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Unit-distance representations

A unit-distance representation of G = (V ,E ) is a map p : V → Rd s.t.

‖p(i)− p(j)‖ = 1 ∀{i , j} ∈ E



Every graph has a unit-distance representation

I complete graphs have a unit-distance repr. i 7→ 1√
2
ei ∈ Rn

1√
2

1√
2

I a unit-distance repr. of G “contains” a unit-distance repr. of any
subgraph of G
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Petersen again

I Any unit-distance repr. of Kp contains a unit-distance repr. of any
p-colorable graph.
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Chromatic number of Rn

I The graph (Rn, { {x , y} : ‖x − y‖ = 1}) “is” a unit-distance repr. of
itself.

I Frankl and Wilson, Raigorodskii, Larman and Rogers:
(1 + o(1))1.2n ≤ chromatic(Rn) ≤ (3 + o(1))n

I The “graph” Rn has a unit-distance repr. in some Rd with finite
image.

I de Bruijn, Erdős ’51: chromatic(Rn) = max chromatic(G ) where G
ranges over finite graphs with some unit-distance repr. in Rn.
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Hypersphere representations

I A hypersphere representation of G = (V ,E ) is a unit-distance
representation of G contained in a hypersphere centered at the
origin, i.e.,

I A hypersphere representation of G is a map p : V → Rd s.t.

‖p(i)‖ = r ∀i ∈ V

‖p(i)− p(j)‖ = 1 ∀{i , j} ∈ E

I hypersphere(G ) :=
[
min. radius r of a hypersph. repr. of G

]2



Optimal hypersphere representations of complete graphs
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Optimal hypersphere representations of the 5-cycle

1
2

≈ 0.5257311



hypersphere(G ) as an SDP

hypersphere(G ) = min t

Xii = t ∀i ∈ V

Xii − 2Xij + Xjj = 1 ∀{i , j} ∈ E ,

X � 0

= max
∑
{i,j}∈E

z{i,j}

Diag(y) �
∑
{i,j}∈E

z{i,j}(ei − ej)(ei − ej)
T

∑
i∈V yi = 1

I Dual may be interpreted as a problem in tensegrity theory.



Relation with Lovász Theta Number

I Lovász proved 2
[
hypersphere(G )

]
+

1

θ(G )
= 1

Sketch of Proof.
Rewrite dual:

2
[
hypersphere(G )

]
= max 〈J − I ,S〉

S � 0

Sij = 0 ∀{i , j} ∈ E

〈J,S〉 = 1



Relation with Lovász Theta Number

I Lovász proved 2
[
hypersphere(G )

]
+

1

θ(G )
= 1

Sketch of Proof.
Rewrite dual:

2
[
hypersphere(G )

]
= max 1− 〈I ,S〉

S � 0

Sij = 0 ∀{i , j} ∈ E

〈J,S〉 = 1



Reciprocal SDPs

1/θ(G ) =

min 〈I ,S〉
S � 0

Sij = 0 ∀{i , j} ∈ E

〈J,S〉 = 1

θ(G ) =

max 〈J,X 〉
X � 0

Xij = 0 ∀{i , j} ∈ E

〈I ,X 〉 = 1



Min-Max Interpretation

I hypersphere(G ) =
[
min. radius of a hypersph. repr. of G

]2
I θ(G ) = max

{∑
i∈V

xi : x ∈ TH(G )︸ ︷︷ ︸
theta body

}

Theorem

I Let p be a hypersphere repr. of G with radius r

I Let x ∈ TH(G ) with x 6= 0

Then 2r2 +
1∑

i∈V xi
≥ 1.

Equality holds ⇐⇒ r2 = hypersphere(G ) and
∑
i∈V

xi = θ(G )



SDP-free Interpretation

I An orthonormal representation of G = (V ,E ) is a map u from V to
the unit sphere in RV s.t. non-adjacent nodes are orthogonal

Theorem

I Let p be a hypersphere repr. of G with radius r

I Let c be a unit vector and u an orthonormal repr. of G

Then 2r2 +
1∑

i∈V (cTu(i))2
≥ 1.

Equality ⇐⇒ r2 = hypersphere(G ) and
∑
i∈V

(cTu(i))2 = θ(G )



Characterization of bipartite graphs

G is bipartite ⇐⇒ θ(G ) ≤ 2

(proof reduces to θ(C2k+1) > 2)

Equivalently G is bipartite ⇐⇒ hypersphere(G ) ≤ 1/4

Proof.
(=⇒): already done.

