mathsf{clique}(G)}) \leq \mathsf{hypersphere}(G) \\ & \mathsf{hypersphere}(G) \leq \mathsf{hypersphere}(K_{\mathsf{chromatic}(G)}) \end{cases}$
- ▶ $H \subseteq G \implies \text{hypersphere}(H) \le \text{hypersphere}(G)$
- ▶ if $c: V(G) \rightarrow \{1, ..., n\}$ is a n-colouring of G, and p is a hypersphere repr. of the complete graph on $\{1, ..., n\}$, then $p \circ c$ is a hypersphere repr. of G

Hypersphere representations of 2-colourable graphs

Hypersphere representations of 3-colourable graphs

Outline

Hypersphere number and Lovász Theta Number

Homomorphisms and Sandwich Theorems

Generalizations

Graph Homomorphisms

▶ A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ that preserves edges, i.e., if $\{i, j\} \in E(G)$, then $\{f(i), f(j)\} \in E(H)$.

Graph Homomorphisms

- ▶ A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ that preserves edges, i.e., if $\{i, j\} \in E(G)$, then $\{f(i), f(j)\} \in E(H)$.
- ▶ Notation: $G \rightarrow H \equiv \exists$ a homomorphism from G to H
- "→" is transitive (compose homs.)

Graph Homomorphisms

- ▶ A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ that preserves edges, i.e., if $\{i, j\} \in E(G)$, then $\{f(i), f(j)\} \in E(H)$.
- ▶ Notation: $G \rightarrow H \equiv \exists$ a homomorphism from G to H
- → "→" is transitive (compose homs.)
- ▶ *G* is a subgraph of $H \implies G \rightarrow H$

Graph Homomorphisms

- ▶ A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ that preserves edges, i.e., if $\{i, j\} \in E(G)$, then $\{f(i), f(j)\} \in E(H)$.
- ▶ Notation: $G \rightarrow H \equiv \exists$ a homomorphism from G to H
- "→" is transitive (compose homs.)
- ▶ *G* is a subgraph of $H \implies G \rightarrow H$
- ▶ $G \to K_p \iff \mathsf{chromatic}(G) \le p$
- ▶ chromatic(G) = min{ $p : G \rightarrow K_p$ }

A real-valued graph invariant f is hom-monotone if

▶ $f(G) \le f(H)$ if $G \to H$

A real-valued graph invariant f is hom-monotone if

- ▶ $f(G) \le f(H)$ if $G \to H$ and
- ▶ there is a nondecreasing function $g: Im(f) \to \mathbb{R}$ s.t. $g(f(K_n)) = n \quad \forall n \geq 1.$

A real-valued graph invariant f is hom-monotone if

- ▶ $f(G) \le f(H)$ if $G \to H$ and
- ▶ there is a nondecreasing function $g: Im(f) \to \mathbb{R}$ s.t. $g(f(K_n)) = n \quad \forall n \geq 1.$

Examples:

- ▶ clique(·)
- ▶ chromatic(·)
- ▶ chromatic*(·)

A real-valued graph invariant f is hom-monotone if

- ▶ $f(G) \le f(H)$ if $G \to H$ and
- ▶ there is a nondecreasing function $g: Im(f) \to \mathbb{R}$ s.t. $g(f(K_n)) = n \quad \forall n \geq 1.$

Examples:

- ▶ clique(·)
- ▶ chromatic(·)
- ▶ chromatic*(·)
- ▶ hypersphere(·)

A real-valued graph invariant f is hom-monotone if

- ▶ $f(G) \le f(H)$ if $G \to H$ and
- ▶ there is a nondecreasing function $g: \text{Im}(f) \to \mathbb{R}$ s.t. $g(f(K_n)) = n \quad \forall n \geq 1.$

Examples:

- ▶ clique(·)
- ▶ chromatic(·)
- ▶ chromatic*(·)
- ▶ hypersphere(·)
- ▶ some variants of hypersphere(·)

A real-valued graph invariant f is hom-monotone if

- ▶ $f(G) \le f(H)$ if $G \to H$ and
- ▶ there is a nondecreasing function $g: Im(f) \to \mathbb{R}$ s.t. $g(f(K_n)) = n \quad \forall n \geq 1.$

Then $\operatorname{clique}(G) \leq g(f(G)) \leq \operatorname{chromatic}(G)$.