(⇐=): In a hypersphere with radius 1/2, the only pairs of points at
distance 1 are the pairs of antipodal points.
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Unit-distance representations in Euclidean balls

Recall:

I hypersphere(G ) :=

[
min. radius of a hypersphere

containing a unit-distance repr. of G

]2
Next:

I ball(G ) :=

[
min. radius of a ball containing

a unit-distance repr. of G

]2

I ball(G ) ≤ hypersphere(G )

I ball(G )
?
= hypersphere(G )
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Another min-max relation

2hypersphere(G ) +
1

θ(G )
= 1

where θ(G ) =

max 〈J,X 〉
X � 0

Xij = 0 ∀{i , j} ∈ E

〈I ,X 〉 = 1

∑
j
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1

θb(G )
= 1

where θb(G ) =

max 〈J,X 〉
X � 0

Xij = 0 ∀{i , j} ∈ E

〈I ,X 〉 = 1∑
j Xij ≥ 0 ∀j ∈ V

hypersphere(·) = ball(·) ⇐⇒ θ(·) = θb(·)
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Hypersphere = Euclidean Balls?

I But θ(·) = θb(·) !

I It was pointed out by Fernando Mario de Oliveira Filho that the
following result can be used to prove θ(·) = θb(·)

Theorem (Prop. 9 in Gijswijt’s PhD thesis, 2005)
Let K ⊆ Sn s.t. Diag(h)X Diag(h) ∈ K whenever X ∈ K and h ∈ Rn

+. If
X ∗ is an optimal solution to

max
{
〈J,X 〉 : Tr(X ) = 1, X ∈ K ∩ Sn+

}
, (1)

then ∃µ > 0 s.t. diag(X ∗) = µX ∗1.



The Sandwich Theorem

I clique(G ) ≤ θ(G ) ≤ chromatic(G )

I ≡

{
hypersphere(Kclique(G)) ≤ hypersphere(G )

hypersphere(G ) ≤ hypersphere(Kchromatic(G))

I H ⊆ G =⇒ hypersphere(H) ≤ hypersphere(G )

I if c : V (G )→ {1, . . . , n} is a n-colouring of G , and p is a
hypersphere repr. of the complete graph on {1, . . . , n}, then p ◦ c is
a hypersphere repr. of G



The Sandwich Theorem
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Hypersphere representations of 2-colourable graphs
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Hypersphere representations of 3-colourable graphs
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Graph Homomorphisms

I A homomorphism from a graph G to a graph H is a function
f : V (G )→ V (H) that preserves edges, i.e., if {i , j} ∈ E (G ), then
{f (i), f (j)} ∈ E (H).

I Notation: G → H ≡ ∃ a homomorphism from G to H

I “→” is transitive (compose homs.)

I G is a subgraph of H =⇒ G → H

I G → Kp ⇐⇒ chromatic(G ) ≤ p

I chromatic(G ) = min{ p : G → Kp}
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Homomorphism-monotone invariants

A real-valued graph invariant f is hom-monotone if

I f (G ) ≤ f (H) if G → H

and

I there is a nondecreasing function g : Im(f )→ R s.t.
g(f (Kn)) = n ∀n ≥ 1.

Examples:

I clique(·)
I chromatic(·)
I chromatic∗(·)

I hypersphere(·)
I some variants of hypersphere(·)
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Homomorphism-monotone invariants

A real-valued graph invariant f is hom-monotone if

I f (G ) ≤ f (H) if G → H and

I there is a nondecreasing function g : Im(f )→ R s.t.
g(f (Kn)) = n ∀n ≥ 1.

Then clique(G ) ≤ g(f (G )) ≤ chromatic(G ).

Proof.

Kclique(G) → G → Kchromatic(G)

=⇒ f (Kclique(G)) ≤ f (G ) ≤ f (Kchromatic(G))

=⇒ clique(G ) = g(f (Kclique(G))) ≤ g(f (G )) ≤ g(f (Kchromatic(G)))

= chromatic(G )



Yet another variant

Define hypersphere′(G ) similarly as hypersphere(G ), but require edges to
be at distance ≥ 1.

2 hypersphere(G ) +
1

θ(G )
= 1

where θ(G ) =

max 〈J,X 〉
X � 0

Xij = 0 ∀{i , j} ∈ E

〈I ,X 〉 = 1

X ≥ 0

2 hypersphere′(G ) +
1

θ′(G )
= 1

where θ′(G ) =

max 〈J,X 〉
X � 0

Xij = 0 ∀{i , j} ∈ E

〈I ,X 〉 = 1

X ≥ 0

θ′(·) was introduced by McEliece, Rodemich, Rumsey, and,
independently, by Schrijver



An aside: sparse solutions to SDPs

Theorem (de C.S., Harvey, Sato 2011)
Let B1, . . . ,Bm be psd n× n matrices. Set B :=

∑
i Bi . Then ∀ε ∈ (0, 1)

there exists y ∈ R+
m with ≤ 4n/ε2 nonzero entries and

(1− ε)B �
∑
i

yiBi � (1 + ε)B.

When applied to the dual SDP for hypersphere′(G ), we get:

for all ε ∈ (0, 1) and every graph G , there exists a spanning subgraph H
of G such that

|E (H)| ≤ 8
|V (G )|
ε2

and
hypersphere′(G )

1 + ε
≤ hypersphere′(H) ≤ hypersphere′(G ).
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Unit-Distance Dimension

I dim(G ) := smallest d s.t. ∃ a unit-distance repr. of G in Rd .

I if G → H and H has a unit-distance repr. in Rd , then so does G

I dim(Kn) = n − 1

I so dim(·) is hom-monotone

I Sandwich: clique(G ) ≤ dim(G ) + 1 ≤ chromatic(G )

I dim(G ) ≤ maxdegree(G )

I Brooks’ Theorem =⇒ G is connected and not complete nor an odd
cycle, then dim(G ) ≤ maxdegree(G )− 1.
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Golomb graph and Mosers’ spindle



Golomb graph and Mosers’ spindle

I Golomb → Moser

I Assume G → H

I dim(G ) ≤ dim(H) and chromatic(G ) ≤ chromatic(H)

I chromatic(Rdim(H)) ≥ chromatic(H) ≥ chromatic(G ), i.e., G cannot
improve the lower bound of chromatic(Rdim(H)) given by H.



Hardness

Deciding whether dim(G ) = 2 is NP-complete.

Proof.
I k-Embeddability Problem:

I input: graph G = (V ,E) and prescribed edge lengths ` : E → R+

I decide if ∃p : V → Rk such that ‖p(i)− p(j)‖ = `ij for all ij ∈ E .

I Saxe ’79: ∀k ≥ 1, the problem k-Embeddability is NP-complete,
even if `(E ) ⊆ {1, 2}.

I We show 2-Embeddability with `(E ) ⊆ {1, 2} reduces to deciding if
dim(G ) = 2.

I We need a gadget to force distance 2 using only distance 1
requirements.
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Unique embedding of Mosers’ spindle
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Weighted Hypersphere Number

We want to define hypersphere(G ,w) for w ∈ RV
+ so that

2 hypersphere(G ,w) +
1

θ(G ,w)
= 1.

hypersphere(G ,w) =
min t

Xii = wi t + (1− wi )/2 ∀i ∈ V

Xii − 2Xij + Xjj = 1 + (t − 1/2)(wi − 2
√
wiwj + wj) ∀{i , j} ∈ E

X � 0

Solutions encode hypersphere repr. for graph obtained from G by
“blowing up” each node i into a clique of size wi .



Objective Function as Norm

I ball(G ) = min
{∥∥(uTi ui )i∈V

∥∥
∞ : u a unit-distance repr. of G

}

I for A � 0 and p ∈ [1,∞], define

ellipsep(G ,A) := inf
{∥∥(uTi Aui )i∈V

∥∥
p

: u a unit-distance repr. of G
}

I for a fixed A � 0, the invariant ellipse∞(·,A) satisfies the first
condition of hom-monotonicity, i.e.,

G → H =⇒ ellipse∞(G ,A) ≤ ellipse∞(H,A)
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Action of the Orthogonal Group

ellipse1(G ,A) = min
{∑

i∈V

‖A1/2ui‖22 : u a unit-distance repr. of G
}

ellipse1(G ,A) = min
Q∈O(V )

min 〈QAQT ,X 〉

s.t. Xii − 2Xij + Xjj = 1 ∀{i , j} ∈ E

X � 0

ellipse1(G ,A) = min
n∑

i=1

λi (A)λn−i+1(X )

s.t. Xii − 2Xij + Xjj = 1 ∀{i , j} ∈ E

X � 0
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Complete Graphs

ellipse1(G ,A) = min
n∑

i=1

λi (A)λn−i+1(X )

s.t. Xii − 2Xij + Xjj = 1 ∀{i , j} ∈ E

X � 0

I for G = Kn, a matrix X is feasible iff X is of the form
(1yT + y1T + 2I )/4 with ‖1‖‖y‖ ≤ 2 + 1T y

I ellipse1(Kn,A) = Tr(A)− λmax(A) using SOC program



Hardness

I if A is n × n diagonal with n − 2 one entries and 2 zeroes on the
diagonal, then ellipse1(G ,A) = 0 if and only if dim(G ) ≤ 2

I Computing ellipse1(G ,A) given G and A � 0 as inputs is NP-hard.

I For any fixed p ∈ [1,∞], computing ellipsep(G ,A) given G and
A � 0 as inputs is NP-hard.
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