$$\begin{split} & \mathcal{K}_{\mathsf{clique}(G)} \to G \to \mathcal{K}_{\mathsf{chromatic}(G)} \\ & \Longrightarrow f(\mathcal{K}_{\mathsf{clique}(G)}) \leq f(G) \leq f(\mathcal{K}_{\mathsf{chromatic}(G)}) \\ & \Longrightarrow \mathsf{clique}(G) = g(f(\mathcal{K}_{\mathsf{clique}(G)})) \leq g(f(G)) \leq g(f(\mathcal{K}_{\mathsf{chromatic}(G)})) \\ & = \mathsf{chromatic}(G) \end{split}$$

Yet another variant

Define hypersphere G similarly as hypersphere G, but require edges to be at distance G 1.

$$\begin{array}{lll} 2 \, \mathsf{hypersphere}(G) + \frac{1}{\theta(\overline{G})} = 1 & \qquad & 2 \, \mathsf{hypersphere}'(G) + \frac{1}{\theta'(\overline{G})} = 1 \\ \mathsf{where} \,\, \theta(\overline{G}) = & \qquad & \mathsf{where} \,\, \theta'(\overline{G}) = \\ \mathsf{max} \quad \langle J, X \rangle & & & \mathsf{max} \quad \langle J, X \rangle \\ & X \succeq 0 & & & \mathsf{X} \succeq 0 \\ & X_{ij} = 0 & \forall \{i,j\} \in \overline{E} \\ & \langle I, X \rangle = 1 & & & \mathsf{X} \succeq 0 \end{array}$$

 $\theta'(\cdot)$ was introduced by McEliece, Rodemich, Rumsey, and, independently, by Schrijver

An aside: sparse solutions to SDPs

Theorem (de C.S., Harvey, Sato 2011)

Let B_1, \ldots, B_m be psd $n \times n$ matrices. Set $B := \sum_i B_i$. Then $\forall \varepsilon \in (0, 1)$ there exists $y \in \mathbb{R}_m^+$ with $\leq 4n/\varepsilon^2$ nonzero entries and

$$(1-\varepsilon)B \preceq \sum_{i} y_i B_i \preceq (1+\varepsilon)B.$$

An aside: sparse solutions to SDPs

Theorem (de C.S., Harvey, Sato 2011)

Let B_1, \ldots, B_m be psd $n \times n$ matrices. Set $B := \sum_i B_i$. Then $\forall \varepsilon \in (0, 1)$ there exists $y \in \mathbb{R}_m^+$ with $\leq 4n/\varepsilon^2$ nonzero entries and

$$(1-\varepsilon)B \leq \sum_{i} y_i B_i \leq (1+\varepsilon)B.$$

When applied to the dual SDP for hypersphere (G), we get:

for all $\varepsilon \in (0,1)$ and every graph G, there exists a spanning subgraph H of G such that

$$|E(H)| \leq 8 \frac{|V(G)|}{\varepsilon^2}$$

and

$$\frac{\mathsf{hypersphere}'(\mathsf{G})}{1+\varepsilon} \leq \mathsf{hypersphere}'(\mathsf{H}) \leq \mathsf{hypersphere}'(\mathsf{G}).$$

Unit-Distance Dimension

- ▶ $dim(G) := smallest d s.t. \exists a unit-distance repr. of G in <math>\mathbb{R}^d$.
- ▶ if $G \to H$ and H has a unit-distance repr. in \mathbb{R}^d , then so does G
- $ightharpoonup \dim(K_n) = n-1$
- ▶ so dim(·) is hom-monotone
- ▶ Sandwich: $clique(G) \le dim(G) + 1 \le chromatic(G)$

Unit-Distance Dimension

- ▶ $dim(G) := smallest d s.t. \exists a unit-distance repr. of G in <math>\mathbb{R}^d$.
- ▶ if $G \to H$ and H has a unit-distance repr. in \mathbb{R}^d , then so does G
- $ightharpoonup \dim(K_n) = n-1$
- ▶ so dim(·) is hom-monotone
- ▶ Sandwich: $clique(G) \le dim(G) + 1 \le chromatic(G)$
- ▶ $dim(G) \le maxdegree(G)$
- ▶ Brooks' Theorem \implies G is connected and not complete nor an odd cycle, then $\dim(G) \le \max(G) 1$.

Golomb graph and Mosers' spindle

Golomb graph and Mosers' spindle

- ightharpoonup Golomb ightarrow Moser
- ▶ Assume $G \rightarrow H$
- ▶ $dim(G) \le dim(H)$ and $chromatic(G) \le chromatic(H)$
- ▶ chromatic($\mathbb{R}^{\dim(H)}$) ≥ chromatic(H) ≥ chromatic(G), i.e., G cannot improve the lower bound of chromatic($\mathbb{R}^{\dim(H)}$) given by H.

Deciding whether dim(G) = 2 is NP-complete.

- ▶ *k*-Embeddability Problem:
 - ▶ input: graph G = (V, E) and prescribed edge lengths $\ell \colon E \to \mathbb{R}_+$
 - ▶ decide if $\exists p \colon V \to \mathbb{R}^k$ such that $\|p(i) p(j)\| = \ell_{ij}$ for all $ij \in E$.

Deciding whether dim(G) = 2 is NP-complete.

- ▶ *k*-Embeddability Problem:
 - ▶ input: graph G = (V, E) and prescribed edge lengths $\ell \colon E \to \mathbb{R}_+$
 - ▶ decide if $\exists p \colon V \to \mathbb{R}^k$ such that $\|p(i) p(j)\| = \ell_{ij}$ for all $ij \in E$.
- ▶ Saxe '79: $\forall k \geq 1$, the problem k-Embeddability is NP-complete, even if $\ell(E) \subseteq \{1,2\}$.

Deciding whether dim(G) = 2 is NP-complete.

- ▶ *k*-Embeddability Problem:
 - ▶ input: graph G = (V, E) and prescribed edge lengths $\ell \colon E \to \mathbb{R}_+$
 - ▶ decide if $\exists p \colon V \to \mathbb{R}^k$ such that $||p(i) p(j)|| = \ell_{ij}$ for all $ij \in E$.
- ▶ Saxe '79: $\forall k \geq 1$, the problem k-Embeddability is NP-complete, even if $\ell(E) \subseteq \{1,2\}$.
- ▶ We show 2-Embeddability with $\ell(E) \subseteq \{1,2\}$ reduces to deciding if $\dim(G) = 2$.

Deciding whether dim(G) = 2 is NP-complete.

- ▶ *k*-Embeddability Problem:
 - ▶ input: graph G = (V, E) and prescribed edge lengths $\ell \colon E \to \mathbb{R}_+$
 - ▶ decide if $\exists p \colon V \to \mathbb{R}^k$ such that $||p(i) p(j)|| = \ell_{ij}$ for all $ij \in E$.
- ▶ Saxe '79: $\forall k \geq 1$, the problem k-Embeddability is NP-complete, even if $\ell(E) \subseteq \{1,2\}$.
- ▶ We show 2-Embeddability with $\ell(E) \subseteq \{1,2\}$ reduces to deciding if $\dim(G) = 2$.
- We need a gadget to force distance 2 using only distance 1 requirements.

Unique embedding of Mosers' spindle

Gadget

Outline

Hypersphere number and Lovász Theta Number

Homomorphisms and Sandwich Theorems

Generalizations

Weighted Hypersphere Number

We want to define hypersphere(G, w) for $w \in \mathbb{R}_+^V$ so that

$$2 \operatorname{hypersphere}(G, w) + \frac{1}{\theta(\overline{G}, w)} = 1.$$

hypersphere
$$(G,w)=$$
min t

$$X_{ii}=w_it+(1-w_i)/2 \qquad \forall i \in V$$

$$X_{ii}-2X_{ij}+X_{jj}=1+(t-1/2)(w_i-2\sqrt{w_iw_j}+w_j) \quad \forall \{i,j\} \in E$$
 $X\succeq 0$

Solutions encode hypersphere repr. for graph obtained from G by "blowing up" each node i into a clique of size w_i .

Objective Function as Norm

lacksquare ball $(G) = \min \left\{ \left\| (u_i^T u_i)_{i \in V} \right\|_{\infty} : u \text{ a unit-distance repr. of } G
ight\}$

Objective Function as Norm

- ▶ ball(G) = min $\left\{ \left\| (u_i^T u_i)_{i \in V} \right\|_{\infty} : u \text{ a unit-distance repr. of } G \right\}$
- ▶ for $A \succeq 0$ and $p \in [1, \infty]$, define

$$\mathsf{ellipse}_p(\mathit{G},\mathit{A}) := \mathsf{inf} \left\{ \left\| (u_i^\mathsf{T} \mathit{A} u_i)_{i \in \mathit{V}} \right\|_p : \mathit{u} \; \mathsf{a} \; \mathsf{unit\text{-}distance} \; \mathsf{repr.} \; \mathsf{of} \; \mathit{G} \right\}$$

Objective Function as Norm

- ightharpoonup ball $(G) = \min \left\{ \left\| (u_i^T u_i)_{i \in V} \right\|_{\infty} : u \text{ a unit-distance repr. of } G
 ight\}$
- ▶ for $A \succeq 0$ and $p \in [1, \infty]$, define $\text{ellipse}_p(G, A) := \inf \left\{ \left\| (u_i^T A u_i)_{i \in V} \right\|_p : u \text{ a unit-distance repr. of } G \right\}$
- ▶ for a fixed $A \succeq 0$, the invariant ellipse_∞(·, A) satisfies the first condition of hom-monotonicity, i.e.,

$$G \to H \implies \mathsf{ellipse}_{\infty}(G, A) \le \mathsf{ellipse}_{\infty}(H, A)$$

Action of the Orthogonal Group

$$\mathsf{ellipse}_1(G,A) = \min \Big\{ \sum_{i \in V} \|A^{1/2}u_i\|_2^2 : \textit{u} \; \mathsf{a} \; \mathsf{unit\text{-}distance \; repr. of} \; G \Big\}$$

Action of the Orthogonal Group

$$\mathsf{ellipse}_1(G,A) = \min \Big\{ \sum_{i \in V} \|A^{1/2}u_i\|_2^2 : \textit{u} \; \mathsf{a} \; \mathsf{unit\text{-}distance \; repr. of} \; G \Big\}$$

$$\begin{aligned} \mathsf{ellipse}_1(G,A) &= \min_{Q \in O(V)} \min & \quad \langle QAQ^T, X \rangle \\ &\text{s.t.} & \quad X_{ii} - 2X_{ij} + X_{jj} = 1 \quad \forall \{i,j\} \in E \\ & \quad X \succeq 0 \end{aligned}$$

Action of the Orthogonal Group

$$\mathsf{ellipse}_1(G,A) = \min \Big\{ \sum_{i \in V} \|A^{1/2} u_i\|_2^2 : u \text{ a unit-distance repr. of } G \Big\}$$

$$\begin{aligned} \text{ellipse}_1(G,A) &= \min_{Q \in \mathcal{O}(V)} \min & \quad \langle QAQ^T, X \rangle \\ \text{s.t.} &\quad X_{ii} - 2X_{ij} + X_{jj} = 1 &\quad \forall \{i,j\} \in E \\ &\quad X \succeq 0 \end{aligned}$$

$$\mathsf{ellipse}_1(G,A) = \min \quad \sum_{i=1}^n \lambda_i(A)\lambda_{n-i+1}(X)$$

$$\mathsf{s.t.} \quad X_{ii} - 2X_{ij} + X_{jj} = 1 \quad \forall \{i,j\} \in E$$

$$X \succeq 0$$

Complete Graphs

ellipse
$$_1(G,A)=\min$$
 $\sum_{i=1}^n \lambda_i(A)\lambda_{n-i+1}(X)$ s.t. $X_{ii}-2X_{ij}+X_{jj}=1$ $\forall \{i,j\}\in E$ $X\succeq 0$

- ▶ for $G = K_n$, a matrix X is feasible iff X is of the form $(\mathbb{1}y^T + y\mathbb{1}^T + 2I)/4$ with $\|\mathbb{1}\|\|y\| \le 2 + \mathbb{1}^T y$
- lacksquare ellipse $_1(\mathcal{K}_n,A)=\operatorname{Tr}(A)-\lambda_{\max}(A)$ using SOC program

- ▶ if A is $n \times n$ diagonal with n-2 one entries and 2 zeroes on the diagonal, then ellipse₁(G, A) = 0 if and only if dim(G) ≤ 2
- ▶ Computing ellipse₁(G, A) given G and $A \succeq 0$ as inputs is NP-hard.
- ▶ For any fixed $p \in [1, \infty]$, computing ellipse_p(G, A) given G and $A \succeq 0$ as inputs is NP-hard.